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Abstract:  9 

Estimating straw cereal plant density at early stages is important for field crop management 10 

and phenotyping. Usual plant density estimation methods include manual counting and image-11 

based counting, both of which have limited throughput, due to the need for high spatial resolution 12 

images. In this study, we explored the potential of high-throughput estimations with spectral 13 

information. A large and diverse dataset was collected on micro plot field experiments, 14 

encompassing six sites, three leaf stages, and four species of straw cereals. Canopy spectral 15 



 

 

reflectance was acquired with a spectrometer, both in 0° or 45° view zenith angle, perpendicularly 16 

to the row direction. Two reflectance-based approaches were then tested. In the direct approach, 17 

density was directly estimated from reflectance using Gaussian process regression (GPR) and 18 

spectral bands selected based on Akaike’s information criterion. In the indirect approach, the 19 

green fraction derived from high spatial resolution RGB images (GF_rgb) was first estimated from 20 

reflectance using GPR and selected bands, and then linearly related to density. These 21 

reflectance-based methods were compared to a classical image-based baseline method, which 22 

estimates density directly from GF_rgb. 23 

An ablation study firstly showed the superiority of 45° observations, and the necessity to 24 

calibrate one model for each site, growth stage, and species. The band selection process 25 

recommended using no more than four bands as inputs to the GPR models. The resulting direct 26 

and indirect estimations had an overall relative error of 30%. The image-based baseline method 27 

had a lower error of 22% for submillimeter spatial resolutions, but it performed worse than 28 

reflectance-based methods when degrading the spatial resolution to more than 1 to 2 mm to 29 

mimic an increase in sensor altitude. These results showed that spectral information can 30 

compensate for spatial information and that spectral methods can potentially provide high-31 

throughput and reasonably accurate estimates of straw cereal plant density. 32 

Keywords: Plant density, spectral reflectance, spatial resolution, wheat, barley 33 



 

 

1 Introduction 34 

Plant density is a fundamental factor in the management and phenotyping of straw cereal 35 

crops since it may directly impact the final yield (Valério et al., 2013). However, Whaley et al. 36 

(2000) showed that a larger number of tillers could compensate for a lower plant density in winter 37 

wheat. Furthermore, plant density generally reduces weed development by increasing 38 

competition for resources (Carlson and Hill, 1985; Kristensen et al., 2008; Lutman et al., 2013; 39 

Olsen et al., 2012; Tollenaar et al., 1994; Wilson et al., 1995). In the context of plant phenotyping, 40 

plant density allows computation of the emergence rate, which is a valuable trait for breeders. 41 

Furthermore, in case of difficult emergence conditions, the knowledge of plant density helps the 42 

breeder to decide whether a microplot should be kept or not in an experiment. Finally, plant 43 

density is a key characteristic that can be used to assess other traits pertinent for breeders such 44 

as the growth stage depending on the number of leaves per plant, or the tillering coefficient.  45 

Researchers have been looking for ways to replace laborious and time-consuming manual 46 

counting with high-throughput methods based on optical sensor data. These methods can be 47 

divided into two categories: (a) image-based methods and (b) reflectance-based methods.  48 

(a) Image-based methods. On the one hand, many methods in this category begin by 49 

binarizing the image into vegetation pixels and background pixels based on RGB or multispectral 50 

features. Then, optional morphological analysis of the vegetation pixels is carried out. Finally, the 51 



 

 

results of classification and/or morphological analysis are used to estimate the number of plants. 52 

The works of Gnädinger and Schmidhalter (2017), Jin et al. (2017), Liu et al. (2017), Liu et al. 53 

(2018), Roth et al. (2020), Shrestha and Steward (2005), Tseng et al. (2022), and Wilke et al. 54 

(2021) used methods of this category. On the other hand, methods that do not rely on binarized 55 

images have been developed, and these methods are mainly based on deep learning. Shubhra et 56 

al. (2018) employed a two-step, deep learning based method to estimate the number of wheat 57 

plants in an image: firstly, they segmented RGB images into plant patches with a deep learning 58 

module (Badrinarayanan et al., 2017), and then they estimated the amount of wheat plants within 59 

each patch using another deep learning module. Some researchers estimated the number of 60 

plants or plant organs on various species using deep learning regression, classification, or 61 

detection algorithms (Liu et al., 2020; Lu and Cao, 2020; Mukhtar et al., 2021; Tseng et al., 2022; 62 

Wu et al., 2019). Amongst them, deep learning detection is well-suited to the counting task, and 63 

all of these methods have the potential to be applied to plant counting for further density 64 

estimation. 65 

(b) Reflectance-based methods. Compared to image-based research, there are fewer 66 

reflectance-based studies on plant density estimation. In general, the NDVI value is computed 67 

from reflectance measured from ground-based or satellite-borne spectral sensors, and linearly 68 

related to plant density. Aase and Siddoway (1980) showed that the NDVI value is a good proxy 69 

of plant density for winter wheat. Although they did not further explore the correlation between 70 



 

 

NDVI and density, their data showed the potential to create a good linear regression. Reyniers et 71 

al. (2004) showed that the crop coverage of wheat obtained from spectral data is more related to 72 

sowing density in the early season. This result shows the possibility to estimate wheat seedling 73 

density from crop coverage . Habibi et al. (2021) combined the accurate deep learning method 74 

and the high-throughput reflectance-based method in a two-step soybean plant density estimation. 75 

In the first step, deep-learning method was used to get the plant density with high accuracy, and 76 

the density value was used as input for the next step. In the second step, reflectance information 77 

and climate information were used to estimate plant density in high-throughput, with a moderate 78 

accuracy. Zhang et al. (2022) estimated the stand density of evergreen trees based on the linear 79 

relationship between fractional vegetation cover (FVC) and stand density. They first calibrated the 80 

FVC-density relationship on smaller scale areas of 1 hectare, and then applied this method to 81 

larger scale areas of about 100 hectares using NDVI calculated from Sentinel 2.  82 

In the case of straw cereal crops, the image-based methods mentioned above often require 83 

high spatial resolution images to identify the small leaves observed at early growth stages, when 84 

the plants have no tiller and less overlap. For example, Jin et al. (2017) showed that plant density 85 

estimation performance decreases with coarser image spatial resolution and thus recommended 86 

using spatial resolutions finer than 0.4 mm. Similarly, Liu et al. (2017), Liu et al. (2018), Shubhra 87 

et al. (2018), and Mukhtar et al. (2021) used images of 0.2-0.5 mm spatial resolutions. Such 88 

spatial resolutions are usually obtained using a high-resolution camera and acquiring images at a 89 



 

 

low altitude, either from a UAV or from a ground-based system. However, imaging at low altitudes 90 

also reduces the throughput, which can be problematic for large fields that need to be sampled in 91 

a reasonable time. In this respect, reflectance-based methods, despite being less often used, 92 

present interesting advantages over image-based methods: not only does the canopy reflectance 93 

remain unchanged as the spatial resolution decreases according to the spectral linear mixing 94 

model (Adams et al., 1986; Ritter and Urcid, 2010), but richer spectral information can also 95 

potentially compensate for the loss of spatial information. For example, Habibi et al. (2021) and 96 

Zhang et al. (2022) have shown high-throughput reflectance-based density estimation is feasible 97 

for larger plants (soybean and trees), but further investigation is needed for small crops such as 98 

straw cereals. A drawback of the reflectance-based method is that it can be affected by the 99 

detrimental influence of soil on canopy reflectance. Several solutions can be implemented to limit 100 

this influence. For example, sensing the canopy from a 45° view zenith angle increases the green 101 

fraction (GF, the proportion of green vegetation pixels in the sensor field of view) compared to the 102 

nadir, capturing more signal from the vegetation and thus increasing the sensitivity of the optical 103 

data to changes in plant density for such small plants (Jay et al., 2017). Also, using 45° view 104 

zenith angle will make the observed GF value less sensitive to the plant leaf inclination angle 105 

compared to using smaller angles than 45°  (Weiss et al., 2004), and there will be less 106 

overlapping between rows compared to using angles larger than 45°. With 45° view zenith angle, 107 

using an azimuth direction perpendicular to the crop row further reduces the overlap between 108 



 

 

plants inside one row (Baret et al., 2010). This observation set was also used in the work of Liu et 109 

al. (2017) and Jin et al. (2017) for wheat seedling density. Besides changing the acquisition 110 

geometry, another solution to further limit the soil influence is to constrain the reflectance-based 111 

density estimation by first estimating GF, and second relating estimated GF to density. Indeed, 112 

canopy reflectance is strongly related to GF (Baret et al., 2007; Gitelson et al., 2002), which is 113 

itself proportional to plant density when the plants are of similar size with little overlap such as in 114 

the case of early-stage plants (Wilke et al., 2021). 115 

The previous literature review on plant density methods shows that there is currently no 116 

comparison of the performances between image-based and reflectance-based methods achieved 117 

over the same dataset. Furthermore, the possible degradation of performances as a function of 118 

sensor spatial resolution for both types of methods is still lacking. Therefore, in this work, we 119 

developed two reflectance-based approaches to estimate plant density from nadir or 45° 120 

observations. In the first approach, plant density was estimated directly using a machine learning 121 

regression algorithm. In the second approach, GF was first estimated from spectral data, and 122 

then related to density. By introducing GF as a proxy, we wanted to make the estimation more 123 

interpretable. These two approaches were compared to a popular image-based method, trained 124 

on a large and diverse dataset comprising six sites, three leaf stages, and four straw cereal 125 

species. In summary, this research has the following objectives: 126 

(a) Evaluate the performance of two reflectance-based methods and one image-based 127 



 

 

method for estimating cereal straw plant density in terms of accuracy and robustness to changes 128 

in sensor spatial resolution. 129 

(b) Evaluate the added value of several strategies to improve the performance of reflectance-130 

based methods, i.e., using 45° instead of 0° observations, and using GF as a proxy for density.  131 

2 Materials and methods 132 

2.1 The experiments 133 

Microplot experiments were conducted in 2021 and 2022 at five sites in France (Avignon, 134 

Salin-de-Giraud, Gardanne, Greoux-les-Bains, and Mauguio) and one site in China (Nanjing) 135 

(Table 1). The size of each microplot was 1 m * 1.4 m in Avignon, Salin-de-Giraud, Gardanne, 136 

and Nanjing, whereas it was mainly 2 m * 12 m in Greoux-les-Bains and 1.4 m * 8 m in Mauguio. 137 

These sites had different soil types and very different soil colors. Both dry and wet soils were 138 

included in the experiments. At the Salin-de-Giraud site, no herbicide was used, so there were 139 

more weeds. Three density treatments were applied the Avignon, Nanjing, Gardanne, and Salin-140 

de-Giraud plots. These treatments resulted in different density values ranging from 37 to 535 141 

plants/m2, and most density values were between 100 and 450 plants/m2. At Avignon, the plants 142 

were sown earlier (September 23) than at the other sites, where more traditional sowing dates 143 



 

 

(October - January) were used (Table 1). Four cereal crop species (soft wheat, durum wheat, 144 

barley, and rye) were considered, as an extreme case of different crop varieties, to explore the 145 

possible effects of plant structure on density estimation.  146 

For each site and sowing date, the actual plant density was measured manually on the first 147 

day of measurements (section 2.2.1). One to three measurements of spectral reflectance and 148 

RGB images were made from the one- to three-leaf stage (sections 2.2.2 and 2.2.3).  149 

 150 



 

 

Table 1 Site, date, and species of the experiment. “2.5 leaves” means that the third leaf was not fully expanded, and the third leaf length was about 50% 151 

of the second leaf length.  152 

Site and sowing date Soil type Soil color 

(dry/wet soil 

surface) 

Number 

of plots 

Species Density values in 

mean±std 

(#plants/m2) 

Number of leaves  

(date of 

measurements) 

Avignon, France. 

2021/9/23 

Clayey, 

calcareous, 

fluvisol 

White (dry), 

brown (wet) 

18 soft wheat,  

durum wheat,  

barley 

307 ± 130 1.0 (2021/Oct/2),  

2.0 (2021/Oct/8),  

3.0 (2021/Oct/15) 

Nanjing, China. 

2021/11/5 

Sandy Yellow (dry), 

brown (wet) 

9 soft wheat,  

rye,  

barley 

171 ± 91 1.0 (2021/Nov/22),  

2.0 (2021/Dec/3),  

3.0 (2021/Dec/17) 

Greoux-les-Bains, 

France. 

2021/10/28 

Clayey, 

alluvium 

Light Taupe 

(wet) 

32 soft wheat,  

durum wheat,  

barley 

239 ± 27 1.5 (2021/Nov/18),  

2.5 (2021/Nov/29) 

Gardanne, France. 

2021/11/19 

Silty clayey, 

calcareous, 

alluvium 

Red  

(dry and wet) 

9 soft wheat,  

durum wheat,  

barley 

300 ± 120 1.5 (2022/Jan/3),  

1.8 (2022/Jan/11), 

3.0 (2022/Feb/9) 

Salin-de-Giraud, 

France. 

2021/11/22 

Sandy, 

calcareous 

Dark grey 

(wet) 

28 soft wheat,  

durum wheat,  

barley 

212 ± 103 1.0 (2021/Dec/20) 

1.8 (2022/Jan/4) 

Mauguio, France. 

2021/11/19 

Calcareous, 

fluvisol 

Light Taupe 

(dry) 

13  soft wheat 296 ± 66 3.0 (2022/Jan/7) 



 

 

Mauguio, France. 

2022/1/14 

Calcareous, 

fluvisol 

Light Taupe 

(dry) 

22  soft wheat 298 ± 43 1.5 (2022/Feb/18) 
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2.2 Ground measurements 154 

2.2.1 Plant density measurements 155 

At the Gardanne, Avignon, Salin-de-Giraud, and Nanjing sites, all the seedlings within the 156 

1*1.4 m2 plots were counted, and plant density was calculated by dividing the number of plants by 157 

the plot area. Eight plots from the Greoux-les-Bains and Mauguio sites were also included in this 158 

case. 159 

The other 92 plots at the Greoux-les-Bains and Mauguio sites were larger (section 2.1). 160 

Therefore, for each of these plots, two or three subplots of 1 m in length and two rows wide were 161 

selected to be representative of the plot. The densities of the subplots were calculated and 162 

averaged to represent the plant density of the plot.  163 

2.2.2 Spectrometer measurements 164 

In France, canopy reflectance data were collected with an SM-3500 spectrometer (Spectral 165 

Evolution, Massachusetts, US), with 737 bands ranging from 343 to 2517 nm, and with full-width 166 

at half maximum (FWHM) between 1.5 nm and 3.8 nm. In China, canopy reflectance data were 167 

collected with an ASD FieldSpec 4 spectrometer (Analytical Spectral Devices, Colorado, US), 168 

with bands ranging from 350 to 2500 nm, and with FWHM between 1.1 and 1.4 nm.  169 

Spectral data were measured at 0° and 45° view zenith angles. In the 45° measurements, 170 



 

 

the azimuth was perpendicular to the direction of the rows. The acquisition geometry was 171 

designed such that (1) the area covered by the 25° field of view (FOV) of the spectrometer was 172 

similar in 0° and 45° situations, and (2) the area covered by the FOV was large enough to 173 

represent the plot while not exceeding the plot boundaries (Figure 1). The spatial resolution of 174 

spectrometer measurements, which is defined here as the length of the side of a square with the 175 

same area, is 736 mm. In practice, the spectrometers and cameras were held manually so there 176 

could be an accidental but slight error in height. The 45° angle was controlled by checking a 177 

device with bubble level. 178 

To introduce some variation in the soil background in Avignon, Gardanne, and Nanjing, 179 

measurements were performed on both dry soil surface and wet soil surface when it was possible, 180 

i.e., when the soil was not already wet due to the rain. A first measurement was made on dry soil. 181 

Then some water was poured onto the surface of the soil to change its color, and the second 182 

measurement was made. In the other sites (Greoux-les-Bains, Salin-de-Giraud and Mauguio), 183 

water was not available so only one measurement per plot was performed. 184 

Forty-nine canopy reflectance spectra were removed from the dataset, either because of 185 

inaccurate reflectance calibration, or because the shadows of nearby buildings and trees 186 

accidentally covered the plots. Among these 49 removed samples, 9 samples were acquired from 187 

0° view zenith angle, and 40 samples were acquired from 45° view zenith angle. In total, there 188 

were 262 samples in the nadir view and 231 samples in the 45° view zenith angle for assessing 189 



 

 

the reflectance-based methods presented in section 2.3. 190 

Some preprocessing operations were applied to the spectral data. First, the bands of the 191 

ASD spectrometer were interpolated into the bands of the SM-3500 spectrometer. Then, a 192 

Savitzky-Golay filter with a window of 5 and a polynomial order of 2 was applied to reduce the 193 

influence of noise (Savitzky and Golay, 1964; Virtanen et al., 2020). Afterward, only the bands 194 

from 343 to 1338 nm and from 1494 to 1798 nm were used in this experiment to avoid the 195 

atmospheric water absorption effect around 1400 nm and 1850 nm and to avoid the noise in 196 

bands with wavelengths longer than 2000 nm. Next, to accelerate the calculations after, the 197 

number of bands was further reduced. Starting from the first band of 343 nm, each time the 198 

shortest band that is greater than 10 nm away was chosen, thus making a band set of 343 nm, 199 

354 nm, 365 nm, etc. This reducing process gave 140 bands as output. 200 

 201 

 202 

Figure 1: Acquisition for 0° and 45° spectral measurements. (A) The real scene at the Avignon 203 

site. The 45° measurement view direction is perpendicular to the row. (B) The geometry design of the 204 



 

 

spectrometer measurements (unit: meter). The spectrometer field of view is 25°. 205 

 206 

2.2.3 RGB imagery 207 

In France, a Sony Alpha 5100 camera (Sony, Inc. Minato, Tokyo, Japan.) with 24M pixels 208 

and a 45 mm focal length (in 35 mm equivalent focal length) was used to collect RGB images 209 

with a spatial resolution ranging from 0.1 and 0.3 mm at the ground level. In China, a Sony RX0 210 

camera with 15M pixels and a 24 mm focal length (in 35 mm equivalent focal length) was used, 211 

and the images had a spatial resolution between 0.2 and 0.5 mm at the ground level. These 212 

ranges of spatial resolutions were caused by 1) the variability in pixel size in 45° images due to 213 

the variable distance between soil and camera within the imaged scene, and 2) the accidental 214 

error in camera height that was controlled manually. The cameras were held at the same place 215 

and with the same orientation as the spectrometer. Since the cameras had a larger FOV than the 216 

spectrometers, the image contained parts that did not belong to the target plot, so these parts 217 

were cropped during preprocessing. The images were collected on both dry soil and wet soil with 218 

the same method as in section 2.2.2. 219 

 220 



 

 

2.3 Direct and indirect density estimation methods 221 

from canopy reflectance with Gaussian process regression 222 

2.3.1 Description of direct, indirect and baseline methods 223 

Two density estimation methods based on canopy reflectance were compared in this work 224 

(Figure 2). The first one was a one-step direct estimation approach, in which canopy reflectance 225 

was related to plant density using a Gaussian process regression (GPR) model.  226 

The second method was a two-step indirect estimation approach, in which GF was used as a 227 

proxy of plant density. The first step was to estimate GF from canopy reflectance with GPR. The 228 

ground truth values of GF (GF_rgb) were derived from high spatial resolution RGB images with 229 

the SegVeg deep learning segmentation method developed by our team (Madec et al., 2023; 230 

Serouart et al., 2022). The second step was to estimate plant density from estimated GF, using a 231 

linear regression model with a zero intercept, since GF is zero when the density is zero.  232 

In addition to the direct and indirect methods, a baseline method inspired by Wilke et al. 233 

(2021) was applied, fitting the GF_rgb to the density with a linear regression model through the 234 

origin, to have a better understanding of the second step of the indirect method (Figure 2). This 235 

proportional relationship is based on the hypothesis that the individual plants are of similar sizes 236 

and the overlapping can be neglected, and this is the case for the plants in the early stages 237 



 

 

(Wilke et al., 2021).  238 

For either GF or plant density estimation, the GPR method here used a similar kernel as 239 

Verrelst et al. (2013) (Equation 1), except that we did not use Kronecker delta as the multiplier of 240 

noise: 241 

 242 

                  
   

   
   

    
 

   
 

 
       

  (1) 243 

 244 

where   is a scaling factor,   is the number of bands,   
   

 and   
   

are the reflectance value 245 

of the     and     samples at the band  ,    is the scale for the reflectance value of each band, 246 

and    is the standard deviation of noise. Different sets of bands were used as inputs in the 247 

ablation study and the final performance evaluation. The ablation study employed five common 248 

bands (section 2.3.2), and the final performance evaluation used the optimal bands identified with 249 

forward band selection (section 2.3.3). The model should not use hundreds of bands as input, as 250 

more bands will contain more redundant information and noise, which are not really related to GF 251 

or plant density, and may cause the model to overfit more easily (Verrelst et al., 2016). 252 

 253 



 

 

  254 

Figure 2: Workflow of direct, indirect, and baseline methods. GPR means Gaussian process 255 

regression. LR means linear regression. 256 

2.3.2 Ablation study to understand the effects of species, site, and growth 257 

stage factors in the estimation 258 

Several factors can modify the relationship between remote-sensing observations and plant 259 

density. In our work, these factors include the species, the site, the growth stage, and the zenith 260 

angle of observation. If the influence of one of these factors cannot be properly taken into account 261 

by the regression algorithm, it may be necessary to calibrate as many sub-models as factor 262 

values to obtain good overall performance. For example, Wilke et al. (2021) and Liu et al. (2018) 263 

used calibrated models for each growth stage and each cultivar, while Liu et al. (2017) 264 

emphasized the importance of data acquisition in a certain time-window when the plants have 1.5 265 

to 2 leaves. 266 

For each view zenith angle (0° and 45°), we thus performed an ablation study to identify 267 



 

 

which factor(s), among species, site, and growth stage, should be differentiated when calibrating 268 

a regression model. We tested if the calibration of separate sub-models for one or several 269 

factor(s) would significantly improve the estimation performance obtained when not differentiating 270 

the above three factors. We tested all the possible factor combinations for each of the three 271 

estimation steps presented in section 2.3, i.e., spectra-density for direct estimation and spectra-272 

GF and GF_rgb-density (baseline method) for indirect estimation. The estimation performance 273 

was quantified with the root mean squared error (RMSE), and the relative root-mean-square error 274 

(rRMSE). The rRMSE was obtained by dividing the RMSE by the mean value of the target 275 

variable (GF or density) of the full dataset. Due to the potentially low number of samples attained 276 

when differentiating several factors, the RMSE and rRMSE were computed using five-fold cross-277 

validation when the dataset had more than five samples, and leave-one-out cross-validation 278 

otherwise. The cross-validations were replicated ten times with different partitions of datasets at 279 

each time, to reduce the random error introduced by the random partition of small datasets. 280 

Finally, the averages of RMSE and rRMSE were calculated for each factor combination, for each 281 

view zenith angle, and for each estimation step.  282 

To simplify the ablation study, five common bands were used here as spectral reflectance 283 

input to the GPR regression model (section 2.3). These five bands were the blue (B, 475 nm), 284 

green (G, 560 nm), red (R, 668 nm), red edge (RE, 717 nm), and near-infrared (NIR, 842 nm) 285 

bands. This set of bands is widely used in commercial multispectral cameras, such as Rededge 286 



 

 

(Micasense, Washington, US), P4-multispectral (DJI, Shenzhen, China), Airphen (Hiphen, 287 

Avignon, France), MiniMCA (Tetracam, Bolton, UK), and Sentera-6X (Sentera, Minneapolis, US). 288 

We took the bands of the Rededge camera as a reference.  289 

2.3.3 Forward band selection based on Akaike’s information criteria for final 290 

performance evaluation 291 

Based on optimal factor differentiation determined using the ablation study described in 292 

section 2.3.2, we evaluated the plant density estimation performance obtained by exploiting the 293 

full spectrum instead of just five common bands. Since using 140 spectral bands as inputs to the 294 

GPR model would risk overfitting, a forward band selection method was used to determine the 295 

best input bands for each view zenith angle. These bands were optimized for Spectra-GF 296 

estimation (part 1 of the indirect method) and used for both spectrally-based estimations of GF 297 

and density. At each iteration of the forward band selection, the best band was chosen among all 298 

the candidate bands based on the corrected version of the Akaike Information Criterion (AICc) 299 

and then added to the model. AICc takes into account both the error and the parsimony of the 300 

model, and a model with a low AICc value is preferred (Burnham and Anderson, 2004). AICc was 301 

calculated as follows:  302 

                      
       

     
 (2) 303 

Where       is the likelihood of the Gaussian Process estimation,   is the number of 304 



 

 

parameters to be determined in the GPR model and   is the number of samples used to calibrate 305 

this model. In GPR, the log-likelihood of the model was calculated using a Python sci-kit package 306 

(Pedregosa et al., 2011; Williams and Rasmussen, 2006), and the number of parameters was the 307 

number of bands plus two according to Equation (1). In this study, when multiple sub-models 308 

were calibrated on different sub-datasets due to factor differentiation (section 2.3.2), the sum of 309 

AICc values from multiple sub-models was calculated as a criterion. When one model was 310 

calibrated for the whole dataset, the AICc value of this model was used as a criterion. The optimal 311 

set of bands comes from the model with a minimum sum of AICc values. No cross-validation was 312 

applied to the models when calculating AICc since the choice of model with AIC and cross-313 

validation are asymptotically equivalent when maximum likelihood estimation is used (Stone, 314 

1977). 315 

For the best view zenith angle, plant density estimation performances obtained with direct, 316 

indirect, and baseline methods were finally evaluated, using optimal factor differentiation and 317 

optimal band set. These performances were quantified using the coefficient of determination (R2), 318 

the RMSE, and the rRMSE. 319 

2.4 Impact of spatial resolution on density estimation 320 

The impact of spatial resolution on image-based density estimation was studied using RGB 321 

images with degraded spatial resolutions as inputs to estimate GF and then density. The results 322 



 

 

were compared with those obtained with reflectance-based methods, which do not change with 323 

spatial resolution according to the linear mixing model of reflectance spectra (Adams et al., 1986). 324 

Realistic low-resolution images were generated by successively degrading the spatial 325 

resolution by a factor of two according to the method proposed by Velumani et al. (2021): a 326 

Gaussian filter with a sigma of 0.63 and a window size of 9 was first applied to the image, 327 

followed by motion blur with a kernel size of 3 and an angle of 45, and resizing to half of its height 328 

and half of its width. Further degradation of the spatial resolution was achieved by repeating the 329 

operations multiple times, resulting in ground sampling distances (GSDs) that were 2, 4, 8, and 330 

16 times as large as the original size. Therefore, the average spatial resolutions of the original 331 

and generated image sets were 0.2, 0.4, 0.8, 1.6, and 3.2 mm. 332 

For each spatial resolution, original or generated RGB images were used as inputs for the 333 

baseline method (section 2.3.1), and the density estimation RMSE was calculated. These RMSE 334 

values were then compared with the RMSE values obtained with methods based on spectral 335 

reflectance. Note that the SegVeg segmentation model of Serouart et al. (2022) was trained on 336 

images of 0.3 to 2 mm GSD, thus potentially causing some uncertainties in the segmentation 337 

results obtained at 3.2 mm spatial resolution. 338 



 

 

3 Results 339 

3.1 Plant density observations 340 

In Avignon, Salin-de-Giraud, Gardanne, and Nanjing, the plots with different density 341 

treatments showed larger variability in plant density (Figure 3A, B, C, I). Nanjing had lower 342 

density values than the other plots, especially for the barley species. In Greoux-les-Bains and 343 

Mauguio, the variability in density was smaller. The plant density of soft wheat, durum wheat, and 344 

barley varied greatly. The rye was sown in Nanjing only, and it had limited density range (Figure 345 

3I). 346 

For all the sites and species, most GF values tend to gather around the mean value, and 347 

there are few samples that had obviously larger GF values. The largest GF values were in 348 

Avignon site, especially for durum wheat and barley (Figure 3D). 349 



 

 

 350 

Figure 3 Stacked histograms of density (A, B, C, G, H, I) and green fraction values observed at 45° 351 

view zenith angle for all stages available (D, E, F, J, K, L) for the six sites: Avignon (A, D), Salin-de-352 

Giraud (B, E), Gardanne (C, F), Greoux-les-Bains (G, J), Mauguio (H, K), and Nanjing (I, L). 353 



 

 

 354 

3.2 Relationship between the RGB-derived GF and 355 

Density 356 

The relationship between RGB-derived GF (GF_rgb) and density was explored. For example, 357 

the data for barley in Avignon were plotted in Figure 4. For different view zenith angles and 358 

different growth stages, the linear relationships between GF and density were strong, with rRMSE 359 

values of density estimation not exceeding 20%. However, the slope strongly differed across 360 

growth stages and view zenith angles, i.e., it decreased from one-leaf to three-leaf growth stages, 361 

and from 0° to 45° view zenith angles. 362 

The calibration relative RMSE values of density estimation from RGB-derived GF for all 363 

species, sites, and stages are shown in Table 2. Only the Avignon, Gardanne, and Nanjing sites 364 

had data for the three growth stages. For these three sites, the data showed strong relationships 365 

between GF and density, yet some differences could be observed: the rRMSE averaged over 366 

these three sites, the four species and the two view angles was smaller for Stage 2 (8%) and 367 

Stage 3 (9%) compared to Stage 1 (13%), while 0° and 45° zenith angles had more similar 368 

rRMSE values (10% vs 9%, respectively). The data from Salin-de-Giraud, Greoux-les-Bains, and 369 

Mauguio often had larger rRMSE values, showing weaker relationships between GF and density 370 



 

 

for these sites. 371 

 372 

Figure 4: Relationships between RGB-derived GF and barley plant density at the Avignon site for 373 

the three growth stages and the two view zenith angles. The fitted linear regression models were 374 

forced to go through the origin. The calibration relative RMSE is shown for each relationship. 375 

 376 



 

 

Table 2 Calibration relative RMSE values (in %) of density estimation with RGB-derived GF for each site, stage, and species. “/” means there were no 377 

data collected for the case. Stage 1: from 1 to 1.6 leaves; Stage 2: from 1.7 to 2.3 leaves; Stage 3: from 2.4 to 3 leaves.  378 

Specie

s 
Site 

Number of 

samples for 

0° and all 

stages 

rRMSE for 0° view zenith angle (%) Number of 

samples for 

45° and all 

stages 

rRMSE for 45° view zenith angle (%) 

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 

Soft 

wheat 

Avignon 19 19 10 12 10 20 10 13 

Salin-de-Giraud 18 43 16 / 18 46 30 / 

Gardanne 12 8 14 14 12 14 7 7 

Greoux-les-Bains 22 22 / 23 22 23 / 26 

Mauguio 35 27 / 17 34 19 / 21 

Nanjing 15 18 12 14 12 6 7 13 

Durum 

wheat 

Avignon 19 14 12 8 12 15 10 10 

Salin-de-Giraud 7 / 38 / 7 / 41 / 

Gardanne 12 3 5 7 12 7 2 5 

Greoux-les-Bains 19 30 / 15 19 17 / 12 

Barley 

Avignon 19 20 11 12 12 17 7 9 

Salin-de-Giraud 3 / 20 / 3 / 22 / 

Gardanne 12 3 11 5 12 17 6 4 

Greoux-les-Bains 20 15 / 13 19 17 / 13 

Nanjing 15 8 6 4 14 9 5 7 

Rye Nanjing 15 17 5 6 13 10 8 6 

 379 



 

 

3.3 Ablation study on the effects of different factors 380 

For spectra-GF and GF_rgb-density estimations for both view zenith angles, the performance 381 

strongly varied with factor combinations, with the rRMSE values ranging from 28% to 49%, and 382 

from 21% to 56% (Table 3). For spectra-GF, the best performance was obtained by calibrating 383 

one sub-model per site that include the four species and the three growth stages together 384 

(average rRMSE of 33% for 0° and 28% for 45°). For GF_rgb-density, the best performance was 385 

obtained by calibrating one sub-model for each site, each species, and each growth stage 386 

(average rRMSE of 23% for 0° and 21% for 45°). Not differentiating the species only slightly 387 

degraded the performances (average rRMSE of 28% for 0° and 24% for 45°), while the other 388 

factor combinations led to significantly worse GF_rgb-density estimation results. On the other 389 

hand, the spectra-density estimation performance was less variable concerning factor 390 

combination: the rRMSE value ranged from 30% to 42% for 0° and 45° view zenith angles. At 0°, 391 

the best performances were obtained by calibrating one sub-model per site (average rRMSE of 392 

35%), while at 45°, it was better to calibrate a general model including six sites, four species and 393 

three growth stages (average rRMSE of 30%). 394 

The effect of each factor can be shown by comparing the rRMSE before and after 395 

differentiating this factor (Table 3). For spectra-GF estimation, differentiating sites led to an 396 

obvious improvement in accuracy (row 7 versus row 8), but differentiating species (row 4) or 397 



 

 

stage (row 6) were not as effective. With finer differentiation of sub-models, the overall estimation 398 

accuracy degraded (row 1). For GF_rgb-density estimation, differentiating growth stage and site 399 

made a significant improvement to the estimation (row 5 versus row 8), and further differentiating 400 

species yielded the best accuracy (row 1). For spectra-density estimation, the rRMSE values 401 

were less variable, and the best factor combinations differed for 0° and 45°. For 0° observations, 402 

differentiating sites slightly improved the general model (row 7 versus row 8), while for 45° 403 

observations, calibrating a general model had the best accuracy (row 8). For spectra-density 404 

estimation, further differentiation led to a decrease in accuracy. 405 

Overall, the estimation was more accurate at the 45° view zenith angle than at 0° in 22 of 24 406 

cases in Table 3.  407 

 408 

Table 3 rRMSE values (in %) obtained for the different factor combinations, the three estimation 409 

steps (Spectra-GF, GF_rgb-density, and Spectra-Density, see section 2.3.2), and the 0° and 45° view 410 

zenith angles. “Diff-Spc” means “differentiate species”, “Diff-Stg” means “differentiate growth stages”, 411 

and “Diff-Site” means “differentiate sites”. For each column, the best average rRMSE is in bold. For 412 

the sake of simplicity, only five common bands were used here as inputs to the GPR models. The 413 

asterisks (*) denote the values obtained using leave-one-out cross-validation (section 2.3.2). The 414 

difference in average values of GF and density used to compute relative RMSE within each column 415 

was ignorable. 416 

Factor Combinations Spectra→GF GF_rgb→Density Spectra→Density 

Diff-Spc Diff-Stg Diff-Site 0° 45° 0° 45° 0° 45° 

√ √ √ 47* 42* 23* 21* 42* 41* 

√ √ × 47* 46* 35* 38* 42* 38* 

√ × √ 43* 34* 47* 38* 40* 38* 



 

 

√ × × 49 39 51 47 38 35 

× √ √ 37 33* 28 24* 35 34* 

× √ × 35 33 40 44 36 31 

× × √ 33 28 49 39 35 31 

× × × 41 33 56 54 36 30 

 417 

3.4 Band selection with AICc for Spectra-GF 418 

estimation 419 

Forward band selection was applied to Spectra-GF estimation using the sum of AICc values 420 

as a criterion, with each AICc value corresponding to one sub-model per site as recommended by 421 

the above ablation study (section 3.3). The AICc slightly decreased when adding one to four 422 

bands to the GPR model, and then increased more and more rapidly when adding more bands 423 

(Figure 5). The minimum sum of AICc values was reached at four bands for 0° view zenith angle, 424 

and three bands for 45° (Figure 5). These bands were 684, 759, 1128, and 1780 nm for 0° view 425 

zenith angle, and 419, 759, and 1548 nm for 45°. The site-specific GF estimations with selected 426 

bands got low RMSE values of 0.018 and 0.025 for 0° and 45°view zenith angles, respectively 427 

(Figure 6). However, due to the low GF values considered, these RMSE corresponded to 428 

moderate relative RMSE (rRMSE) values of 32% and 26% for 0° and 45° zenith angles, 429 

respectively. The comparison between selected bands and the five common bands showed 430 

subtle differences in rRMSE, i.e., 32% vs 33% for 0°, and 26% vs 28% for 45°. 431 



 

 

 432 

 433 

Figure 5: Results of forward band selection from 140 bands, showing AICc as a function of the 434 

number of input bands included in the GPR model for (A) 0° and (B) 45° view zenith angles. The 435 

models were calibrated for each site. For 0° view zenith angle, bands selected at minimum AICc were 436 

684, 759, 1128, and 1780 nm (C). For the 45° view zenith angle, bands selected at minimum AICc 437 

were 419, 759, and 1548 nm (D). Numbers of bands greater than 25 were not shown because the 438 

AICc value could be invalid in that case. 439 

 440 

 441 



 

 

 442 

Figure 6: Spectra-GF estimation with five common bands or with optimal band sets for (A) 0° and 443 

(B) 45° view zenith angles. One estimation was made for each site and the overall results are shown. 444 

 445 

3.5 Accuracy of specifically calibrated estimation for 446 

different sites, stages, and species 447 

The density estimations were made based on the factor combinations chosen in section 3.3, 448 

and the band combination chosen in section 3.4. The 45° view zenith angle was chosen because 449 

it had a lower rRMSE than 0° with the chosen factor combination and band combination (Table 3). 450 

Table 4 shows the average results obtained over ten replicated cross-validations, while Figure 7 451 

shows scatter plots and residual plots obtained for one of these ten cross-validations. Note that 452 

data from all species have been included in the results (Table 4, Figure 7), but the different 453 



 

 

species were not marked to keep the results clear. 454 

Overall, the direct reflectance-based estimation method (Spectra-Density) got similar results 455 

to the indirect method (Spectra-GF-Density) with RMSE values close to 77 plants/m2 (Table 4, 456 

Figure 7A, C). The baseline image-based estimation method (GF_rgb-Density) performed better, 457 

with an average RMSE value of 54 plants/m2 (Table 4, Figure 7E). Note that estimated density 458 

values obtained with the direct method had a significantly smaller standard deviation (68 459 

plants/m2) than those obtained with the indirect (105 plants/m2) and baseline methods (103 460 

plants/m2), both of which were comparable to the standard deviation of true density values (101 461 

plants/m2). All three methods (direct, indirect, and baseline) tended to overestimate the density 462 

value when the true density value was low and to underestimate when the true density value was 463 

high. This trend was most evident in the direct method, less evident in the indirect method, and 464 

least evident in the baseline method (Figure 7B, D, F). 465 

The estimation performance significantly differed across the different sites (Table 4). For 466 

example, the direct and indirect estimations led to smaller RMSE values between 38 and 61 467 

plants/m2 for Greoux-les-Bains and Mauguio, while they led to higher RMSE values between 92 468 

and 102 plants/m² for Gardanne, Salin-de-Giraud, and Nanjing. Generally, direct and indirect 469 

estimations were similar across sites. On the other hand, the RMSE values obtained with the 470 

baseline method were significantly lower than those obtained with reflectance-based methods for 471 

Avignon, Gardanne, and Nanjing, and similar for Salin-de-Giraud, Greoux-les-Bains, and 472 



 

 

Mauguio. 473 

The differences among stages were checked through the comparison between pairs of 474 

RMSE values. For example, when considering the six sites and three methods, there were 7 out 475 

of 18 cases where RMSE could be computed for both Stage 1 and Stage 2 (Table 4). In 6 out of 476 

these 7 cases, the density estimation was more accurate at Stage 2 than at Stage 1. A similar 477 

paired comparison also showed that Stage 3 was better than Stage 1 in 8 out of 10 cases, while 478 

Stage 2 was better than Stage 3 in 2 out of 3 cases (Table 4).  479 



 

 

Table 4 RMSE values (in plants/m
2
) obtained for plant density estimation at 45° view zenith angle with the direct and indirect reflectance-based methods, 480 

and the baseline image-based method. The factor combinations and band combinations were chosen as described in section 3.3 and 3.4. RMSE values were 481 

computed per growth stage and per site, and by grouping all growth stages and/or all sites. All species available were used to compute each RMSE value. 482 

The RMSE values were the mean values calculated over ten replicated cross-validations. Stage 1: from 1 to 1.6 leaves; Stage 2: from 1.7 to 2.3 leaves; Stage 483 

3: from 2.4 to 3 leaves. The symbol “/” in the cell means the number of samples is not sufficient for the estimation. 484 

 Direct method (Spectra-Density) Indirect method (Spectra-GF-Density) Baseline method (GF_rgb-Density) 

 Stage 1 Stage 2 Stage 3 All 

stages 

Stage 1 Stage 2 Stage 3 All 

stages 

Stage 1 Stage 2 Stage 3 All 

stages 

Avignon / 52 88 71 / 70 88 79 / 33 38 36 

Salin-de-

Giraud 
137 66 / 100 134 74 / 102 137 62 / 99 

Gardanne 119 76 94 97 125 122 67 100 70 25 22 40 

Greoux-

les-Bains 
58 / 26 45 38 / 38 38 51 / 50 51 

Mauguio 52 / 48 51 54 / 71 61 61 / 60 60 

Nanjing 101 103 87 96 / 89 94 92 / 16 25 21 

All sites 84 77 71 77 79 86 71 78 75 39 41 54 

 485 



 

 

 486 



 

 

Figure 7: Scatter plots for (A) direct and (C) indirect reflectance-based estimations, and (E) 487 

baseline image-based estimation; and the residual plots of (B) direct, (D) indirect, and (F) baseline 488 

estimations. The estimations were obtained at the 45° view zenith angle and based on the results of 489 

the ablation study (section 3.3) and band selection (section 3.4). In scatter plots (A, C, E), growth 490 

stages and sites are respectively shown using markers and colors, while species are not differentiated. 491 

The sample size for each category (n) is also provided. In residual plots (B, D, F), each blue point 492 

shows the residual for a data point, and each orange point shows the mean residual in its neighboring 493 

area of 50 plants/m
2
 width. The estimations correspond to one of the ten replicated cross-validations. 494 

 495 

3.6 Image-based estimation vs. reflectance-based 496 

estimation for different spatial resolutions 497 

Image-based estimation was strongly affected by the spatial resolution of the RGB images 498 

that were used to estimate GF_rgb (Figure 8, Figure 9). For the three growth stages and the two 499 

view zenith angles, the plant density estimation RMSE of the baseline image-based method 500 

remained stable up to 1 mm spatial resolution, then increased steadily up to 3.2 mm spatial 501 

resolution. For both view zenith angles, the RMSE of the baseline method exceeds those 502 

obtained using reflectance-based methods applied to our 736 mm spatial resolution spectrometer 503 

data, when the RGB image spatial resolution was greater than 1 mm for Stage 1, 1.7 mm for 504 

Stage 2, and 2 mm for Stage 3. 505 



 

 

 506 

Figure 8 Patches of images with different spatial resolutions as input (RGB) and output (binary) of 507 

the SegVeg model in the first step of the baseline method (section 2.3.1). The GSD values are marked 508 

below each column of images. 509 

 510 

 511 



 

 

  512 

Figure 9: Impact of RGB image spatial resolution on the density estimation RMSE obtained with 513 

the baseline image-based method (dotted blue line), for the three growth stages (Stage 1: (A), (D); 514 

Stage 2: (B), (E); Stage 3: (C), (F)) and the two view zenith angles (0° : (A), (B), (C); 45°: (D), (E), (F)). 515 

This baseline method was calibrated for each site, each stage, and each species. For comparison, the 516 

RMSE obtained with the direct (solid blue line) and indirect (solid orange line) reflectance-based 517 

methods applied to 736 mm spatial resolution spectrometer measurements from section 3.5 were also 518 

shown. RMSE values were averages obtained over ten replicated cross-validations. Stage 1: from 1 to 519 

1.6 leaves; Stage 2: from 1.7 to 2.3 leaves; Stage 3: from 2.4 to 3 leaves. 520 

 521 



 

 

4 Discussion 522 

4.1 The relationship between GF and density 523 

strongly varies across view zenith angles, sites, and growth 524 

stages 525 

The slope of the relationship between GF and density for barley in Avignon changed with 526 

view zenith angles and growth stages (Figure 4). Furthermore, the ablation study on the GF-527 

Density relationship showed that, for a given view zenith angle, it was important to differentiate 528 

not only the stage but also the site, to significantly improve the density estimation accuracy based 529 

on GF (Table 3).  530 

Especially at the 45° view zenith angle, the site factor had a large and complex effect on the 531 

GF-Density relationship. At least three sources of variation related to the site factor could be 532 

identified. First, for the same species and the same growth stage, the plant vigor could change 533 

according to soil and climate conditions, e.g., the air temperature or the soil type, thus affecting 534 

the plant architecture and GF values. For example, plots in Avignon had GF values approximately 535 

twice as large as those in Gardanne, even though both plots had the same species, the same 536 

growth stage, and similar density (Figure 10A, C). The cause could be the higher temperature in 537 



 

 

Avignon or differences in water availability during the experimental period (section 2.1). The 538 

second source of variation related to the site factor was the presence of weeds, which could 539 

artificially increase the estimated GF value. This effect was particularly important in sites with a 540 

large number of weeds such as Salin-de-Giraud (section 2.1, Figure 10B, F) because the GF 541 

values were very small at such an early stage (Figure 6). Finally, the third source of variation was 542 

the variability in soil roughness that could change the size and number of visible leaves at early 543 

stages, especially at the 45° view zenith angle. For example, plants were entirely visible in 544 

Avignon and Salin-de-Giraud where the soil surface was flat (Figure 10A, B), while only parts of 545 

the plants were visible in Nanjing where the soil surface was rougher (Figure 10D).  546 

The growth stage factor also significantly affected the GF-Density relationship for a given 547 

view zenith angle, because this factor changed the size of plants. Later growth stages meant 548 

larger plants, and thus the GF values were larger while the density remained the same. 549 

Compared to site and growth stage factors, differentiating the species factor had a more 550 

marginal yet positive effect on the GF-Density relationship (Table 3). As for growth stages, the 551 

different species could have different plant architectures, i.e., not only different leaf sizes but also 552 

different leaf orientations. For example, barley leaves were wider than wheat leaves in our 553 

experiments and that could lead to differences in GF-Density relationship. 554 

The large diversity in growth stages, sites, and species in our dataset (Table 1) and the 555 

above results allow us to further discuss the results obtained by Gnädinger and Schmidhalter 556 



 

 

(2017), Wilke et al. (2021) and Liu et al. (2017). First, the poor relationship between GF and 557 

density for maize observed by Gnädinger and Schmidhalter (2017) was probably due to the non-558 

differentiation of three growth stages, four cultivars, and six cultural practices, all of which led to 559 

strongly different GF values for the same density. Second, our results confirm those of Wilke et al. 560 

(2021), i.e., accurate plant density estimates can be obtained thanks to GF estimates when 561 

differentiating species and growth stages. However, our results further demonstrate the critical 562 

influence of the factor of site, which could not be observed by Wilke et al. (2021) since they only 563 

had one site and one year. Finally, our results are in agreement with those of Liu et al. (2017), in 564 

which GF was one of the most important inputs to the plant density estimation model. Liu et al. 565 

(2017) also emphasized the need for site-specific calibration models but did not separate wheat 566 

cultivars, probably because of the fewer differences observed among wheat cultivars as 567 

compared to among straw cereal species in our study (soft wheat, durum, barley, rye). Our study 568 

further demonstrates the importance of growth stage differentiation, since Liu et al. (2017) only 569 

considered one stage.  570 



 

 

 571 

Figure 10: Examples of RGB images acquired at 45° view zenith angle for different sites: (A) 572 

Avignon, (B) Salin-de-Giraud, (C) Gardanne, (D) Nanjing, and the corresponding binary images: (E), 573 

(F), (G), (H). Plants in these plots were soft wheat, being in similar growth stages (1.8~2 leaves), with 574 

similar plant density (113~133 plants/m
2
).  575 



 

 

4.2 GF is estimated more accurately using site-576 

specific models based on a few spectral bands acquired 577 

from the 45° view zenith angle  578 

The spectra-GF relationship was analyzed in the ablation study (Table 3, “Spectra-GF” 579 

column). Differentiating only the site factor gave the best result, indicating that the site factor was 580 

the most important. Indeed, the site factor could change the canopy reflectance through different 581 

soil colors (Table 1, Figure 10) and reflectances, resulting in different canopy reflectances, even 582 

for the same GF. What made this change even stronger was the fact that the soil fraction was 583 

much larger than the vegetation fraction in the early stages. This explains the need for site-584 

specific models to estimate GF. On the other hand, the species and growth stage factors affect 585 

the spectral reflectance through a change in vegetation structure and more specifically, mainly 586 

through a change in GF. This fact could keep the spectra-GF relationship generally unchanged. 587 

Furthermore, differentiating the species and growth stages in addition to the sites has a negative 588 

effect on the estimation (Table 3, Spectra-GF), probably because this led to too small training 589 

datasets and unstable GPR performance. 590 

Using the 45° spectral observations for GF estimation generally performed better than using 591 

0° observations (Table 3, Figure 6). One possible reason is the larger projection area of the 592 



 

 

plants in the 45° view zenith angle could help the small plants in the early stages to be more 593 

easily detected by spectrometer and camera (Jin et al., 2017; Liu et al., 2017) (Figure 11). 594 

The forward band selection method with AICc (Figure 5) showed the importance of choosing 595 

the right number of bands as inputs to the estimation model. When the number of bands was too 596 

low, the model was not able to properly separate the influences of the different factors causing 597 

variations in canopy reflectance, and thus not able to properly estimate GF. When the number of 598 

bands was too high, the high AICc values indicated that the model was less likely to reflect the 599 

true relationship (Burnham and Anderson, 2004). Models with too many input variables could be 600 

more sensitive to the noise, and more prone to overfitting. The best number of chosen bands was 601 

three for the 45° view zenith angle and four for the 0° view zenith angle. In both cases, the model 602 

got a balance between low error and parsimony.  603 

However, the interpretation of selected bands for 0° (684, 759, 1128, and 1780 nm) and 45° 604 

view zenith angles (419, 759, and 1548 nm) was difficult, even if bands in the red (684 nm) and 605 

near-infrared (759 and 1128 nm) domains are often used for vegetation remote sensing due to 606 

the strongly different responses of soil and vegetation in these spectral ranges. Despite the 607 

already large dataset collected, more data would thus be needed to confirm these band 608 

selections. Alternatively, using a common band set with five bands: B-G-R-RE-NIR led to slightly 609 

poorer performance than using selected optimal band sets Figure 6). On one hand, this result 610 

shows that forward band selection was effective in selecting an optimal band set for a specific 611 



 

 

dataset because this method yielded the optimal performance. On the other hand, it shows that 612 

the common band set was sufficient for practical use, as it performed similarly to the selected 613 

band sets. 614 

Note that, despite the small RMSE of around 0.02 obtained for GF estimation, the rRMSE 615 

was moderate (between 26% and 33%, Figure 6) because the overall GF values were also small 616 

for the early stages. This explains the moderate plant density performances obtained with the 617 

indirect method (Table 4, Figure 7), which used estimated GF values as inputs to the GF-Density 618 

linear model. 619 

 620 

 621 

Figure 11 (A) Reflectance spectra acquired from 0°and 45° view zenith angles, and 622 

corresponding images in (B) 0° and (C) 45° view zenith angle for barley of the same plot in Avignon 623 

during the two-leaf stage. The 45° view zenith angle had larger reflectance values and larger GF 624 

values. 625 



 

 

4.3 Reflectance-based methods provided less 626 

accurate plant density estimates than image-based 627 

methods for submillimeter image spatial resolutions 628 

The direct (Spectra-Density) and indirect (Spectra-GF-Density) methods had similar error 629 

values, but they showed different features. The direct method was slightly more accurate (Figure 630 

7, Table 4). Another advantage of the direct method was that the best results were obtained using 631 

a general model calibrated with all the data, which could be convenient for practical use. However, 632 

this result is counter-intuitive, since the reflectance-based methods should be based on GF as a 633 

proxy, and they should not be able to handle plants of different growth stages with only one 634 

model. Therefore, this result should be confirmed using more data. A notable feature of the direct 635 

method was that its standard error of estimated values was much less than that of the image-636 

based method. The direct method indeed overestimated plots with low-density values and 637 

underestimated plots with high-density values more severely than the other two methods (Figure 638 

7). As a result, the direct method is more likely to fail for plots with extremely low or high densities. 639 

For the indirect method, the estimation was more interpretable. On one hand, ablation 640 

studies could be made separately for the first step (Spectra-GF estimation) and the second step 641 

(GF-density estimation). The ablation studies suggested different ways to make local calibration 642 



 

 

for these two steps (Table 3), thus allowing us to make further analyses in sections 4.1 and 4.2. 643 

On the other hand, the error of density estimation could be tracked in each step. For example, the 644 

Salin-de-Giraud site and the Nanjing site showed great differences in the source of error (Table 4). 645 

For the Salin-de-Giraud site, a large proportion of error came from the second step (GF-density 646 

estimation), probably because of the detrimental influence of weeds (section 2.1). For the Nanjing 647 

site, the error from the second step (GF-Density) was small, indicating that the large error of the 648 

indirect method (Spectra-GF-Density) mainly came from the first step (Spectra-GF estimation). In 649 

the Nanjing site, the rugged soil and small seedlings could make GF values smaller, such that an 650 

error of 0.02 in GF estimation corresponded to a high relative error, leading to a high error in 651 

density estimation. 652 

The accuracy of reflectance-based methods was lower than that of the baseline method 653 

based on submillimeter spatial resolution images (Table 4, Figure 7). In our study, reflectance-654 

based methods got the best density estimation results at Stage 3, either with direct or indirect 655 

estimation, with an rRMSE value of around 28%. As a comparison, the baseline image-based 656 

method achieved rRMSE values from 9% to 24%, which were consistent with other studies based 657 

on submillimeter spatial resolution wheat images that reached relative errors between 9% and 17% 658 

(Jin et al., 2017; Liu et al., 2017; Wilke et al., 2021). The superiority of image-based methods 659 

could be explained by the possibility to remove the detrimental influence of soil from the 660 

vegetation signal thanks to the high spatial resolution. Therefore, when submillimeter spatial 661 



 

 

resolution images are available, image-based estimation methods are recommended because 662 

they usually yield higher accuracy than reflectance-based methods.  663 

In practice, density estimation could be done for one growth stage, instead of all three growth 664 

stages (Stage 1: 1.0~1.6 leaves; Stage 2: 1.7~2.3 leaves; Stage 3: 2.4~3.0 leaves). In our study, 665 

the comparison between pairs of RMSE in section 3.5 shows that Stage 2 and Stage 3 were 666 

better than Stage 1 in density estimation with the 45° zenith angle, with either the direct or 667 

indirect reflectance-based method. A supportive perspective can be found in the work of Wilke et 668 

al. (2021), where the 3-leaf stage was better than earlier stages for wheat or barley density 669 

estimation using GF as a proxy. The indirect reflectance-based method and image-based method 670 

in our work were similar to the method of Wilke et al. (2021). Conversely, contrasting 671 

perspectives can be found in the work of Jin et al. (2017), and Liu et al. (2018), where 672 

morphological analyses on binary vegetation images were applied, and where 1-leaf and 2-leaf 673 

stages were preferred. At an earlier stage (e.g., 1-leaf), plants have less overlap, which could 674 

facilitate morphological analysis, while at a later stage (e.g., 3-leaf), plants are larger so they are 675 

easier to detect. This may explain the difference in the best growth stages with different methods. 676 

Our study emphasizes an important limitation of methods that exploit the relationship 677 

between density and GF: the estimation is affected by site, stage, and possibly species. A 678 

possible solution for this problem is to calibrate one model for each site, stage, and species. To 679 

avoid laborious manual counting that is necessary for calibration, image-based counting methods, 680 



 

 

e.g., based on deep learning detection algorithms (Liu et al., 2020; Shubhra et al., 2018; Tseng et 681 

al., 2022), could be used because they have higher estimation accuracy, and their lower 682 

throughput would be enough to build a small dataset for calibration. However, density estimation 683 

approaches based on GF would still require substantial effort in data collection, not only to train 684 

each model with a sufficient number of samples, but also to capture new data at the right growth 685 

stage (or time window) so that these data can be used as input to the trained model. 686 

4.4 Higher spectral resolution can somehow 687 

compensate for a lower spatial resolution to estimate plant 688 

density over large fields  689 

Estimations based on high spatial-resolution images have better accuracy, but it is hard to 690 

collect high-resolution images with high throughput. Many of the studies on wheat and rice 691 

seedling density estimation used ground-based or UAV images that were acquired at no more 692 

than 20 m height (Jin et al., 2017; Liu et al., 2017; Liu et al., 2018; Liu et al., 2020; Shubhra et al., 693 

2018; Wilke et al., 2021). Calculating with the experimental plan of Jin et al. (2017), a UAV taking 694 

photos at 10 meters height could cover 0.17 hectare in 1 hour. That could be an insufficient 695 

throughput when sampling large fields of several hectares. In this case, one solution would be to 696 

increase the altitude of the UAV, thus decreasing the image spatial resolution. 697 



 

 

However, when the spatial resolution gets coarser, the accuracy of image-based methods 698 

decreases (Figure 9), while the accuracy of reflectance-based methods should not change. The 699 

decrease in performance observed for the image-based method is due to the increasing number 700 

of mixed soil/vegetation pixels (Figure 8) and is consistent with the results of Jin et al. (2017) who 701 

recommended using spatial resolutions lower than 0.4 mm. On the other hand, canopy 702 

reflectance should remain unchanged when degrading the spatial resolution if the canopy is 703 

spatially homogeneous, according to the linear mixing model of reflectance spectrum (Adams et 704 

al., 1986; Ritter and Urcid, 2010), thus the performance of reflectance-based methods should be 705 

stable for different spatial resolutions. In our experiment, this performance was obtained with a 706 

spatial resolution of about 736 mm, corresponding to the length of the side of a square with the 707 

same area as the spectrometer’s field of view (Figure 1). According to Figure 9, the performances 708 

of reflectance-based methods would exceed those of the baseline image-based method when the 709 

GSD is larger than 1 to 2 mm for one-leaf to three-leaf stages, respectively. According to the 710 

experimental settings of Roth et al. (2020), Wilke et al. (2021), and Jin et al. (2017), a spatial 711 

resolution of 2 mm can be obtained by flying the UAV at about 10 m to 30 m height for focal lens 712 

length ranging from 20 mm to 60 mm, respectively. This result would thus support the use of 713 

reflectance-based estimation for UAV altitudes of more than 10 m to 30 m above the ground 714 

depending on the optics, gaining higher throughputs in density estimation. Further studies are 715 

needed to test this method on larger fields and UAV reflectance data. 716 



 

 

Note that the SegVeg model (Madec et al., 2023; Serouart et al., 2022) used to identify 717 

vegetation pixels was trained on images with spatial resolution ranging from 0.3 to 2 mm (section 718 

2.4), so the simulated GSD of 3.2 mm in Figure 9 was slightly outside of the applicable range of 719 

SegVeg. While this may cause some uncertainties in the determination of the spatial resolution 720 

where both reflectance-based and image-based methods perform the same (only for Stage 2 and 721 

Stage 3), this will not change the general trend already observed from 0.2 to 1.6 mm, i.e., that the 722 

performance of the image-based method decreases with increasing GSD.  723 

By exploiting the spectral information, and especially a combination of NIR and visible bands 724 

where the responses of soil and vegetation are strongly different, it becomes possible to 725 

somehow compensate for lower spatial information (Jacquemoud et al., 2009). This is consistent 726 

with the results of Wilke et al. (2021), who demonstrated that a multispectral camera could 727 

provide better plant density estimates based on image thresholding than an RGB camera, despite 728 

the lower spatial resolution of multispectral images (7 mm vs. 2 mm). In addition, our work shows 729 

that, for even coarser spatial resolutions for which soil and vegetation cannot be discriminated, 730 

canopy reflectance can be a reasonable proxy of GF and plant density.  731 

5 Conclusion 732 

In this study, the straw cereal plant density at early stages was estimated from spectral 733 



 

 

reflectance measured at the nadir or from 45° view zenith angle, with (indirect method) or without 734 

(direct method) using GF as a proxy. The results were compared to those obtained with a popular 735 

image-based method, using a large and diverse dataset including different sites, species, and 736 

growth stages. According to the ablation study performed with five common spectral bands, the 737 

spectra-GF estimation (first step of indirect estimation) was site-specific and stage-specific; the 738 

GF-density estimation (second step of indirect estimation) was site-specific, stage-specific, and 739 

species-specific; the spectra-density estimation (direct estimation) was not specific at all. Using a 740 

45° view zenith angle showed slightly better performance on average so 45° was chosen. Using 741 

only three spectral bands selected by minimizing the AICc criteria, the direct and indirect 742 

estimations had similar relative errors of around 30% (RMSE = 76 plants/m2), while better 743 

performance was obtained with the image-based method when using submillimeter image spatial 744 

resolutions (RMSE = 54 plants/m2). However, a study on downsampled images showed that 745 

reflectance-based estimation outperformed image-based estimation when the GSD of images 746 

was larger than a threshold between 1 to 2 mm depending on growth stages, thus reflectance-747 

based estimation has a better potential for high-throughput estimation of straw cereal plant 748 

density. 749 

The proposed indirect plant density estimation method could be applied to UAV multispectral 750 

images to get high-throughput density estimates. This potential was supported by two reasons. 751 

First, the commonly used band set of commercial multispectral cameras (B, G, R, RE, NIR) 752 



 

 

performed almost as well as chosen bands from the spectrometer in spectra-GF estimation, 753 

showing there is enough information in this band set for the density estimation task. Second, this 754 

reflectance-based method is robust to a degradation in spatial resolution, which means it allows 755 

higher flying altitudes and higher throughput, while keeping the same accuracy. 756 

A general model of direct density estimation may be possible, but this somewhat unexpected 757 

result did not explain its capability in handling different growth stages. This will need to be 758 

confirmed with a larger dataset with different varieties, different sites, and different growth stages 759 

as factors.  760 
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