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Abstract
Discrepancy between the abundance of cognate protein and RNA molecules is frequently observed.
A theoretical understanding of this discrepancy remains elusive, and it is frequently described as
surprises and/or technical difficulties in the literature. Protein and RNA represent different steps of
the multi-stepped cellular genetic information flow process, in which they are dynamically produced
and degraded. This paper explores a comparison with a similar process in computers - multi-step
information flow from storage level to the execution level. Functional similarities can be found in
almost every facet of the retrieval process. Firstly, common architecture is shared, as the ribonome
(RNA space) and the proteome (protein space) are functionally similar to the computer primary
memory and the computer cache memory respectively. Secondly, the retrieval process functions, in
both systems, to support the operation of dynamic networks – biochemical regulatory networks in
cells and, in computers, the virtual networks (of CPU instructions) that the CPU travels through while
executing computer programs. Moreover, many regulatory techniques are implemented in computers
at each step of the information retrieval process, with a goal of optimizing system performance.
Cellular counterparts can be easily identified for these regulatory techniques. In other words, this
comparative study attempted to utilize theoretical insight from computer system design principles
as catalysis to sketch an integrative view of the gene expression process, that is, how it functions to
ensure efficient operation of the overall cellular regulatory network. In context of this bird’s-eye
view, discrepancy between protein and RNA abundance became a logical observation one would
expect. It was suggested that this discrepancy, when interpreted in the context of system operation,
serves as a potential source of information to decipher regulatory logics underneath biochemical
network operation.

1. Introduction
The genomic sequences are readily available for an increasing number of species. These
sequences, like English literature, represent static strings of symbols/alphabets (A, T, C, and
G). Hence, genomic sequences are often termed as the “book” of life. The “reader” of the book
is usually a cell. Reading English literature requires sufficient knowledge of English grammar
and the meaning of the words; the literature would represent meaningless one-dimensional
string of alphabets to people who do not have any basic knowledge of the language. Likewise,
an urgent task in biology is to elucidate how cells “read” the “book” (Searls, 2001; Wang,
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2005), i.e., the mechanisms by which cells utilize embedded information to specify systems
operations. A key step is dynamic information retrieval from the genome so that a specific set
of genes is expressed at specific physiological conditions. Major steps in this process include
transcription, splicing in case of higher eukaryote, and translation into proteins, which execute
encoded actions upon transportation to their cellular destination. An integral component of
cellular regulatory machinery, this multi-step process is tremendously complex and tightly
regulated. A lack of bird’s-eye views of this dynamic process, in my view, represents a major
impediment in systems biology research.

Application of genomic and proteomic technologies has generated large amounts of gene
expression data, primarily in the form of mRNA and protein abundance. These data are
frequently used in statistical inference of biochemical network models (Lee et al., 2004; Lu et
al., 2005), however, with very limited success in generating high-quality predictive models.
Theoretical interpretations of these data that would better guide such network model inference
efforts, thus, remain elusive. Indeed, many observations still puzzle us. In particular, mRNA
abundance correlates too weakly with protein abundance for it to be a reliable predictor of
protein abundance. This discrepancy has long been observed (Anderson and Seilhamer,
1997; Gygi et al., 1999). The discrepancy is further confirmed by more recent studies using
high-throughput proteomic techniques (Flory et al., 2006; Ghaemmaghami et al., 2003; Griffin
et al., 2002; Ideker et al., 2001; Le Roch et al., 2004; Tian et al., 2004; Washburn et al.,
2003). Such prevalent observations are unlikely to be merely noises; these discrepancies might
in stead prove to be informative (Greenbaum et al., 2003). A plausible explanation from the
perspective of cellular system operation, on the other hand, has yet to be devised.

The scheme of utilizing one-dimensional simplistic codes to manage complex system
operations is, on the other hand, not unique to the cells. A computer stores all necessary
information in the hard disk/drive and dynamically retrieves specific sections under specific
conditions, analogous to the permanent storage of genetic information in the genome and the
dynamic gene expression (information retrieval) process respectively. Moreover, functional
similarity has long been discussed between proteins and computational elements (Bray,
1995), as well as between cellular processes and computational processes (Bray, 1990; Brent
and Bruck, 2006). Biological materials have been used to assemble computing machineries for
challenging issues (Adleman, 1994; Unger and Moult, 2006). It was further suggested that a
cell can be studied as a DNA-based molecular computer (Ji, 1999). A comparative examination
of system architectures suggested that a computer, even though a much simpler system, shares
common functional components with a cell (Wang and Gribskov, 2005). As they are engineered
by us, we have a complete understanding of computers. It was therefore suggested that systems
biologists look into computer system design for theoretical insights in analyzing cellular
systems, as simpler model systems have historically been used in biology, such as the use of
yeast as a model organism for higher eukaryotes. This is also consistent with an underlying
notion in systems biology, that is, to explore similarities between biological and engineered
complex systems (Csete and Doyle, 2002; Zheng, 2006).

This paper explored a detailed comparison of cellular gene expression process with computer
information retrieval process. Remarkable similarities were discovered. It became obvious that
the ribonome (RNA space) can be treated as cellular equivalent to computer primary memory,
and the proteome (protein space) to computer cache memory. The computer memory
management principles, which are vital for computer process management and system
optimization, provide useful insights for an integrative understanding of cellular gene
expression regulation. In particular, they provide a starting framework for an interpretation, in
the context of cellular process management, of the discrepancy between mRNA and protein
abundance.
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2. Analysis and Discussion
2.1: Information and System Operation

A striking analogy between a computer and a cell appears to exist in that they both use
seemingly one-dimensional codes to regulate the operation of a multi-layered dynamic system
(Wang and Gribskov, 2005) ( Fig. 1). In a cell, it is the quadruple genomic code. In a computer,
it is the binary code carried by the information storage devices, primarily the hard drive. The
code provides instruction for an operation such as adaptation to an environmental signal in
cells or initiation of a computing process upon a user keyboard input in computers. The state
of the system, on the other hand, determines how the codes will be interpreted and/or used. In
the cells, the state of the cellular machinery determines which genes should be expressed or
shutdown. In computers, this means where in the memory the CPU will go to fetch data or
instructions (Wang, 2005).

2.2: Multi-tiered Memory Hierarchies
Integral to both systems is the information utilization cycle, which consists of their dynamic
retrieval out of storage, execution of actions they encode, and their dispersal (Fig. 1). The
information, before reaching execution stage, flows through multiple steps in the two systems.
This retrieval process is termed gene expression in biology, with protein and RNA representing
different steps (Figure 2B). In computers, this multi-step process flows through a structure
termed multi-tiered memory hierarchy. This structure consists of storage/secondary memory
(usually hard drive), primary memory, and cache (Fig. 2A), in parallel to the genome, the RNA,
and the protein levels in cells as discussed below.

The hard drive and the genome are used, in computers and cells respectively, as permanent
information storages with the stablest information content among the memory hierarchy. A
computer usually functions for a long time without change in its hard drive content; and the
genomic sequences of an organism remain mostly constant throughout a whole life cycle. This
level has the largest storage capacity as well, but only specific portions of the content are used
at any instant. Portions to be used are dynamically specified in a temporal fashion. In other
words, information stored at this level serve as preparatory measures for a wide array of
functionalities. In computers, some hard drive content codes for specific programs. Some, such
as the operating systems, functions to maintain a stable execution environment for them.
Collectively, they ensure that user requested tasks can be completed without further
programming requirement. Likewise, the genomes are utilized by the evolution process as a
depository to prepare the cells for dynamic environmental conditions - to ensure their integrity
and functionality.

At the execution level, the system, in adjusting to signals, executes actions encoded in specific
sections of the storage. In a computer, this leads to the corresponding program being run – the
CPU sequentially executes a set of instructions in a defined order. In a cell, activities of specific
proteins are augmented, enabling specific chemical reactions through catalysis. Such reactions
can be metabolic transformations, protein modification events such as phosphorylationh,
protein and RNA synthesis, et al.

As discussed above, the information is not retrieved to the execution level directly from storage.
Instead, it goes through intermediate steps. In computers, it is retrieved to primary memory,
then to cache, and finally fed into the CPU to dictate CPU cycles. In cells, genomic information
is transcribed into RNA molecules, and is then translated into proteins. Before realizing their
biochemical activities, many proteins then go through intracellular transportation and
posttranslational modification, a process similar to computer CPU instruction fetching from
the cache.
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The functions of these intermediate steps in computers are to meet the needs of executing
programs - to always contain sections of the storage expected by the CPU and to provide
program execution environments such as storage of intermediate results. Their content
therefore changes dynamically. The content at the information storage level, on the other hand,
remains stable once all programs have been installed, as this level functions as repository for
all programs. When new programs are added to the storage, the operating system would
automatically manage their retrieval to memory in order to incorporate them into system
functionality. In other words, these intermediate steps decouple dynamic execution of programs
from their creation and storage. This enables end-users add new programs into a computer
without venturing into its internal working, which is expensive, technically demanding, and
therefore not feasible in the market place. System functionality can thus be expanded at reduced
efforts and costs, a major factor for this design to dominate as computer architecture evolves
through competition in the market place. We don’t know yet why, and how, the gene expression
process evolved into this multi-step format during biological evolution. But this should remain
an interesting point of investigation, since the advantages of such design in computers are clear.

2.3: Organization of retrieved actions into networks/processes
Each execution action represents a step of transformation action and is encoded by an atomic
information unit, a CPU instruction in computers and a gene in the cells. A computer instruction
dictates one CPU cycle, by controlling conductivity of its transistors, to transform binary input
signals into output signals in specified manner. Similarly, a protein, proposed as basic
computational elements in living cells (Bray, 1995), is often involved in controlling a step of
biochemical reaction through catalysis.

Actions encoded in individual information units are organized into modular functional units
and the notion of network unifies this organization in the two systems. The term network is
used here synonymously with program and process, the two terms commonly used in computer
community to describe such functional units and their execution in computers. A computer
program is essentially a collection of CPU instructions in predefined combinatorial order;
individual instructions are chained together through their input-output relationship into
procedures, which in turn interconnect to form the program. A computer program thus
represents a virtual network, each node of which represents a CPU instruction and through
which the CPU travels each time the program is executed. If one were to visualize it, each
snapshot would display CPU executing one instruction. But a time series will visualize this
traveling process (Figure 2A and 3).

Similarly, proteins, through their mutual interactions or substrate/reactant-product
relationships, form pathways, which in turn join together to form biochemical networks (Figure
2B and 3; See Wang and Gribskov, 2005 for further details). Among the best such examples
are the observations that protein kinases form signaling cascades and that these cascades join
together to form signaling networks. Computer procedures and programs are thus analogous
to biochemical pathways and networks, respectively.

Such networks underlie functionalities of both systems. As the system adjusts to environmental
signals, the networks assume dynamic configuration - in term of how active individual paths
are – in order to perform specific tasks (Figure 3). In computers, a procedure is either on or
off. Depending on inputs the program gets and its dynamic execution environment, the CPU
might travel through many possible routes through the network – a procedure used in one
execution cycle might not be used in another. In other words, binary logic is used. For
biochemical networks, actions at each node of the network proceed in parallel, and such
mathematical framework for describing process management has yet to be established. In
general, throughput of a pathway in a biochemical network displays, as oppose to the on/off
switch control in computers, a value range. As biochemical reactions rely on catalysis - usually
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proteins - to proceed, the throughput is controlled through two major mechanisms, catalysis
abundance and how active the catalysis is. Gene expression and protein degradation processes
control the abundance of proteins, thus regulating availability of catalysis for a biochemical
pathway. Posttranslational regulation, such as phosphorylation and allosterical interactions,
controls the activity of proteins already produced. Thus, cellular process management can be
qualitatively described as regulation of pathway throughput, which is similar to the term
bandwidth1 used in telecommunication. If one were to consider binary (on/off) logic as a
special case of it, this scheme would unify network management in the two systems. It is
noteworthy that protein phosphorylation often acts in a binary fashion by turning on/off its
targets.

Thus, the information retrieval process functions to support the operation of regulatory
networks, which in turn operate in support of functions manifested at system level. Efficient
network operations are vital to both systems. Fine-tuning the multi-step information retrieval
process, as discussed below, becomes integral to optimizing operation of this network.

2.4: Information retrieval and network regulation/optimization scheme
This retrieval process creates issues in system design. The sequential feature of the retrieval
process results in a delay – execution of encoded actions has to wait until it is available. A
determining factor of the delay is the bandwidth of the retrieval process – the higher the
bandwidth, the shorter the delay will be. In computers, the delay is termed latency and is
determined by the speed of the bus (clock-speed and number of parallel wires) and capacity at
each step (memory and cache). This is paralleled in a cell by a delay from gene activation to
protein production; RNA synthesis by RNA polymerase II takes ~30 seconds/kb and
synthesizing an average protein of ~400 amino acids takes about 30 seconds. The delay is also
determined by the capacity of the gene expression machinery, such as transcription and
translation apparatuses, as well as the speed of the transportation process. Increasing the
bandwidth, however, carries economical overhead. In the cells, the bandwidth represents the
speed in which RNA and protein are produced. Increasing RNA and protein synthesis would
elevate the rate at which nucleotide, amino acid, as well as energy (in the form of ATP
molecules) are consumed, increasing the load on the metabolic network. Furthermore, aberrant
production of RNA and proteins, when they are not needed, is often troublesome. As for
computers, any improvement of bus clock-speed and the number of parallel bus wires is
technologically and financially challenging. Optimal computer system design represents a
balance between enhanced speed of the bus and economical factors. Therefore, the bandwidth
of the retrieval process is limited. Optimal utilization of the limited bandwidth becomes
imperative.

For better performance, a computer implements various mechanisms to fine-tune the multi-
step information retrieval process, often decoupling these steps, in order to maximally reduce
delay incurrence and to optimize usage of the bandwidth. It was examined whether these
mechanisms have biology counterparts and therefore help interpret the observed discrepancy
in cells. These mechanisms regulate information organization, loading, or purging. All of the
three topics are vital at each retrieval step and will be discussed one-by-one below.

The capacity of each retrieval cycle is much bigger than an information unit – each cycle
retrieves a collection of information units. The body of information thus needs to be organized
into retrieval units, each containing a collection of functionally related information units, for
retrieval to the next level (Table 1). Consequently, when the CPU finishes one retrieved

1The term Bandwidth is used here to describe the capacity (or maximum flow rate) of a path as opposed to its meaning of the range of
usable parameter value, such as wave frequency, in telecommunication.
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instruction, expected instructions for future steps are more likely retrieved in the same cycle
already, minimizing the number of retrieval cycles required to complete a computer program.
The strategy in computers is straightforward. A page and a cache line represent retrieval unit
to the memory and to the cache level, respectively (Table 1). A computer program tends to
occupy, when possible, a contiguous stretch of information units. Instructions belong to the
same segment of a program, and therefore functionally related, reside in close proximity (in
the same retrieval unit or in units next to each other). Similarly, pro-karyote cells often organize
many genes of a biochemical pathway, which is analogous to a segment of a computer program,
into one operon (Table 1). Even though such contiguous distribution pattern is not preserved
in eukaryote as each gene represents an independent transcription unit, similarity does exist –
functionally related genes share common indexes (transcription factor binding sites), a
phenomenon termed regulon. Operon/regulon can be regarded as retrieval unit at transcription
level in the cells. Although translation regulation is not as well studied, we do have a glimpse
of the sketches of regulatory schemes - functionally related genes have been shown co-
regulated at this level (Le Roch et al., 2004;MacKay et al., 2004). Binding of regulatory factors,
such as RNA binding proteins, to cognate cis-elements in un-translated region on individual
mRNA molecules plays important roles (Fan and Steitz, 1998;Keene, 1999;Morris,
1997;Tenenbaum et al., 2002). The Post-transcriptional RNA regulon (PTRO) concept has
been postulated to describe this phenomenon (Keene and Lager, 2005;Tenenbaum et al.,
2002). It is tempting to treat a PTRO as a retrieval unit at translation level.

Loading and purging dynamically change the content of memory and cache in order to always
optimize the partition of limited capacity at each step among parallel executing processes. The
goal is, as in the case of information organization scheme described above, to stay steps ahead
of the computing machinery so that expected data and instructions are already available by the
time computing machinery requests them, minimizing chances of delay.

In order to achieve that, the loading process speculates the need of the computing machinery
and pre-loads multiple retrieval units accordingly. Spatial locality principle is frequently used
based on observation that memory/cache locations in close proximity to one recently accessed
are likely to be accessed in the near future. Loading process exploits this property by bringing
in adjacent retrieval units, with the expectation that future requests can be anticipated. This
corresponds to co-loading of multiple pages (a working set) for each executing program at the
memory level, and multiple cache-lines at the cache level. Similarly, production of RNA
proceeds in parallel at multiple operons (or regulons) in the cells. At the translation level, this
corresponds to parallel protein production from mRNAs of distinct translational PTRO unit
(Table 2).

In order to load new information, portion of existing information will have to be purged first
in order to free up adequate space. Erroneous purging, when the CPU requests for information
just purged, will cause execution delay associated with retrieving them back. The goal of the
purging process is therefore to identify information with the least reuse likelihood for deletion.
Temporal locality principle is exploited by cache replacement algorithms, as low frequency of
recent usage is the primary criteria in speculating what to discard. Retrieval unit (page or cache-
line) serves as units for purging as well. As the loading process speculatively loads multiple
retrieval units in batches, multiple units are simultaneously purged in order to free up space
for them (Table 2). Similarly, the cell dynamically discard un-necessary mRNA and protein
molecules to free up gene expression machinery for genes that need to be expressed, as well
as to avoid detrimental effects these un-necessary RNA and protein molecules might otherwise
cause. Multiple genes in a prokaryote poly-cistronic operon, analogous to multiple information
units in a computer retrieval unit, are always retrieved to and purged from mRNA level
simultaneously. In the eukaryote, the PTRO concept applies to RNA degradation as well, as
mRNA decay in the yeast S. cerevisiae is orchestrated in functional groups (Wang et al.,
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2002). Such functional groups can be conveniently termed as degradation PTRO units (Table
2). When operons, or degradation PTRO units, are functionally related, it is conceivable that
their degradation likely proceeds in coordinated fashion. At the protein level, a reliable high-
throughput degradation measurement technique remains elusive. But it has been documented
that protein half life, and thus its stability, is meticulously regulated in the cells.

2.5: A framework for interpreting discrepancy between RNA and protein abundance
Thus, commonalities can be found between computers and cells in almost every facet of their
information retrieval process; not only common multi-layered architecture, but also shared
regulatory mechanisms at each step of the process (Table 1 and 2). These regulatory
mechanisms control loading information to, and purging information from, intermediate steps,
thus determining content at each of these steps. In computers, the dynamically changing content
of the memory and the cache results from a combination of loading and purging (Figure 2A).
Likewise, observed mRNA and protein abundance in cells represents steady state levels, which
are determined by production and degradation (Figure 2B).

RNA and protein levels, therefore, dynamically change. When changes in mRNA and protein
levels differentiate, discrepancy between mRNA and protein abundance would occur. The
regulatory mechanisms, which control information loading and purging at these intermediate
steps, would help understand observed discrepancies. Firstly, decoupling actions in multiple
steps of the process makes this discrepancy conceivable – without this decoupling, RNA and
protein abundance should be perfectly correlated except a delay (the time it takes to produce
the cognate proteins). Secondly, capability for efficient batch information management is
acquired through organizing multiple information units into management (loading/purging)
unit. This capability is further enhanced by parallel loading/purging of multiple management
units, which in computers is achieved by exploiting locality principle. Batch information
management, in turn, would result in various types of discrepancy between RNA and protein
abundance. As discussed below, four scenarios of differential changes in mRNA and protein
levels can be expected: a. Steady RNA, lower protein; b. Steady RNA, higher protein; c. Lower
RNA, steady protein; d. Higher RNA, steady protein (table 2).

The spatial locality principle used in loading is designed to reduce number of retrieval cycles
and CPU idle time. It would result in simultaneous retrieval of batches of information, but
whose retrievals to the next step vary in a wide temporal range. This would, in the cells, result
in parallel production of RNA molecules whose translation into proteins lag to various extents
(Table 2). For example, translation of many P. falciparum genes is delayed into next stage of
its life cycle when compared with their mRNA abundance (Le Roch et al., 2004). At the
translation level, protein production from RNA molecules belonging to one translational PTRO
unit would always proceed simultaneously. And translation from functionally related
translational PTRO units often proceeds in parallel. The set of cognate genes might be
differentially partitioned into operons (or regulons) at the transcription level. And the cognate
operons (or regulons) corresponding to a group of functional related translational PTRO units
might be differentially regulated at transcription level. Elevated production of mRNA from the
genes might not have happened, resulting in steady mRNA abundance while protein abundance
increases (Table 2).

Nonetheless, the temporal principle used in purging would cause simultaneous discarding of
batches of information units whose prospect for near future usage might vary – and potentially
dramatically depends on purging policy implemented and the size of information body being
purged. Optimal cache policy remains an active research topic. Depending on the cache policy
used in a computer, information that is in the caches may well be removed from the memory,
equivalent to reduced RNA abundance while protein abundance remains steady in the cells
(Table 2). Similarly, batch degradation at protein level would lead to abundance reduction for
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proteins with varying prospects for near future usage. When they do not belong to one same
degradation PTRO unit, decay of their cognate mRNA molecules might be differentially
regulated, potentially leading to reduced protein abundance while cognate RNA abundance
remains steady (Table 2).

It was further investigated whether the four types of discrepancy are all represented in
experimental observation. Three published proteomic studies, where mRNA and protein
abundance are measured in parallel in the same experiments, were examined. These studies
were performed in P. falciparum, S. cerevisiae, and H. sapien, respectively (Griffin et al.,
2002; Le Roch et al., 2004; Tian et al., 2004). All four scenarios happen in each of the three
studies. Exemplary genes, along with references, are listed inTable 3. Most of observed
discrepancies can be classified into one of the four trends (types of discrepancy). Additionally,
two cases of reverse correlation between mRNA and protein abundance were observed by Tian
and colleagues (Tian et al., 2004). Such cases can be explained by a combination of scenarios
a (steady RNA, lower protein) and d (higher RNA, steady protein), or by a combination of
scenarios b (steady RNA, higher protein) and c (lower RNA, steady protein).

2.6: Final perspective
Discrepancy between RNA and protein abundance has often been described as surprises and/
or technical difficulties in the literature. This discrepancy, however, occurs too frequently to
be interpreted this way. Additionally, poor correlation between transcription rate (promoter
activity) and mRNA abundance has also been reported in mammalian (Fan et al., 2002) and in
yeast cells (Garcia-Martinez et al., 2004). This comparative study with computer has sketched,
in the perspective of system operation, a bird’s-eye view of gene expression process and
associated regulatory mechanisms. This systematic perspective suggests that these
discrepancies are, in stead, experimental observations one should expect. Furthermore, these
discrepancies might be, as have been suggested (Greenbaum et al., 2003), a rich body of
information that can be used to improve our data mining efforts to decipher logics embedded
in cellular gene expression regulation. For instance, it reveals deficiency of current practice in
constructing biochemical network models - we generally perform data-mining of mRNA
expression datasets and assume that co-expression of mRNA leads to co-expression of protein,
which, as this study suggests, is questionable and inadequate.

Moreover, theoretical insights from simpler model systems have been vital in addressing issues
in more complex system. In view of the daunting challenges in deciphering logics used in
cellular gene expression regulation, such simpler model systems are urgently needed. The
necessary parts for a theoretical understanding of cellular information retrieval process are
coming into place. The production processes - transcription and translation - have long been
extensively studied. The degradation processes at mRNA and protein levels, though lagging
behind, has lately provoked intensive investigative interest, as exemplified by RNA
interference and protein ubiquitination research respectively. More high-throughput research
methods are developed to complement RNA and protein abundance measurement data. ChIp-
on-chip data, for example, describe promoter binding events. The ribonomics technology
(Tenenbaum et al., 2002) targets regulatory events at RNA level. Furthermore, the Gene
Ontology system strives to provide an integrative functional context. But they remain largely
disparate components. The proven computer optimization techniques, which we design and
understand well, may conveniently catalyze our efforts to integrate them into cohesive,
explanatory theoretical models.
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Figure 1. The information utilization cycle in a computer (A) and in a cell (B)
A computer retrieves information through memory loading, and CPU instruction fetching (See
Figure 2A). A cell retrieves genetic information through transcription, splicing in case of higher
eukaryote, and translation (See Figure 2B).
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Figure 2. The multi-tiered memory architecture
A comparative examination of the information retrieval process in a computer (A) and the
genetic information flow process in a cell (B) is delineated.
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Figure 3. A network model for the organization of individual actions
The network (center) assumes dynamic configuration through on-off procedure switch in
computers (black, right), and through managing pathway throughput in the cells (green, left,
with less active pathway denoted by thin broken circles and arrows).
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Table 1
Comparative view of tiers in the information flow process. Physical materials and the unit of information organization
in each tier are presented.

Tiers
Computer Cell

Hardware Organization Material Organization

Storage Hard-drive Paging Genome Operon; Regulon

Intermediate
Memory Cache-line mRNA Post-transcriptional RNA Operon (PTRO)

Cache CPU Cycle Protein A reaction

Execution CPU Binary transformation Catalysis A reaction
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