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Abstract
Recent studies of properties of various biological networks revealed that many of them display scale-
free characteristics. Since the theory of scale-free networks is applicable to evolving networks, one
can hope that it provides not only a model of a biological network in its current state but also sheds
some insight into the evolution of the network. In this work, we investigate the probability
distributions and scaling properties underlying some models for biological networks and protein
domain evolution. The analysis of evolutionary models for domain similarity networks indicates that
models which include evolutionary drift are typically not scale free. Instead they adhere quite closely
to the Yule distribution. This finding indicates that the direct applicability of scale-free models in
understanding the evolution of biological network may not be as wide as it has been hoped for.
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1. Introduction
The functioning of a biological system largely depends on the mutual interactions among its
constituent components such as proteins. It is a common practice to represent such a system
by a network, within which objects are represented as nodes and relations are represented as
edges linking related pairs of nodes. A biological network is broadly defined as any network
(graph) where the nodes are identified with some biologically relevant entities and edges define
a relation over these entities. For example, when one represents each protein as a node and
draws an edge to connect two nodes if the two corresponding proteins interact with each other,
one obtains a graph representation of the protein-protein interaction network (Jeong, Mason,
Barabasi, & Oltavi, 2001). In a metabolic network, nodes usually correspond to metabolites
and edges to reactions (Barabasi & Albert, 1999; Fell & Wagner, 1999; Jeong, Tombor, Albert,
Oltavi, & Barabasi, 2000; Ravasz, Somera, Nonfru, Oltvai, & Barabasi, 2003; Jeong et al.,
2001). Yet another biological network describes co-occurrence of protein domains within
proteins. Here, the nodes correspond to domains and two domains are connected by an edge if
they occur in the same protein (Wuchty, 2001). Aside from considering the interactions among
different components, one may also consider the similarities among them. In this way, one may
consider and investigate protein sequence similarity graphs (Yona, Linial, & Linial, 1999;
Karev, Wolf, & Koonin, 2003) and protein structure similarity graphs (Dokholyan, DeLisi,
Shakhnovich, & Shakhnovich, 2002). Here, the nodes correspond to protein domains and edges
indicate a sequence/structure similarity. In this case it is natural to allow weighed edges, where
the weight of a given edge corresponds to a numerical similarity measure. In fact, the main
focus of this paper is on such weighted similarity graphs.
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The growing acquisition rate of biological data has made it possible to address questions
concerning various biological networks. At the same time, it is also natural to ask whether there
exists a characteristic that is shared by different biological networks (Alm & Arkin, 2003). A
number of studies suggest that the scale-free properties, observed in various evolving real world
networks, is also the shared characteristic among biological networks (Barabasi & Albert,
1999; Gisiger, 2001; Wolf, Karev, & Koonin, 2002).

To describe better what one means by a scale-free network, let us first consider the probability
function, p(k), that records the probability for a randomly chosen node to have k edges
connecting to it.1 Formally, a network is considered scale-free provided that for any k1, k2 the
ratio p(k1)/p(k2) is invariant under the rescaling of k1 and k2. More precisely,

p(k1)

p(k2)
=

p(αk1)

p(αk2)
= F ( k1

k2
) (1)

where α a positive constant and F is called the scaling function. Apparently, upon the change
of the scale, i.e. inflating (or deflating) k to αk the ratio p(k1)/p(k2) remains the same, hence
the term “scale free.”

As shown in Appendix A, the scale-free property (1) is satisfied if and only if the probability
function p(k) follows a power-law, i.e. p(k) ∝ k−γ. To better visualize the scale-free properties,
one may graph ln p(k) against ln k. The graph will show a straight line with slope −γ. Note that
in order for the probability function p(k) to be normalizable, i.e. ∑k=1

∞ p(k) = 1,  we need to
have γ > 1, in the purely power-law distribution. A scale-free network considered by us will
therefore have a small number of highly connected vertices (hubs) and large number of low
degree vertices. Of course, this general description is not limited to the data analysis of a
network system only. An example is the observation and modeling of scale-free phenomena
in the size distribution of protein families (Qian, Luscombe, & Gerstein, 2001; Karev, Wolf,
Rzhetsky, Berezovskaya, & Koonin, 2002).

Among the first biological networks shown to have the scale-free property were metabolic
networks (Jeong et al., 2000; Ravasz et al., 2003). Why would a metabolic network evolve to
be scale free? Jeong et al. (2000) pointed out that such organization makes the network robust
against random error: if a randomly chosen node fails, it is unlikely to be a hub, and at the same
time corrupting a low connectivity node will not disturb significantly the topology of the
network. They also state that the removal of a random enzyme from the Escherichia coli
metabolic network usually leaves the network functional. This observation suggests a
correlation between the connectivity of the protein in the network and the essentiality of that
protein in the metabolic pathway, and has been used to predict gene essentiality (Jeong et al.,
2001; Jeong, Oltavi, & Barabasi, 2003).

Power law distribution has a long history in various disciplines including economics, social
sciences, computer science and life sciences. For an attempt to provide a historical perspective
see (Casselman, 2004; Mitzenmacher, 2003). Scale-free phenomena had already been robustly
confirmed in other disciplines of natural science. For example, scale-free behavior occurs in
the (second-order) phase transitions of physical systems such as the paramagnetic/
ferromagnetic phase transition and fractals. In these examples, the robustness of the scale-free
property crucially relies on the fact that the system under consideration is of practically infinite
size.

1In general, one can consider any set of objects, not necessarily nodes of a graph, and replace the number of neighbors with the quantity
of interest in a system. For example, p(k) can be the frequency of a word consisting of k characters in a dictionary.
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Unfortunately, many biological networks have relatively small numbers of nodes, typically of
order 103 or even less, and caution is necessary in analysis. For example, in order to observe
the straight line characteristic for even as little as one unit on a log scale, say k = 10, . . ., 102,
we need to have a network with the number of vertices significantly larger than 102. Therefore,
p(k) ∝ k−γ can be assumed correct only for k > kmin > 1 but significantly smaller than the total
number of the nodes in the network, n. This then brings in an interesting connection to growing
networks for which the total number of nodes keeps increasing. In such a context, the
distribution p(k) ∝ k−γ for a scale-free network will hold provided that kmin ≤ k ≤ kmax < n(t)
where n(t) is the number of nodes in the network at time t. As the time t approaches infinity,
both the total number of nodes and the kmax approach infinity, and the scale-free property
becomes exact. For example, the world wide web (www) not only is a growing network but
also follows this asymptotic scale-free property (Ebel, Mielsch, & Bornholdt, 2002; Faloutsos,
Faloutsos, & Faloutsos, 1999).

The www example naturally inspires one to ask: is it possible to infer the evolutionary history
of a biological network based on its current topology? The simplest evolution model proposed
for scale-free networks is the preferential attachment model (Barabasi & Albert, 1999). At each
step of this model, a newly generated node has a certain probability P < 1 to attach itself to
other existing nodes. When in the attachment mode, the new node will choose to link to an
existing node with probability proportional to that existing node’s degree. Fell and Wagner
(1999) reasoned that if a similar process was involved in the evolution of metabolic networks
then highly connected vertices should correspond to metabolites that are phylogenetically the
oldest. They substantiated this point by considering the evolutionary origin of most highly
connected metabolites.

In a different study, Wuchty considered a protein domain network. The nodes of the network
correspond to protein domains and two domains are connected by an edge if they occur together
in at least one protein (Wuchty, 2001). This network was also found to display scale-free
characteristics. However, no relation of the vertex connectivity to the age of the corresponding
domain has been found. Furthermore, the characteristic exponents (the slopes of the
distributions of p(k) plotted in double logarithmic scale) vary from one kingdom to another
(Wuchty, 2001). Thus, the simplest preferential attachment model of network evolution does
not seem applicable here.

In pursuit of further understanding of the relation between biological networks and scale-free
networks, researchers began to propose formal evolutionary models (Rzhetsky & Gomez,
2001; Qian et al., 2001; Karev et al., 2002) that explain the data. Obviously, such models are
necessarily gross simplifications of evolutionary processes but nevertheless provide an
important test of possible evolutionary mechanisms. The first formal scale-free model of the
evolution of a biological network was proposed by Rzhetsky & Gomez (2001). Subsequently,
Karev et al. (2002) proposed and analyzed carefully a theoretical model for protein domain
evolution that attempts to explain the power law distribution of domain family sizes. Such
theoretical models are no longer restricted by data size and can be used to predict the past and
the future topology of the network. Remarkably, the evolution model proposed by Karev et al.
is not scale free in general. However, when certain constraints on the evolutionary parameters
are met, the distribution becomes asymptotically scale free for large values of k.

In this paper, we investigate the probability distribution and scaling properties underlying
networks of protein domain evolution. We start with analyzing the Big Bang model of
Dokholyan et al. (2002). In this work, the authors observed a scale-free characteristic of the
data and proposed a purely divergent evolutionary model to explain the data. To study in a
broader context, we designed a different model, which allows for convergent and divergent
evolution and also fits the data. Interestingly, the statistics of the models are quite different and
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the inability to reject any of them is only a consequence of insufficient data. Subsequently, we
address the question of the relevance of the scale-free property in modeling. We show that our
model follows closely the scale-free distribution while, contrary to the claim, the Big Bang
does not. In fact the data obtained by simulating the Big Bang model enjoys an excellent fit to
the Yule distribution. This is an interesting observation, since the relevance of the Yule
distribution in biological data has been observed before (Borodovsky & Gusein-Zade, 1989;
Martindale & Konopka, 1996). Using a slightly re-designed Big Bang model we demonstrated
that the main contributor to the Yule-like distribution is the random drift that is present in the
Big Bang model but absent from our model.

Finally, to put in more a rigorous yet simple context some informal statements about scale-free
graphs, we formally show the relation between scale-free property and power law in Appendix
A, and we illustrate a relation between scale-free property and fractals in Appendix B. We also
show how the hypothetical drift will affect fractal-like network.

2. Two evolutionary models and two questions
In a recent paper, Dokholyan et al. (2002) analyzed a protein domain fold similarity network.
The nodes of this network are protein domains (as defined in CATH classification (Orengo,
Michie, Jones, Jones, Swindellsand, & Thornton, 1997) and two domains are connected with
an edge if they share significant structural similarity (defined as z-value ≥9); see reference
(Dokholyan et al., 2002) for details and the justification of the choice of z-value). Just as other
biological networks discussed above, this network displays scale-free characteristics. Namely,
when ln p(k) is plotted against ln k, the resulting plot can be fitted with a straight line with slope
−1.6 for k = 1, . . ., kmax = 70 (compare Fig. 3 in reference (Dokholyan et al., 2002)). The
authors proposed a divergent “Big Bang” (BB) model to explain the scale-free property of the
network. The model is appealing in many ways, but as we argue below, it is unlikely to be
scale free. We have designed an alternative model that allows for both divergent and convergent
evolution. We refer to this model as the Hierarchical Preferential Attachment (HPA) model.
This model also fits the data well and generates a network which follows scale-free
characteristics more closely. With these two models at hand, we would like to address two
important questions.

• First, what is the constraining power of the data on evolutionary models?
• Second, is a scale-free model indeed the best way of modeling biological data?

To address the first question, we compare the fitting quality to the biological data generated
from the two evolutionary models. The BB model of Dokholyan et al. (2002) assumes that the
protein universe evolved from one (or a small number of) domain(s) by divergent evolution
(Shakhnovich, Dokholyan, DeLisi, & Shakhnovich, 2002). The evolution proceeds in time
steps in each of which the following actions are taken:

1. choose a random node and duplicate it (as a model of gene duplication);

2. choose a random number x from the interval (0, 1) to represent the distance between
the parent node and the new node. This corresponds to random mutation in the
duplicate. If the distance is smaller than some threshold value w (the parameter in the
simulation is set to 0.75), then the new node and its parent are considered to be similar
and are connected by an edge, otherwise it is assumed that they diverged to the degree
that their structural similarity is no longer recognizable.

3. the distance between structural neighbors of the parent node and the new node is set
randomly in such a way that triangular inequality between such neighbors, parent
node and the new node is satisfied.
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4. the distance between all pairs of nodes is increased by a constant D (the parameter in
the simulation is set to 10−4) to model the fact that the domains keep diverging. If the
distance between any pair exceeds the threshold w, it is assumed that structural
similarity is lost and the corresponding edge is removed from the network.

The authors show that the model fits the data for small k. The model slightly undercounts the
number of connections that are below threshold w. As demonstrated in Fig. 1, it is possible to
have a configuration in which two domains that are not connected by an edge are both connected
by small weight edges to a common domain, thus violating the triangular inequality.

Although it would be nice to avoid such cases, computational quantification of this effect would
be quite time consuming. An alternative model that generates a p(k) distribution consistent
with the data is proposed for the purpose of demonstration. Our Hierarchical Preferential
Attachment (HPA) model contains both divergent evolution and convergent evolution, as
described below.

1. Choose a random node and duplicate.

2. Choose a random number, x, from the interval (0, 1) to represent the distance between
the parent node and the new node. If the distance is less than some threshold value
w (the parameter in the simulation is set to 0.7) the new domain will belong to the
same connected component (same family) as the parent domain.

3. If x < w then the distances between the neighbors of the parent node and the new node
are set according to an ultrametric condition. Specifically, if the distance between the
parent node and its neighbor is y then the distance between that neighbor and the new
node is set to max (x, y).

4. With probability p (the parameter in the simulation is set to 10−2) the new node will
be subject to convergent evolution:

5. If x < w, one neighbor of the duplicated node is picked with probability proportional
to the degree of this neighbor (like local preferential attachment).

6. The distance between the neighbor and the new node is drawn at random from set of
distances allowed by triangular inequality. If this random value is smaller than the
distance computed in the previous step, we change the distance to the smaller value
and restore (locally) triangular inequality if violated.

7. If x ≥ w, the duplicate will attach itself to an existing node in the network with
probability proportional to the degree of that node.2 The new distance is set using
ultrametric condition as in step 3.

Note that both models have two parameters: threshold w and “escape factor” D for the BB
model, and threshold w and “convergence factor” p for the HPA model. In the choice of w for
the HPA we followed the method proposed for BB model (Dokholyan et al., 2002). Similarly
to the choice of D = 10−4 in the BB model, we choose the second parameter p of the HPA
model to be to 10−2 a value chosen to fit the data and not fully justified.

3. The limitation of finite data
We simulated both models for 5000 steps, repeated the simulation 1000 times and then took
the average. The results of the simulations from the two models are presented in Fig. 2.

2Note that from the perspective of the connectivity of the resulting graph this action is indistinguishable from creating a node de novo
with preferential attachment of the new node to existing nodes.
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Note that for k in the range (1–100), the distribution functions generated by the two models
are very similar. Thus the statistics collected from real data (where kmax ~ 70) do not suffice
to prove either of the proposed models incorrect. An interesting related question is whether
either of the two models described above is actually scale free. A formal proof of the scale-
free property of a model can be quite hard and perhaps gets harder as the model gets more
complicated. Looking at a finite data set cannot substitute for formal proof; however,
sufficiently long simulation can shed some light on whether the network is likely to be scale
free. Observing the difference between the distributions of p(k) for large k in both models, it
is reasonable to speculate that in the large k limit the two distributions are different. The BB
method is less likely to be scale free. First, the data fit a straight line only over a short range
of relatively small k. Secondly, the largest nonzero p(k) value is at k = 305. With 5000 iterations
repeated 1000 times we would expect to see a non-zero tail further on. (This is the so-called
“heavy tail” property of the power law distribution). The last non-zero value with the HPA
model is at around k = 1200 which makes it a better candidate for modeling a scale-free
behavior. However, we need to remember that these are indicators based on finite data.

4. Divergent drift versus scale-free phenomena
Although the authors of the BB model made the effort to model the presumably scale-free
behavior of the system, the resulting model is very unlikely to generate a scale-free network.

Yet, this does not exclude the model from being correct. In fact, the BB model is intuitively
appealing and seems to fits the biological data equally well, if not slightly better than HPA
model. Furthermore, there is no convincing argument that evolution of protein domain
similarity networks needs to be scale free. In fact it has been argued before (Borodovsky &
Gusein-Zade, 1989; Martindale & Konopka, 1996) that a Yule distribution provides a better
fit than a power law to at least some biological data. While the relatively small amount of
biological data makes it hard to make a strong case one way or the other, theoretical models
are ideal for testing such claims.

We found an excellent fit of the Yule distribution (Yule, 1928) to the BB model (see Fig. 3).

In general, the Yule distribution is represented by

F (R) = aR−γbR

where F is the frequency of occurrence (equivalent to our p(k)) and R the rank from most
frequent to least frequent. Our fitting of BB model results into p(k) = 0.19k−1.05(0.99986)k2

indicating R = k2, b = 0.99986, a = 0.19/2 = 0.095, and γ = (1 + 1.05)/2 = 1.025. The excellent
fit to the Yule distribution, as shown in Fig. 2 is unlikely to be a coincidence and thus it is
worthwhile to examine which property of the BB model is most likely to contribute to such
behavior. One possibility is that it results from finiteness of the data. However, we claim that
the prime contributor to the Yule-like distribution is the random drift that is present in the BB
model but absent from our HPA model. In the Appendix B, we show that the scale-free network
corresponding to Sierpinski’s triangle loses the scale-free property upon the introduction of a
divergent drift.

To elucidate the effect of the evolutionary drift, let us consider a slightly modified Big Bang
model. Namely, rather than using triangular inequality we set the distance of a newly created
node to its parent’s neighbors using ultrametric condition. This avoids the distance
inconsistency discussed before. At each time step, each existing node duplicates with a
probability p. As in original BB model we have an escape factor D. (For efficiency of the
simulation the edge weights are set to be integers in interval (0, 1000) and parameter D is
replaced with equivalent parameter d defining the probability of adding 1 to an edge weight
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after each step.) (Table 1). Simulations were performed for different values of d with the
renaming parameters w = 0.75 and p = 0.001 fixed. In consecutive trials, values of d were set
to 0, 0.0625, 0.125, 0.25, and 0.5. The results of the simulation and the fits to the Yule
distribution are presented in Fig. 4. The quality of the fits is striking. For simulation that does
not include any drift (d = 0), the fit is a straight line. Defining ɛ by b = 1 − ɛ, we see that the
distribution functions p(k) at larger ɛ values, representing larger drifts, tend to diverge more
from the power law distribution but are always well fitted by the Yule distributions.

5. Conclusions and further research
Evolutionary drift is a fundamental evolutionary mechanism. Including it in modeling of
evolution is both natural and desirable. However, a model that includes such drift is not scale
free unless the effect of the drift is neutralized by other less profound evolutionary mechanisms
such as the “convergent” evolutions.

This provides an important reason for which a biological network may not be scale free.
Therefore, although it is fashionable to draw a straight line through the log–log plot whenever
the data admits it, one needs to exercise caution in interpreting such graphing as strong support
for the scale-free property of a biological system. The deviation from the straight line, often
attributed to the finiteness of the data, may be due to other important evolutionary mechanisms.

Although it has been argued that the power law connectivity makes a network robust against
random deletion (Jeong et al., 2001), it is obvious that the same argument can also be used to
support the robustness of networks whose p(k) decays faster than power-law, e.g. the Yule
distribution. In other words, existence of small number of highly connected hubs and a large
number of weakly connected nodes does not imply that the network is scale free.

Our simulations illustrated a non-trivial relation between the parameter measuring the rate of
drift and the parameters of Yule distribution. It would be interesting if one could derive such
a relation using formal mathematical arguments. For instance, such attempts in expansion-
modification system have been done (Li, 1991;Mansilla & Cocho, 2000). However, the
mathematical derivation is not the main pursuit of this study and is deferred for future
investigation. Instead, we provide below an intuitive understanding why the modified BB
model will have Yule-like distributions.

It is interesting to relate the results of our simulations to the original work of Yule (1924). Yule
did not consider the statistical properties of biological networks but instead the distribution of
species within genera. There exists, however, a close relation between the evolutionary model
Yule provided and the (modified) BB model without drift. Namely, in the Yule model any
species has a certain probability of giving birth to a new species within the same genus.
Furthermore, with some probability a species in any genus can also mutate enough to create a
new single-species genus. This can be naturally expressed in terms of the modified BB model
with d = 0. Note that if a similarity relation is transitive then the similarity graph consists of a
set of fully connected subgraphs (cliques) In fact, this is exactly how a network created by the
modified BB model without drift looks. To cast the Yule model in the network language,
observe that species belonging to each genus can be naturally represented as cliques. A
mutation that creates a new species within the same genus corresponds to adding a node and
connecting it to all other species in the given genus. A mutation leading to creating a single-
species genus corresponds to creating an isolated vertex. This is exactly the underlying idea of
the (modified) BB model for d = 0. Thus it is not surprising that limiting behavior of both the
modified BB model without drift and the Yule model is scale free. In the same paper, Yule
studied the finite-time behavior of his model. In this non-equilibrium state the distribution of
species within genera is better described by (what we now call) the Yule distribution. Thus,
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one could hypothesize that the distribution like the one observed in Fig. 3 results from
simulating a system not yet in equilibrium. But it is easy to check (by increasing simulation
time) that this is not the case.

The equilibrium behavior of the (modified) BB model with drift mimics that of the non-
equilibrium behavior of the Yule model. In the BB model with drift d > 0, the connected sub-
clusters of the network are no longer cliques and the link between network statistics and
population statistics becomes less obvious. In this case, an interesting parameter to look at is
the clustering coefficient. The clustering coefficient of a node with k neighbors is 2c/k(k − 1)
with c being the number of edges among the k neighbors. For any vertex in a network consisting
of a set of cliques, the clustering coefficient is 1. If the network consists of a number of
approximately equal density clusters (the clustering coefficient is close to a constant), the
network statistics are expected to be similar to the population statistics studied by Yule. This
is no longer true if the clustering coefficient changes significantly with k. We have tested
(unpublished data) the average clustering coefficient for networks created in our modified BB
simulation. The clustering coefficient decreases very slowly with k and can be reasonably
approximated as a constant (~1).

To be able to pinpoint the effect of the drift on the model, it was necessary to keep our models
as simple as possible. Consequently, the models presented here can accommodate many natural
modifications/extensions. For example, one may wish to make the divergent factor to be
cluster-specific to mimic different evolutionary rates of protein families. Even within a given
cluster, one may even consider a (cluster-) size dependent divergent rate to discourage too
many copies of highly similar proteins. Furthermore, the combination of ultrametric distances
and slow evolutionary drift makes the resulting network more cliquish (having higher
clustering coefficient) then it is observed in real data. A more realistic model should allow for
loosing connections more liberally. Doing so without running into inconsistencies similar to
ones demonstrated in Fig. 1 will require a careful design.
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Appendix A
Here, we show that the scale-free definition implies a power law and vice verse. To see that
the power law distribution satisfies the scale-free definition (1), one may do a direct substitution
and see that

p(k1)

p(k2)
=

k1
−γ

k2
−γ =

(αk1)
−γ

(αk2)
−γ =

p(αk1)

p(αk2)
= ( k1

k2
)−γ

= F ( k1
k2

)
To show the deduction from the other direction, we note that from (1)

F ( k1
k2

) = p(k1)

p(k2)

p(k2)

p(k3)
(2)
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we have

F (x1)F (x2) = F (x1x2) (3)

This equation is the key that leads to the power law distribution. For convenience, we shall
prove such a case when the variable x is continuous.3

Take x1 = x and x2 = x + δ with δ an arbitrary number. We then have from (3)

F (x) F (x + δ) − 1 = F (x + δx) − F (x) (4)

which, upon dividing both side by δ and utilizing F(1) = 1, leads to

F (x) F (1 + δ) − F (1)
δ = x F (x + δx) − F (x)

δx

If one defines the constant (dF(x)/dx)x=1 as −γ one has in the δ → 0 limit the following
differential equation

x dF
dx = − γF (x) (5)

whose solution is F(x) = β x−γ. Since by definition, F(1) = 1, we see that the parameter β = 1.
Putting this back into the condition (1), we have

p(k1)

p(k2)
=

p(αk1)

p(αk2)
= ( k1

k2
)−γ

(6)

Write the most general form of p(k) in the form q(k)k−γ. We find that q(k1) = q(k2) for arbitrary
k1 and k2 indicating that q(k) must be a constant. We therefore have established that p(k) must
follow the power law when the scale-free condition is met.

Appendix B
We use Sierpinki’s triangle construction to illustrate the relation of scale-free networks and
fractals and the effect of evolutionary drift on this construction.

Sierpinski’s triangle is a fractal constructed iteratively as illustrated in Fig. 5(A). The
translation from Sierpinski’s triangle construction to a network generation is quite
straightforward. We let the vertices of the network correspond to the triangles of the carpet and
make two vertices connected if the boundaries of the corresponding triangles intersect (see Fig.
5(B)). For uniformity, we add an extra vertex that corresponds to the outside of the external
triangle (not drawn in the figure). It is easy to check that in the network obtained after s steps
there are two vertices of degree 3 × 2s; 3i vertices of degree 3 × 2s−i where i = 1, . . . s and thus
~1/23s+1 vertices total. Therefore,

p(k1 = 3 × 2s−i)

p(k2 = 3 × 2s− j)
= 3i

3 j = ( k1
k2

)−ln 3/ln2
(7)

By definition (1) and Eq. (6), we find that the construction is scale free with γ = ln 3/ln 2. Now,
consistently with the idea of divergent drift, assume that edges introduced at a given step are

3However, a different line of derivation can also be devised to prove the case of discrete x.
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lost after some number of steps, say 10, due to a divergent drift. Then the maximum degree of
a node in the network is bounded by 3 × 210 ~3000 thus the scale-free property is lost. However,
we will need to generate ~1/2211 ~105 nodes for the drift to make an impact and several orders
of magnitude more nodes for the impact to be statistically significant.
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Fig. 1.
The possibility of edge assignment inconsistency in the BB model: (a) configuration before
duplicating node X. The distance between B and C is larger than w = 0.75; (b) the configuration
after creating Y (a duplicate of X); and (c) a possible configuration from randomly choosing
weights for the edges connecting Y with neighbors. Observe that distances between points B,
Y, and C are inconsistent with triangular inequality.
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Fig. 2.
The double log graphs for p(k) for the Hierarchical Preferential Attachment Model and the Big
Bang model.
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Fig. 3.
The fit of the Yule distribution to the BB model. The distribution function p(k) is fitted by p
(k) = 0.19k−1.05(0.99986)k2.
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Fig. 4.
Simulations of increasing evolutionary drift in the modified BB model and their approximate
fit with a family of Yule distributions (parameters tabulated in Table 1). For k > 50 the data
points are binned with increasing bin size.
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Fig. 5.
(A) Iterative construction of Sierpinski’s triangle. (B) Evolution of the network corresponding
to the Sierpinski’s triangle construction. (a) s = 1; 2 vertices of degree 3 (one on the outer face,
not drawn); (b) s = 2; 2 vertices of degree 3 × 2; 3 vertices of degree 3; and (c) s = 3; 2 vertices
of degree 3 × 22; 32 vertices of degree 3 × 2; 33 vertices of degree 3.
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Table 1
The relation between the parameter d in the model and parameters of the Yule family graphed in Fig. 4

d 0 0.0625 0.125 0.25 0.5
a 0.29 0.25 0.22 0.42 0.9
γ −1.27 −1.0 −0.4 0.075 0.6
ɛ 0.0 0.00125 0.1 0.3 0.56
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