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Abstract

The estimation of chemical kinetic rate constants for any non-trivial model is complex due to the 

nonlinear effects of second order chemical reactions. We developed an algorithm to accomplish 

this goal based on the Damped Least Squares (DLS) inversion method and then tested the 

effectiveness of this method on the McKillop-Geeves (MG) model of thin filament regulation. The 

kinetics of MG model is defined by a set of nonlinear ordinary differential equations (ODEs) that 

predict the evolution of troponin-tropomyosin-actin and actin-myosin states. The values of the rate 

constants are estimated by integrating these ODEs numerically and fitting them to a series of 

stopped-flow pyrene fluorescence transients of myosin-S1 fragment binding to regulated actin in 

solution. The accuracy and robustness of the estimated rate constants are evaluated for DLS and 

two other methods, namely quasi-Newton (QN) and simulated annealing (SA). The comparison of 

these methods revealed that SA provides the best estimates of the model parameters because of its 

global optimization scheme. However it converges slowly and does quantify the uniqueness of the 

estimated parameters. On the other hand the QN method converges rapidly but only if the initial 

guess of the parameters is close to the optimum values, otherwise it diverges. Overall, the DLS 

method proves to be the most convenient method. It converges fast and was able to provide 

excellent estimates of kinetic parameters. Furthermore, DLS provides the model resolution matrix, 

which quantifies the interdependence of model parameters thereby evaluating the uniqueness of 

their estimated values. This property is essential for estimating of the dependence of the model 

parameters on experimental conditions (e.g. Ca2+ concentration) when it is assessed from noisy 

experimental data such as pyrene fluorescence from stopped-flow transients. The advantages of 

the DLS method observed in this study should be further examined in other physicochemical 
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systems to firmly establish the observed effectiveness of DSL vs. the other parameter estimation 

methods.

Keywords

Damped Least Squares; Ca2+ sensitivity; Resolution matrix; Tropomyosin-troponin-actin; 
Stopped-flow

1. Introduction

The kinetics of a chemically reacting system is usually modelled using ordinary differential 

equations that are parameterized by a reduced set of reaction rate constants. Precise 

knowledge of these constants is required to characterize the dynamical behavior of the 

system. The estimation of the reaction rate constants from experimental data constitutes an 

inverse problem and is much more complicated than solving the model for a given set of rate 

constants. Inverse problems arising in chemical kinetics can be addressed by discrete inverse 

theory (Menke, 1989). The most common methods for parameter estimation on chemical 

kinetics are least squares methods that minimize an objective function iteratively by working 

with its gradient (Farinha et al., 1997; Lisy and Simon, 1998; Tadi and Yetter, 1998). In 

these methods the objective function is defined as the error between the experimental 

observations and the predictions of the model, which depends on the model parameters. 

Several other approaches have been developed to solve this difficult minimization problem. 

One of them is the so-called “trust region”, which uses successive quadratic programming 

(SQP), as proposed by Arora and Biegler (2004). Also in use are various stochastic search 

techniques, including simulated annealing (Eftaxias et al., 2002; Goffe et al., 1994) and 

genetic algorithms (Terry and Messina, 1998).

Ideally, the parameter set that minimizes the objective function is a manifold of dimension 

zero in which the minimum of error is a single distinguished point in the error landscape. In 

this case, the error increases as the parameter values vector moves away from this point in 

any arbitrary direction. However, in systems where multiple parameters need to be 

estimated, the optimal parameter set may span a manifold of dimensions equal or greater 

than one, forming “valleys” or “hyper-valleys” in the error landscape. As a result, the model 

output may be independent of changes in one parameter or a certain combination of 

parameters, which prevents the univocal estimation of these parameters. A sensitivity 

analysis is therefore necessary to explore the variations in the model output with 

perturbations in the parameters, which are defined by the sensitivity coefficients (Frank, 

1978; Tomovic and Vukobratovic, 1972; Varma et al., 1999). In fact, the parameters of the 

model can be determined only if the sensitivity coefficients are non-zero and linearly 

independent (Beck and Arnold, 1977). More rigorously, Tang et al. (2005) used the 

“physically bounded Gauss-Newton” (PGN) method by utilizing the sensitivity matrix as a 

global map to determine the unknown kinetic parameters of complex reaction networks that 

contain dozens of species and hundreds of reactions.

The primary focus of this study is on the iterative Damped Least Squares (DLS) method 

which estimates kinetic parameters and provides a model resolution matrix (RM) (Menke, 
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1989). The DLS method, which is also known as the Levenberg-Marquardt method 

(Kecman, 2001; Nocedal and Wright, 2006), utilizes the sensitivity matrix as a search map 

in the same way as the PGN method, and provides information about the parameter 

uniqueness via the model RM. We applied the DLS method to determine the parameters of a 

kinetic model by fitting experimental data from the isotherm of the myosin-S1 binding to 

regulated F-actin in solution. The fidelity of the DLS method was evaluated by comparing 

its results with those obtained from two other algorithms: simulated annealing, and quasi-

Newton. The predictions of the kinetics model are calculated by a probabilistic algorithm 

based on the McKillop-Geeves (MG) three-state model of thin filament regulation in 

solution (McKillop and Geeves, 1993). According to this model, the actin-associated 

regulatory protein complexes consisting of tropomyosin (Tm) and troponin (Tn) switch 

between the three azimuthal positions on the actin filament surface thereby preventing or 

allowing myosin-S1 to (weakly or strongly) bind to actin. The kinetics of the interconversion 

of TmTn-actin states depends on calcium concentration and represents the primary 

mechanism of regulation of contraction in striated muscles. The estimated key parameters of 

the MG model and their dependence on calcium by the three-parameter methods are 

compared, and their uniqueness and robustness is discussed. The rate of convergence of the 

estimated parameters and the effectiveness of different parameter estimation methods is also 

evaluated.

2. Methods

All experimental data contain experimental error and natural fluctuations. In order to better 

understand how and to what degree these uncertainties affect estimated model parameters, 

we applied a probabilistic algorithm for the simulation of the MG three-state model of thin 

filament regulation in solution (McKillop and Geeves, 1993) developed by Chen et al. 

(2001). We tested the robustness of DLS parameter estimation by comparing the model 

predictions with two other widely used parameter estimation methods, namely, the quasi-

Newton and simulated annealing. The model predictions required by the three estimation 

methods were calculated using the probabilistic formulation of the MG model (Chen et al., 

2001). This method was preferred because of its speed since many model calculations may 

be needed to reach convergence.

2.1. The McKillop-Geeves three-state model of thin filament regulation

In vertebrate skeletal and cardiac muscles the interaction between myosin and actin is 

regulated by the actin-associated proteins, tropomyosin (Tm) and troponin (Tn), depending 

on the concentration of calcium (Ca2+). The soluble fragment of the myosin molecule S1 is 

widely used for studying kinetics of myosin binding to regulated actin filaments in solution. 

This fragment, also known as the motor domain, contains all of the ATPase and actin 

binding properties of the parent myosin. In the absence of nucleotide, myosin-S1 forms a 

tight (rigor-like) bond to actin filaments. McKillop and Geeves (1993) proposed that the 

regulation of tropomyosin and troponin-containing thin filaments can be interpreted using 

three-states of the actin filament: (1) the “blocked” state, in which myosin-S1 binding to 

actin is prohibited; (2) the “closed” state, in which S1 can bind with actin, but cannot be 

isomerized further to next step; (3) and in the “open” state, where no limitation to S1 
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binding to actin is imposed. In this study, the unit size of Tm-Tn complex is assumed to 

cover 7 actin monomers,1 denoted as actin7·TmTn (Maytum et al., 1999) (see Fig. 1). The 

repeat of TmTn every 7 units uniquely defines a TmTn unit that can rigidly move between 

the three states. Because Ca2+ binding to Tn significantly decreases the affinity of Tn to 

actin, the distribution between these three states is therefore affected by Ca2+ concentration. 

There are three myosin states in the model: one unbound state where myosin is in solution 

and two bound states where myosin is bound to actin. The bound states are denoted as 

weakly bound A-states and strongly bound, i.e. rigor-like states, as R-states (Fig. 1).

The MG model (Fig. 1) can be fully described by defining each state as combination of 

either, blocked, closed or open TmTn state, and the number actin sites with myosin bound in 

A- and R-stated within an actin7·TmTn unit. The complete chemical kinetics of the MG 

model can be described by 45 states (see Fig. 2 for details) and 45 corresponding chemical 

kinetics equations, as previously described by Chen et al. (2001). These equations are

dp1(t)
dt = − k+Bp1 + k−Bp2,

dp2(t)
dt = k+Bp1 − (k−B + 7k+1c + k+T)p2 + k−1p3 + k−T p10,

⋮
dp45(t)

dt = k+2p44 − 7k−2p45,

(1)

where pi(t) is the fraction TmTn units in state i, which is defined by position of Tm (i.e. in 

block, closed or open state) and a particular combination of actin unoccupied sites and S1 

bound in A- or R-states within the actin7·TmTn unit. The equilibrium constants of the model 

are defined as KB = k+B/k−B, KT = k+T/k−T, K1 = k+1/k−1, and K2 = k+2/k−2, where k+B, k+T, 
k+1, and k+2 are forward rate constants, and k−B, k−T, k−1, and k−2 are backward rate 

constants. The system of Eq. (1) is nonlinear because the forward transition rate between the 

free actin state and myosin bound to actin in the Astate depends on the concentration of 

unbound S1. In Eq. (1) we denoted S1 concentration as c = [S1], thus the effective myosin 

binding rate constant, k+1c, is in units s−1. The concentration of S1 in solution, i.e. the 

concentration of unbound myosin, decreases as myosin binds to actin and, therefore, 

decreases the effective rate of myosin binding. The concentration of free myosin-S1 in 

solution is equal to the initial concentration of free myosin-S1, [S1O], minus concentrations 

of myosin to bound to actin in either A- or in R-state. Thus the binding rate depends on 

probabilities of all myosin bound states, pbound. The equations of the MG model are solved 

numerically by Gear’s backward differentiation formulas (up to order five) (Hindmarsh, 

1972). All 45 equations can be easily solved for a wide range of parameter combinations. 

However, in some extreme cases in which some of the parameters take much larger values 

than others, the set of Eq. (1) becomes numerically “stiff” and it is difficult to solve using 

1Although there is evidence of longer range cooperativity in the A7TmTn filament, the simpler approach will be used here focusing 
this study rather on parameter estimation methods than on full functional representation of the thin filament regulation by MG model.
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standard methods. In those cases, Monte Carlo simulations should be used in order to solve 

the resulting stiff set of equations efficiently.

Once we determine the vector of 45 states, p(k, t), where vector k = (k1,…kn) represents an 

array of rate transition constants and other relevant model parameters, we calculate the 

fraction of actin sites in each one of the three actomyosin states by summing the occupancy 

of the actin sites over all TmTn units, and normalizing by the total number of actin sites 

occupied by S1 in the R-state when the system is in equilibrium. The model predictions are 

tested against measurements of the pyrene fluorescence intensity during stopped-flow 

experiments (Boussouf et al., 2007a,b; Boussouf and Geeves, 2007). A drop in pyrene 

fluorescence is proportional to myosin binding to actin in the R-state. Thus, the calculated 

instantaneous fractions of actin sites that are not occupied or which are in the A-state (i.e. 

which are not in the R-state), denoted g(κ, t), can be compared with corresponding 

experimental data, dobs(t), at the same instant. Here, the vector κ = (κ1, … κm) represents 

the set of m free model parameters that need to be estimated. Note that κ is usually a subset 

of the complete parameter set k, since some of the parameters are prescribed by the 

experimental protocol, in which case m ≤ n. For example, the prescribed concentration of 

actin, myosin and calcium are the same in both the model simulations and those used in the 

experiments. Also, m is reduced if some parameters, such as several rate or equilibrium state 

transition constants, vary a little over the course of multiple experiments and can be 

measured independently.

2.2. Parameter estimation methods

2.2.1. Damped Least Squares (DLS)—Damped Least Square (i.e. Levenberg–

Marquardt) inversion is a widely used method for the estimation of model parameters that 

has two important features: quantitative evaluation of the uniqueness of the estimated 

parameters and good parameter resolution (Menke, 1989). The DLS method is based on the 

iterative minimization of the mean-square error of the model predictions with respect to 

experimental observations. In this study, we estimate the rate transition constants of the 

McKillop-Geeves model (Fig. 1) by minimizing the variance between predicted history of 

the fraction of actin sites unoccupied by bound myosin in R-state, g(κ, t), and the same 

fraction deduced from a time course of (normalized) pyrene fluorescence intensity, dobs(t). 
We exclusively fitted data recorded during stopped-flow experiments for various 

concentrations of Ca2+ in which actin concentration is in excess of myosin-S1 concentration 

(Boussouf et al., 2007a,b; Boussouf and Geeves, 2007). The measurements performed in 

these experiments covered a range of independent variables wide enough to uniquely resolve 

the set of model parameters for each Ca2+ concentration. These observations dobs(t) are 

represented by a set on N values of the pyrene fluorescence sampled at discrete time points.

The model predictions deviate from the experimental observations by e(κ, t) = dobs(t) − g(κ, 

t), yielding the mean-square-error
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E(κ) =
e 2

2

N = 1
N ∑

i = 1

N
(gi(κ) − di

obs)2, (2)

which represents an integral measure of the “goodness” of the model prediction fit to the 

observations. Minimization of Eq. (2) provides the set of free parameters κ that best fit the 

experimental data. Finding the best set of parameters which minimize Eq. (2) by the DLS 

method leads to the following iterative scheme

Δκr + 1 = [Gr
TGr + ε2I]−1Gr

Ter = Jer

κr + 1 = κr − Δκr + 1
(3)

where er is the model error for the set of parameters obtained in the rth iteration, κr. Gr is the 

Jacobian matrix of the model predictions with respect to the parameters at iteration r,(Gr)i,j = 

∂g(κr, ti)/∂κj; δκr+1 is the vector of estimated increments of parameter κr, and κr+1 the 

vector of estimated parameter values at iteration r +1. At the end of the iteration the error is 

calculated for the set of current parameters, κr, which is represented in the error landscape as 

a step towards the location of the minimal error. The r + 1th step is determined by the 

product of the error vector at the rth step, er and the pseudoinverse matrix

Jr = [Gr
TGr + ε2I]−1Gr

T = Mr
−1Gr

T, (4)

which depends on the local topology of the error landscape and provides a search “map” or 

solution direction in this landscape (see Appendix A for more details). The parameter ε2 is 

called the damping parameter and can take an arbitrary small value. This parameter ensures 

the invertability of Mr by keeping its smallest eigenvalue equal to, or greater than, ε2. In 

other words, ε2 ensures the stability of the iterative procedure by limiting the length of each 

iteration step in the error landscape to 1/ε2. As a counterpart, non-zero values of ε may slow 

convergence and/or degrade the resolution of the parameters because the objective function 

that is actually minimized for ε >0 is Φ = E(κ) + ε2|| Δκ||, instead of just E(κ). A suitable 

small value of ε should “damp” any disturbance (i.e. experimental data noise) and only 

slightly affect the model parameter values.

When the parameter values, and therefore the increments Δκ, vary in a wide range it is more 

efficient to use logarithmic variations (Levenberg, 1944). In this approach we look for the 

solution of log(g(κ, t)) ≅ log(dobs(t)) and the model deviation from the observations is e(κ, t) 
= log(dobs(t)/g(κ, t)). Also, the partial derivatives that define Gr are of log(g(κ, t)) with 

respect to log(κ), and the new value of the estimated parameter is κr+1 = κr exp(−Δ κr+1/κr) 

(see Appendix A for details).
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2.2.1.1. The resolution matrix (RM): The sensitivity of the model to each of the estimated 

parameters is examined by the resolution matrix R (an m × m matrix) at convergence:

Rr = JrGr = [Gr
TGr + ε2I]−1Gr

TGr (5)

When the matrix Gr
TGr is a regular matrix and ε2 is small, then R ~ I and the estimated 

model parameters are uniquely determined, i.e. the obtained model is close to being correct. 

However, if the matrix R has appreciable non-zero off-diagonal elements, variations of a 

particular parameter can be compensated by adjustments of other parameters that fit the 

experimental data equally well. Furthermore, if all the elements in a row of the RM are 

small (|RM| ≪ 1), then the corresponding parameter cannot be estimated for the given data 

set because the error is affected very little, even by large changes in this parameter. In these 

two situations, the optimal set of parameters occupies a manifold of dimension ≥ 1 and 

forms a “valley” or “hypervalley” in the error landscape. The RM discriminates meaningless 

estimates and also indicates those parameters that may vary in a wide range without 

alternation of the system response, as one can move along a valley in the error landscape 

without modifying the mean-square error.

2.2.2. Quasi-Newton (QN)—This method estimates the parameter set κ = (κ1, … κm) by 

minimizing the error E(κ, t) with the Newton algorithm (Dennis and Schnabel, 1983; 

Nocedal and Wright, 2006). In contrast with the standard Newton method, which requires 

numerical calculation of the gradient and Hessian of E(κ, t) in κ space, the QN method only 

requires computing the gradient; the Hessian is estimated using the gradients from 

successive iterations (Press et al., 1986). We used the implementation of the QN method 

provided by the Microsoft Power Fortran routine, BCONF, which includes an active set 

strategy (Gill and Murray, 1976). For a given error function, the QN method iteratively 

computes the search direction by using the step length determined by a local optimization of 

the function, called a line search, until it reaches the minimum of E(κ, t) function values. 

The Hessian is well-conditioned if the approximation by a quadratic function of the 

objective function surface E(κ, t) is the correct one which will be the case in the 

neighborhood of a local or global minimum when the convergence rate is quadratic (Dennis 

and Schnabel, 1989; Nocedal and Wright, 2006). Quite often, however, the objective 

function is poorly approximated by a quadratic function in the vicinity of the initial guess, 

especially if the latter is far from the optimum. Consequently, despite fast convergence, 

many trial and error runs involving different initial guesses may be necessary to determine 

the set of model parameters precisely.

2.2.3. Simulated annealing (SA)—This algorithm provides a global search method 

specifically designed for functions with multiple minima over wide range of parameters2 

2The concept of annealing originates in metallurgy, and involves a technique of heating and controlled cooling of a material to 
increase the size of its crystals and reduce their defects. Heat causes the atoms to depart from a local internal energy minimum through 
random displacement from one energy state to another. Slow cooling increases the probability of finding configurations with lower 
internal energy than the initial one.
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(Kirkpatrick et al., 1983; Press et al., 1986). This feature is especially important in chemical 

kinetics systems with many reaction equations and reaction rate constants which may vary 

considerably. Using a global strategy, each step of the SA algorithm replaces the current 

solution by a randomly chosen solution that is “nearby” in the parameter space; if the new 

solution is better it is chosen the new solution; whereas if it is worse the new solution can 

still be chosen, with a probability that depends on the difference between the corresponding 

function values and on a global parameter T (called the temperature) that is gradually 

decreased during the iterative process. As a result, the iterating solution changes almost 

randomly when T is large, but increasingly “down the well” as T goes to zero. The 

allowance for a random “uphill” enables escaping from local minima. A similar, although 

less powerful global search can be performed in DLS by gradually increasing the damping 

parameter ε2, as the iteration process proceeds. We used the SA implementation provided in 

the Microsoft Power Fortran routine, SA (Goffe et al., 1994) to search a global minimum of 

the error function E(κ, t). This powerful method is effective in finding an absolute minimum 

of E(κ, t) but requires a large number of model evaluations. Thus its application is limited to 

parameter estimation in models whose equations can be solved quickly.

2.2.4. Convergence criteria—In DLS, the iterative process is stopped when the error and 

the norm of the increment of the estimated parameters are less than the prescribed respective 

tolerances. Also the maximal number of iterations is usually limited (here, the limit was 100 

and the convergence is typically reached in less than 20 steps). The proprietary QN and SA 

implementations have their own exit strategies. There are two stopping criteria for BCONF 

that occur, either when the norm of the gradient is less than a given gradient tolerance 

(<10−8), or when the scaled distance between the latest two steps is less than the step 

tolerance (<10−10). The program also stops when it reaches prescribed values for the 

maximum number of function evaluations (default: 100), or of gradient evaluations (default: 

400). SA terminates when either one of these two exit conditions is satisfied: (1) when the 

error is less than default tolerance value of 10−6 or (2) when maximum number of function 

evaluations is reached (currently set to 105).

2.2.5. Effective kinetic binding rate constant, kobs—One important determinant of 

myosin-S1 binding to regulated thin filament via the TmTn complex is the effective kinetic 

binding rate constant, kobs. When the actin concentration is much larger than the myosin-S1 

concentration ([A] ≫ [S1]) in the presence of calcium, a single exponential is observed and 

kobs = (−d[A]/[Ao])k+1[S1] − k−1[A.M] represents the rate of decrease of unbound myosin 

concentration (McKillop and Geeves, 1993). Here [A.M] is the concentration of actin sites 

in weakly bound S1, i.e., A-states. When KT is large (~200), the population of the A-state is 

small, and the reverse rate is negligible in absence of nucleotide, and thus the forward rate is 

approximately proportional to the rate of fluorescence decay in stopped-flow experiment 

(after subtraction of background fluorescence). Also the observed rate constant, kobs, is 

independent of the ratio between actin to S1 over the range 5:1 to 20:1. In this case for lower 

and intermediate concentrations of Ca2+, kobs can be calculated as
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kobs = d[A]
[AO] = k+1[S1] 1 − 1

1 + KB(1 + KT) . (6)

For the family of stopped-flow transient data, we can obtain the fractional kobs
f  by fitting the 

stopped-flow data. The fluorescence data are corrected for the background fluorescence then 

they are typically normalized by setting the equilibrium value to zero, followed by 

normalizing to the corrected initial fluorescence. Also for the effective comparison of kobs
f

from stopped-flow data with estimated kobs
f  from the best fits (6), kobs is further normalizing 

at any Ca2+ concentration to the highest Ca2+ concentration (i.e. pCa = 4.6) after subtracting 

the value of kobs at lowest concentration (i.e. pCa = 4.6):

kobs
f =

kobs(pCa) − kobs(8.9)
kobs(4.6) − kobs(8.9) . (7)

This procedure allows a comparison of the fractional equivalent rate constant, kobs
f , from the 

estimated MG model parameters by different estimation methods for every set of 

experimental kinetic data at a prescribed Ca2+ concentration.

3. Results

To evaluate the effectiveness and robustness of the parameter estimation methods we fitted 

the model predictions to stopped-flow transients for S1 binding to pyrene-actin in the 

presence of regulatory proteins for a specified Ca2+ concentration (Boussouf et al., 2007a,b; 

Boussouf and Geeves, 2007). To improve accessibility of the parameter estimation methods 

for the MG model, we developed Visual Basic GUI, which integrates all computing 

components into a single shell application.3

3.1. Estimation of MG model parameters by DLS, quasi-Newton and SA estimation 
methods

The McKillop–Geeves (MG) three-state rigid chain model has four free parameters: the 

equilibrium constants KB, KT, K1, and K2 (see Section 2). We estimated these parameters 

using the DLS, QN and SA methods by fitting the predictions of the MG model to stopped-

flow transients for binding S1 to excess actin ([A] = 2.5 μM, [S1] = 0.25 μM) (Boussouf et 

al., 2007a). The fitted curves for these three methods in the case of high or low Ca2+ differ 

little and agree well with the experimental data (Fig. 3). Table 1 shows the values of the four 

equilibrium constants obtained by DLS, QN and SA for high or low Ca2+ concentrations. It 

is important to note that different estimation methods estimated somewhat different of values 

of the parameters KB, KT, K1 and K2, although the differences in the fitting error are hardly 

3The program package is available in Srba Mijailovich’s Computational Mechanobiology Lab http://www.hsph.harvard.edu/
srbamijailovich/. The program can be obtained by clicking on download and then choosing the thin filament regulation V3.20.
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noticeable (see Table 1) and the fits are almost identical (Fig. 3). The same behavior is 

observed at other Ca2+ concentrations too, thus a consistent trend of the parameter values 

with Ca2+ concentration is extremely difficult to establish if all four parameters are fitted 

simultaneously. The parameter values estimated from the different Ca2+ concentration by the 

above three estimation methods showed substantial differences in some cases, or did not 

show a consistent dependence on Ca2+ concentration.

This inconsistency may be attributed to a relatively flat error landscape, which would cause 

different sets of parameters to yield similar model predictions. When the differences 

between model predictions are within the experimental error (i.e. fluctuations in measured 

fluorescence), the parameter estimation methods would not able to discern which solution is 

better. In the SA paradigm, this effect can be interpreted as a residual temperature increment 

due to the entropy of the experimental measurements.

We explored the possibility of reducing this effect by filtering the experimental data through 

averaging pairs of two neighboring points. The difference between the parameters estimated 

from the original data and the filtered data was minor, the error was slightly reduced and the 

resolution matrix was improved in some cases. However, this apparent improvement was 

inconsistent, even when data were filtered a second time. Thus a reduction of experimental 

fluctuations has not resulted in significantly better convergence and better parameter 

resolution, pointing out that additional effects affected the goodness of the fit.

These findings indicate that the uniqueness of the sets of parameters estimated from 

stopped-flow transients should be evaluated carefully. The DLS method enables such an 

evaluation through analysis of the resolution matrices (see Table 2). Reducing the number of 

estimated parameters by, for example, fixing some model parameter values by using reliable 

values from other experiments (e.g. K1 and K2) improves the consistency of the remaining 

parameters with Ca2+ concentration. Fig. 4A shows that the best fits of stopped-flow 

transients obtained by the DLS, QN and SA methods at pCa of 8.9 are almost identical even 

when the number of estimated parameters is reduced to two. However, these fits are not as 

good as fits shown in Fig. 3 where all four free parameters are estimated. The reduction of 

the number of parameters from four to three and then to two also causes some minor 

differences in fits (Fig. 4B), but these differences are small and similar to the differences 

observed in Fig. 4A. Despite these differences, the reduction of the number of parameters 

brings the values of the estimated parameters closer by the different methods (Table 1), and 

improves the resolution matrix (Table 2), i.e. improves the robustness of the parameter 

estimation methods, but at the expense of less accurate fits (Fig. 4B, Table 1).

3.2. Calcium concentration dependence of KB and KT

Establishing the dependence of the equilibrium constants KB and KT on the concentration of 

Ca2+ by estimating the parameters of the MG model from the fits to families of stopped-flow 

transient experiments is important for the quantitative understanding of thin filament 

regulation in intact muscle fibers. As discussed above, fixing K1 and K2 and estimating only 

KB and KT can improve the uniqueness of the estimated parameters. The rationale for this 

simplification is based on three observations made in Table 2 and Fig. 5: (i) K1 is uniquely 

determined even when fitting all four parameters of the MG model; (ii) K1 and K2 vary little 
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with the Ca2+ concentration; and (iii) the best estimates from the best fits of the full set of 

parameters over eleven calcium concentrations are 0.25 μM−1 and 170, respectively. These 

values vary little with concentration and they are consistent with previous studies. McKillop 

and Geeves (1993) showed that the binding equilibrium constant, K1, from the kinetic data 

in the presence of Ca2+ at actin concentrations is between 0.1 and 0.2 μM−1. The same 

authors reported that the value of K2 is around 200 in the absence of nucleotide (McKillop 

and Geeves, 1993).

In order to illustrate how a reduction of the number of estimated parameters affects the 

values of the parameters and the quality of the fits we compared the values of the estimates 

of all four free parameters, of three free parameters with prescribed K1 = 0.25 μM−1, and of 

two free parameters with prescribed K2 = 170 (Table 1,K Fig. 4B). Fixing 1 and K2, i.e. 

reducing the number of the free parameters to two is advantageous for global methods such 

as SA because it significantly reduces the number of model calculations and it enhances the 

uniqueness of the estimated KB, and KT over a wider range of Ca2+ concentrations (see DLS 

resolution matrices in Table 2 and Fig. 5). All parameters are estimated from stopped-flow 

data at actin concentrations in excess of S1 ([A] = 2.5 μM, [S1] = 0.25 μM).

The Kb values estimated by DLS, QN and SA display a sigmoidal Ca2+ dependence with the 

steepest variation at pCa between 6.6 and 5.4 (Fig. 6A). Hill’s coefficients obtained from 

parameters obtained by each of three-parameter estimation methods are similar, averaging of 

about 2.25 (namely 2.15, 2.28 and 2.34 for DSL, SA and QN, respectively) and the 50% of 

KB range is achieved at pCa of 5.57, 5.58 and 5.64, respectively. The KT-Ca2+ dependence is 

less prominent, showing a mild increase from 0.03 at low Ca2+ concentration to ~0.125 at 

high Ca2+ (Fig. 6B). The relatively smooth trend is interrupted by two “spikes” at pCa = 6.0 

and pCa = 5.4, which are likely caused by imperfections of the stopped-flow transients at 

early times, and the imprecise acquisition of the experiment starting time. These large 

variations of KT between neighboring concentrations and the variability of the KT values 

estimated by different methods are also reflected in the Hill coefficients, which are 

respectively, 0.47, 1.22 and 0.76 for DSL, SA and quasi-Newton. Half of the change in KT is 

achieved at lower Ca2+ concentrations (at pCa of 6.54, 6.54 and 6.27, respectively) than 

estimated from the KB-pCa relationship. These spikes and variations in the Hill coefficients, 

however, have almost no effect on the effective kinetic binding rate constant, kobs (Fig. 7).

The dependence of kobs with Ca2+ concentration is similar to the rate constant of single 

exponential decay of fractional fluorescence, kobs, when actin concentration is much larger 

than the myosin-S1 concentration ([A] ≫ [S1]). The absolute values of kobs calculated from 

the estimated KB and KT and obtained from fitting the observed stopped-flow transient at the 

range of Ca2+ concentrations were similar especially at lower Ca2+, whereas the calculated 

values overestimated the experimental fits at higher Ca2+ concentrations (Fig. 7A). The 

fractional kobs
f  obtained from the DLS, QN and SA methods showed a sigmoidal dependence 

on pCa (Fig. 7B) and differ little from the common sigmoidal shape even if KT fluctuate 

significantly for pCa< 6.0 (see Fig. 6B). Hill coefficients for kobs are also almost identical 

for the DSL, SA and QN methods, having values of 2.60, 2.61, and 2.71, respectively, and 

50% of the change in kobs is achieved at virtually the same Ca2+ concentration (i.e. at pCa of 
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6.0). Interestingly, kobs is closely related to KB which is further exemplified by the mapping 

the spike in KB at pCa = 5.2 to the spike in kobs.

The kobs dependence of pCa derived from the best fits by any of the three-parameter 

estimation methods is similar to the kobs obtained from single exponential fits of 

experimental data (Boussouf et al., 2007a). Single exponential decay is observed at high 

Ca2+ concentrations and after a delay, tdelay, at lower Ca2+ concentrations. Fig. 8A shows an 

example of curve fitting of a single exponential at low Ca2+ concentration (pCa = 7.0). At 

low concentrations and after an initial delay, the single exponential (a straight line in semi-

log plot), fits the data excellently until it reaches the noise floor at long times. These fits 

provide the single exponential rate constant kobs (s−1) that after appropriate normalization 

can be compared to the equivalent rate constant, kobs (or kobs
f ), calculated from estimates 

values of KB and KT (Eqs. (6) and (7)). Fitting the single exponential to the stopped-flow 

transient can be achieved by either fitting all available data or just a partial the range of data 

which excludes the initial delay before rapid decay and the data which reached the noise 

floor at long times. Fig. 8A demonstrates that more robust fits are obtained when the model 

is fitted to this partial range of data. Overall differences between the fits of all data vs. the 

partial range of data are small but significant (Fig. 8B), both fits are similar to data reported 

in (Boussouf et al., 2007a) and the delay time show the expected sigmoidal trend (Fig. 8C). 

However, the single exponential rate constant kobs underestimates the values of the 

equivalent rate constant at higher Ca2+ concentrations (Fig. 7A). This underestimation is 

likely due to the difficulty of separating the initial delay from the single exponential decay. 

This is also reflected in a lower Hill coefficient of 1.79 comparing to an average value of the 

coefficient of about 2.6 obtained from the estimated fractional equivalent rate constant kobs
f

(Fig. 7B).

We investigated the reason why the values of KB estimated by different methods are 

significantly different for pCa = 5.2 (Fig. 6A). We observed that the plot of the experimental 

data (Fig. 9) has a somewhat irregular shape during the first 60 ms that differs from the 

initial part of the sigmoidal curve observed at the other concentrations (inset in Fig. 9). For 

actin concentrations in excess of myosin-S1 ([A] ≫[S1]), this early-time irregularity is 

present at all concentrations but it is much smaller than at pCa = 5.2, only affecting the 

estimated KT values for pCa>6.0. It is interesting to note that despite quite different values 

of KB estimated by the DSL, QN and SA methods, the fitted curves are almost identical 

(Fig. 9), and the fit error is roughly the same (3.2603 × 10−5, 3.3183 × 10−5 and 3.3274 × 

10−5, respectively). A possible reason for the differences observed in Kb is the relatively low 

value of the diagonal term of the resolution matrix associated to KB at pCa = 5.2 which is 

<0.2. Such low value indicates that the error of the fit is not sensitive to a relatively large 

variation of KB (Fig. 10A). Thus, the significantly different estimated values of KB are 

caused rather by different convergence behaviors of the three-parameter estimation methods 

than by the particular accuracy of the fit.

Overall, SA provided the most reliable estimates of KB and KT because of its ability to 

search for global minima in a broad parameter domain so that its estimates are virtually 

independent of the initial guess. This method provided stable convergence in all examined 
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cases and the smallest fitting error. Interestingly, the DLS estimates agree with the estimates 

from SA in most of the cases considered in this study, which suggests that DLS can be used 

equally well as SA to fit data from stopped-flow fast transient experiments. In a few 

occasions DLS achieved even slightly better fits of the data but the differences in the error 

were negligible. In addition to an excellent fit, the DLS method provides additional 

information about the quality of the fit via the resolution matrix (RM). Fig. 10 shows the 

diagonal elements of the RM for KB and KT. Consistent with Table 2 and Fig. 5, these data 

indicate that KB is well resolved, especially for low calcium concentrations. The sharp 

decrease in the quality of the fit that is observed at high Ca2+ concentrations (pCa >6.0, RM 
of KB< 0.5) can be linked to the kinetics of the system (Fig. 10A). In fact, most of TmTn 

units are in either closed or open state at high Ca2+ concentrations (i.e. low pCa), thus 

further increase of KB causes a very small increase in the effective binding rate of S1 to 

regulated actin. In binding kinetic terms this means that at larger values of KB (>3) the 

overall rate binding of S1 to regulated actin is affected very little by opening of a few extra 

units (Fig. 10A). Consequently, large changes in KB values cause small shifts of the 

predicted transients which in extreme cases may be within the experimental uncertainty. At 

lower Ca2+ concentrations, however, KB is better resolved suggesting that the primary 

regulation mechanism is the transition between blocked and closed sates, i.e.by Kb.

In contrast to KB, KT is better resolved at higher Ca2+ concentrations (pCa>6.0, RM of 

KT>0.5) than at lower Ca2+ concentrations (Fig. 10B). This result suggests that the primary 

regulation mechanism at high calcium concentrations is the transition between closed and 

open states. This is because at higher Ca2+ concentrations the closed and open states are 

reasonably well occupied. However, the values of both KT and RM vary significantly from 

one Ca2+ concentration to the next, suggesting that these variations are more likely to be 

caused by imperfections in experimental methods and data acquisition than by inadequate 

parameter estimation. This argument is supported by Fig. 6B which displays the same 

pattern of seesaw variation of KT and essentially the same estimated Kt values with Ca2+ 

concentration regardless of the parameter estimation methods used. Consistent with this 

idea, the time courses of fractional fluorescence predicted by three-parameter estimation 

methods for the same Ca2+ concentration are very similar, although they significantly 

deviate from the observations (Fig. 9). Thus, the observed seesaw variation of Kt with Ca2+ 

concentration is not an artefact of the parameter estimation methods but rather a 

consequence of imperfections in experimentation to which Kt is very sensitive.

3.3. Estimation errors and convergence of the estimated parameters

There are three desirable features of a good parameter estimation method: (1) ability to 

escape from local error minima; (2) uniqueness of the estimated parameters; and (3) fast 

convergence. The first of these features can be achieved with global search methods such as 

SA. However, as we showed above, some gradient methods, such as DLS, may fit the 

experimental data equally well. In the circumstances when gradient methods are equally 

effective in finding an absolute minimum of the estimation error, the gradient methods 

should be preferred because they converge faster, while at the same time providing 

information about the uniqueness of the solution via the resolution matrix.
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Fig. 11 shows typical iteration histories of three MG model parameters (Kb, Kt and K2) and 

of the fit error at pCa = 4.6. This figure shows the estimation of the three parameters of the 

MG model because the estimation of all four free MG model parameters can only resolve 

well K1 having a value of about 0.25 μM−1, while other parameters are poorly resolved (see 

RM in Table 2 and Fig. 5). Thus, we fixed K1 to 0.25 μM−1 and analyzed the convergence of 

KB, Kt and K2 which can now be better resolved. Fig. 11 shows the convergence of KB, KT 

and K2, estimated by fitting the fluorescence transient for pCa = 4.6 and ε = 0.3. It is 

important to note that K2, KB and KT showed damped oscillations around their final 

convergence values. The interdependence between the estimated parameters is reflected in 

the RM (see Table 2, pCa = 4.6, three parameters and Fig. 5B), whose diagonal elements are 

appreciably smaller than 1 (KB ≈ 0.47, KT ≈ 0.58 and K2 ≈ 0.37), and whose off-diagonal 

elements corresponding to KT–K2 and in lesser degree Kb–Kt are relatively large. Note that 

off-diagonal of the RM elements indicate the degree of correlation between the parameters. 

For example, at pCa 4.6, KB can be well resolved if the number of parameters is reduced 

from three to two by fixing K2 to 170. In this case diagonal elements of RM have values 

>0.75, whereas offdiagonal elements are much smaller (~0.1, see Fig. 5C). The overall 

convergence can be improved by a better choice of an initial guess of the estimated 

parameters and by using a smaller value of the damping coefficient ε.

The effect of the chosen value of s on KB and the convergence and error of the three-

parameter estimation (of KB, KT and K2) is shown in Fig. 12. As expected, the convergence 

is faster and the RM improves for lower values of ε. However, decreasing ε below 0.1 

causes numerical instabilities that appear as ripples in the error function, and which could 

lead to divergence of the solutions. The same patterns are observed in the speed of 

convergence which rapidly increases for smaller values of ε. For example, the mean value of 

KB
(r) converges very quickly for smaller values of ε (Fig. 13A) and the variations between 

neighboring iterations, ΔKB/KB
(r) rapidly decrease (Fig. 13B). However, for the very small 

value of ε = 0.05, the approximate value of the converged KB
(r) is achieved in just one or two 

iterations, but this value is not stable and the estimates kept oscillating around it without 

converging. In fact in most cases, when ε ≤ 0.1 smooth convergence cannot be achieved at 

all – unlike the case shown in Fig. 13. Fig. 14 shows that in this particular example the 

resolution matrix does not improve substantially when the damping parameter is decreased 

below 0.15. Note that the DLS method formally approaches the QN algorithm for very small 

values of ε, which in turn explains why the QN method is only effective when the initial 

guess is close to values of fully converged parameters. Thus, the use of the DLS method 

requires a systematic way of choosing initial guesses for the parameters to be estimated and 

a careful choice of ε. In our experience, the strategy that proved most successful in fitting 

the kinetic data is to start with a relatively large damping coefficient, say ε = 0.5, and 

gradually decrease ε while monitoring the convergence and the stability of the solution. The 

last estimated parameter values are the best initial guesses for the next parameter estimation 

with smaller ε values.
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4. Discussion and conclusions

Estimating chemical kinetic rate constants from experimental data is complicated due to the 

nonlinear behavior of protein binding and because the data are prone to procedural 

imperfections and fluctuations. We developed algorithms to accomplish this goal with the 

McKillop–Geeves model of thin filament regulation in solution (McKillop and Geeves, 

1993), and we suggested strategies of how to successfully extract the best set of values that 

enable to establish the Ca2+ dependence of the model parameters. Establishing relationships 

between the reaction constants (KB and KT) and the calcium concentration (pCa) is essential 

for a better understanding and further the development of quantitative models of thin 

filament regulation both, in solution and in living muscle fibers.

Three model parameter estimation methods, (i) Damped Least Squares (DLS), (ii) quasi-

Newton (QN) which is related to DLS but simpler, and (iii) simulated annealing (SA), were 

compared by estimating the parameters of the McKillop-Geeves three-state rigid chain 

model from a set of stopped-flow data collected at different Ca2+ concentrations. All three 

models used different minimization methods to find best fits to a family of stopped-flow 

transients of S1 binding to regulated actin: (1) the DLS method is based on a gradient 

method for minimization of the error, (2) the QN method is a powerful optimization method 

close to DLS; and (3) SA is a global optimization method with an uphill and downhill 

search.

The MG model has four free parameters, KB, KT, K1, and K2, but the estimated parameters 

resulting from these methods have not provided any reasonable dependence of the model 

parameters on the Ca2+ concentration because the model parameters are interdependent and 

cannot be uniquely resolved (Table 2, and Figs. 5 and 10). Using evidence from the literature 

and from our own investigations we found that K1, and K2 only mildly depend on Ca2+ 

concentration and the trend is quite inconsistent. By setting reasonable values for K1 and K2, 

we found sigmoidal dependence of Kb on Ca2+ concentration (Hills coefficient of ~2.25) and 

a somewhat less prominent and scattered dependence of Kt on Ca2+. The parameters 

estimated by DLS, SA and QN methods have similar values for all of the studied Ca2+ 

concentrations (Fig. 6). The fractional kobs
f  which is the effective kinetic binding parameter, 

derived from model parameter KB and KT (Eq. (6)), also displays a sigmoidal dependence 

on Ca2+ concentration, and the difference between the parameters estimated by the different 

methods was minor (Fig. 6). Furthermore, the Hill coefficients of kobs
f  were virtually the 

same (2.6), and kobs
f  reaches 50% at pCa = 6.0.

Overall, SA appears to be the most reliable of the three estimation methods because it 

always converges and it is based on a global searching strategy. However, this method 

converges very slowly and requires a large number of model simulations. Thus, SA is 

limited for parameter estimation only if the model predictions can be calculated quickly so 

the converged solution can be achieved over reasonable computational time. In contrast, 

those models which explicitly include cooperativity between nearest neighbor TnTm units 

such as the Hill two-state model (Chen et al., 2001; Hill et al., 1980) or the MG cooperative 

model which can be only be solved by stochastic (i.e. Monte Carlo) simulations will require 
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an over-extensive amount of computational time. Because these simulations are 

computationally intensive, only fast converging parameter estimation methods can be 

effectively used, i.e. the methods which converge in up to 25 iterations. One possibility is the 

use of the quasi-Newton method which converges rapidly, but its convergence is influenced 

frequently by the initial guess values and overall it requires a sizeable number of functional 

evaluations too. This method also imposes a large degree of uncertainty because choosing 

different initial guess values leads to different estimated model parameter values upon the 

incomplete convergence. The good fits shown in Figs. 3, 4, 6, 7 and 10, as well the 

parameter values shown in Table 1 are achieved by guessing initial values close to the values 

estimated by SA or DSL method; otherwise, the convergence of QN was compromised. 

These properties limit the application of the QN method to models based on stochastic 

simulations as well.

The parameter estimation via the sensitivity matrix and the Damped Least Squares (i.e. 

DLS) method has a number of advantages over the other two methods. Figs. 12 and 13 

demonstrate that DLS can converge in less than 20 iterations, when an appropriate value of 

the damping parameter is used (i.e. ε <0.2), and reasonably well-chosen initial guesses are 

used. Similar to other iterative least squares methods, DLS can only find solutions that are 

linearly close to the initial guess and sometimes converge to a local minimum. These 

problems can be overcome by initially setting ε equal to a relatively large value (e.g. ε = 0.5) 

for a few iterations (say up to 20) and then progressively decreasing ε until convergence is 

reached. The initial large value of ε will allow a wider search within the parameter space but 

it may not converge. Typically, the values of each of the estimated parameters as well as the 

error fluctuate between some larger and smaller value between two consecutive iterations 

(Fig. 11). In most cases the estimated parameters will not converge in 20 iterations, but the 

last few iterations provide sufficient information to choose a new guess which is much closer 

to the converged solution. The criterion to select new initial parameters should include 

values with the lowest error. The subsequent estimation with the new guess and ε < 0.2, 

yields rapid convergence. This methodology was successfully applied to the estimation of 

the MG model parameters. It provided almost the same parameter estimation values as the 

global search method SA over all Ca2+ concentrations, but in fewer iterations (i.e. <20). 

Note that the strategy presented above (starting with lager ε and reducing it as approaching a 

minimum) is a standard optimization procedure for a Levenberg–Marquardt method 

(Kecman, 2001; Nocedal and Wright, 2006).

The uniqueness of the estimated parameters is a very important point to consider when 

dealing with parameter estimation methods. It is well-known that multiple solutions may 

exist with equal error margins (Tang et al., 2005; Vajda and Rabitz, 1988; Zsely et al., 2004). 

Various combinations of parameters can fit the experimental data equally well within the 

experimental uncertainty, or some of the parameters may be interdependent. Among those 

multiple solutions, the “global” solution might be attractive by offering the smallest residual 

error. Because we are dealing here with a nonlinear inversion problem, it is desirable to 

examine the global properties of the fit error in order to be confident that the most accurate 

set of parameters is estimated. In our case, SA is a convenient method for exploration of the 

global parameter space searching for the absolute minimum error. However, this global 

residual error minimum is not guaranteed to be better than other local minima estimated by 
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other methods such as DLS (Tang et al., 2005). This observation is indeed true in the current 

instance (see Table 1 and Fig. 5), where KB–pCa relationships obtained by SA and DLS 

differ minimally. They only differ appreciably at high Ca2+ concentrations where the error 

landscape is relatively flat and a wide range of estimated KB values produces model 

predictions with virtually no change in error. Thus, in a noisy and relatively flat error 

landscape the meaning of the absolute minimum is somewhat diluted and in this situations 

there is no a significant benefit in using global search methods, such as SA. In this case, the 

RM obtained from DLS can provide additional information on how to obtain the best 

solution with a minimum number of iterations by adjusting the appropriate value of ε and 

monitoring the variation of estimated parameters and the RM (Table 3, Figs. 12 and 14). In 

general the smaller the damping parameter ε, the faster is the convergence and the model 

parameters are better resolved. However, too small ε may lead to numerical instabilities and 

divergence of the parameter estimation (Figs. 12 and 13). As pointed out by Menke (1989) 

choosing an appropriate value for ε is not a straight forward process and typically ε is set by 

trial and error in usually decreasing sequences of values.

In conclusion, if the complex error landscape has multiple minima, then the solution can be 

non-unique and a priori information must be added to resolve the indeterminacy. Therefore, 

there is no guarantee that the DLS or any other iterative technique will converge to the 

solution, even if it is known that the unique solution exists, because it is necessary to explore 

the global error surface to ensure that a global minimum is reached. Overall the SA method 

is the most reliable method for the estimation of parameters in complex chemical systems. 

However, this method is in some cases impractical because it requires an extremely large 

number of iterations to find absolute minimum of the error. Thus, other methods, such as 

DLS, or sophisticated combinations of methods should be used. Nevertheless, DLS 

parameter estimation of the MG model parameters provided almost identical parameter 

estimates as the SA method and supplies information about the interdependence of the 

estimated parameters. Furthermore, the main advantage of the DLS vs. other examined 

methods is its fast convergence which is essential for the solvability of parameters in 

complex reaction systems which can only by simulated by complex computational 

algorithms. It should be noted that these conclusions are specific to the single model of 

myosin binding kinetics to regulated actin. The relative advantage of DSL observed in this 

study should be further evaluated for other models of mechanochemical systems. It would be 

especially important to establish the effectiveness of parameter estimation methods when 

applied to Monte Carlo simulations such as Hill’s model of thin filament regulation (Chen et 

al., 2001; Hill et al., 1980) or Continuous Flexible TnTm Chain model (Smith and Geeves, 

2003; Smith et al., 2003). The ultimate parameter estimation method that employs these 

stochastic simulations would require: (1) fast convergence because the Monte Carlo 

simulations require extensive computational time for each simulation and (2) sufficiently 

robust algorithm which can uniquely resolve complex issues related to interference between 

noise in experimental data and inherent stochastic noise in simulation data.
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Appendix A

A kinetic system can be described as following general differential equation,

dp
dt = f (p, k, t) (A-1)

with the initial condition, p(0) = pin. Where p is a vector of the dependent variables, t is the 

time, pin is initial value p(0) at t=0 and k represents an array of rate transition constants and 

other relevant model parameters. Once we determine vector of all system states, p(k, t), we 

calculate the function g(κ, t) = F(p(κ, t)) which can be compared with corresponding 

experimental data, dobs(t). Here κ represents the vector containing the m system free input 

parameters. In this study g(κ, t) is formulated as a sum of contribution of each state to the 

florescence corresponding to observed pyrene fluorescence intensity during stopped-flow 

experiments. The details of calculating g(κ, t) from known p(k, t) is briefly explained in 

Section 2 and fully explained in Chen et al. (2001). A sufficient number of measurements 

dobs(t) obtained at N discrete time points results in a sufficient number of relations between 

parameters, κ, from which the values of these parameters can be obtained as a solution of 

the inverse problem (Menke, 1989).

Construction of sensitivity matrix

The function g(κ,t) is assumed to be continuous and continuously differentiable. The first-

order local sensitivity s(g, κj) of matrix g, with respect to the jth free parameter, κj, is 

defined as

s(g; κ j) =
∂g(t, κ j)

∂κ j
. (A-2)

This sensitivity analysis provides the information about the effect of variation of the model 

parameters on the system behavior. The local sensitivity approximately calculated for ith 

element, gi, which corresponds to observation di collected at time ti (i =1, …, N), by finite 

difference method (FDM) is

si, j
r (gi, k j) =

∂gi
∂κ j

≈
gi(κ j

r) − gi(κ j
r − 1)

Δκ j
r . (A-3)

Here superscript r stands for previous iteration, and r − 1 stands for the iteration before r. 
When Δκj varies in wide range of parameter values it is better represented in log space than 

in linear space, thus we used here:
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Δκ j
r + 1 = log

κ j
r + 1

κ j
r (A-4)

which gives the local sensitivity

si, j(yi, κ j
r + 1) =

log[gi(κ j
r)/gi(κ j

r − 1)]
log κ j

r /κ j
r − 1 (A-5)

The advantage of this setup is that Δκ j
r is normalized and it would not be affected by wide 

range of the parameter values.

The Gr matrix (N × m)in Eq. (4) is assembled by elements defined by either Eq. (A-3) in 

linear space, of Eq. (A-5) in logarithmic space as

Gr = ∂g
∂κ =

s(g1; κ1) s(g1; κ2) ⋯ s(gn; κm)
s(g2; κ1) s(g2; κ2) ⋯ s(g2; κm)

⋮ ⋮ ⋮ ⋮
s(gn; κ1) s(gn; κ2) ⋯ s(gn; κm)

(A-6)

At each iteration the parameter values from previous iteration, κr are updated by the 

increments Δκr+1 obtained as solution of least squares inversion problem (Eq. (4)) as:

κr + 1 = κr − Δκr + 1 in linear space, or by

κr + 1 = κrexp −Δκr + 1/κr in logarithmic space .

The iterative process is stopped when the convergence criteria are met: ║e║< εe, and 

║Δκr+1║< εe where εe are prescribed error tolerances for the error and for the parameter 

estimates, respectively.
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Fig. 1. 
McKillop–Geeves (MG) three-state model scheme (McKillop and Geeves, 1993). In the MG 

model the structural unit, A7·TmTn, is schematically shown as seven open circles 

representing the actins connected via a line representing the tropomyosin. This unit exists in 

a dynamic equilibrium between the three states as represented by the different positions of 

tropomyosin: the blocked state, AB, in which no myosin-S1 binding can occur, the closed 

state, AC, in which only weak binding of S1 can occur, and the open state, AM, which allows 

isomerization of the myosin-S1 to the rigor-like state. The ratio of the three states in the 

absence of myosin-S1 is defined by the equilibrium constants KB (between the blocked and 

closed states) and KT (between the closed and open states). Weakly bound myosin states are 

denoted as A-states and rigor-like states are denoted as R-states. Rate of myosin binding is 

defined by equilibrium constant K1 = k+1/k−1, and the rate of isomeration of S1 into R-state 

is defined by equilibrium constant K2 = k+2/k−2. Backward rate constants used in all 

simulations are taken to be k−B = 100 s−1, k−T = 3000 s−1, k−1 =10s−1 and k−2 =5 s−1.
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Fig. 2. 
Schematic representation of the three-state MG model where each Tm–Tn complex is 

assumed to cover seven actin sites. The complete kinetic diagram for the binding of S1 to a 

structural actin7·TmTn unit includes seven actin monomers. The resulting model contains 

one blocked state, eight closed states and 36 open states. All states are denoted as numbers 

in the square boxes (gray). The configurations of some states are shown. The fused two-way 

arrows represent the transitions from the blocked to the closed state with equilibrium rate 

transition constant, Kb, and the transition from closed to open state with the rate Kt. The 

two-way arrows represent forward and backward transition rates between myosin states 

interacting with actin: (i)S1 from solution weakly binding to actin (into A-state) and (ii) 

transition from A-state to R-state. The forward rate of S1 binding from the solution to the 

actin in an actin7-TmTn is defined as effective binding rate k+1 c (s−1) multiplied by the 

number of unoccupied actin monomers within the unit, and the backward rate of the S1 

unbinding from A-state back to solution by detachment constant k−1 multiplied by the 

number of S1 bound in A-state in the actin7·TmTn. Similarly, transition from A-state to R-

state is defined by forward constant k+1 c (s−1) multiplied by the number of S1 bound in A-

state in the actin7·TmTn, and transition from R-state to A-state is defined by backward rate 

constant k-1 multiplied by the number of S1 bound in R-state in the unit.
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Fig. 3. 
The best fits of stopped-flow data for excess actin ([A] = 2.5 μM, [S1] = 0.25 μM) and for 

high and low Ca2+ concentration (pCa of 4.6 and 8.9), by three different methods: DLS, 

quasi-Newton (QN), and SA. All three fitted curves fit the experimental data excellently. 

The values of estimated parameters KB, Kt, K1 and K2 have similar but somewhat different 

values at the same Ca2+ concentrations and they are contrasted in Table 1. The backward 

rate constants are defined in the legend of Fig. 1.
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Fig. 4. 
Effect of the number of estimated parameters on the parameter robustness and accuracy of 

the fit. When four parameters are estimated (Kb, Kt, K1 and K2) by different parameter 

methods, the parameter values vary in a wide range, while the differences in the accuracy of 

the fits are minor (Fig. 3). (A) The reduction of the number of parameters from four to two 

by fixing K1 to 0.25 μM−1 and Kt to 170 displays some minor differences in quality of the 

fits, but minimizes the difference of the values of the estimated parameters by the different 

methods (Table 1); (B) the reduction of the number of parameters from four to three by 

fixing K1 to 0.25 μM−1 and then to two by fixing Kt to 170 showed minor differences in 

quality of fit obtained by the DSL method. Despite these differences, the reduction in the 

number of parameters minimizes the difference in the values of the estimated parameters by 

the different methods, but at the expense of the accuracy of the fits. Shown are the fits of the 

stopped-flow transients at pCa= 8.9 for excess actin concentration to S1. The concentrations 

of actin and S1 are the same as in Fig. 3 and the backward rate constants are denoted in Fig. 

1; the other equilibrium constants and error are shown in Table 1.
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Fig. 5. 
Graphical representation of the resolution matrices obtained by DLS (see Table 2 for 

numerical values). Panels (A)–(C) correspond to pCa = 4.6 and panels (D)–(F) correspond to 

pCa = 8.9. Panels (A)–(D) are obtained with four free parameters (KB, KT, K1 and K2). 

Panels (B)–(E) are obtained by fixing K1 =0.25 μM−1. Panels (C)–(F) are obtained by fixing 

K1 =0.25 μM−1 and K2 = 170.
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Fig. 6. 
Estimated kinetic parameters Kb, Kt obtained by fitting MG model predictions to a family of 

stopped-flow data for range of Ca2+ concentrations by the DLS, quasi-Newton, and 

simulated annealing (SA) parameter estimation methods. Actin concentration is in excess of 

S1 ([A] = 2.5 μM, [S1] = 0.25 μM). In all simulations K1 and K2 are taken to be 0.25 μM−1 

and 170, respectively. Backward rate constants are taken to be the same as denoted in Fig. 1. 

(A) Kb obtained by all three estimation methods displays sigmoidal dependence with Ca2+ 

concentration and sharply decreases for pCa<5.4 up to pCa = 6.6; (B) sigmoidal dependence 

Kt on pCa is less prominent having a scattered pattern for 5.4 > pCa>6.0 and differs little 

between the estimates obtained by different methods.
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Fig. 7. 
The effective kinetic binding rate constant, kobs (in s−1), shows sigmoidal dependence on 

pCa. For all three-parameter estimation methods kobs is calculated using Eq. (6) (McKillop 

and Geeves, 1993) and the values of Kb and Kt are shown in Fig. 6. (A) kobs shows minor 

differences between different parameter estimation methods regardless of large fluctuations 

in values Kb and Kb and agrees well with the kobs obtained from single exponential fits of 

experimental data (Boussouf et al., 2007a) for lower Ca2+ concentrations. (B) Estimated 

fractional equivalent rate constant kobs
f  by any of the three-parameter estimation methods 

agrees well with kobs
f  derived from the single exponential fits to the experimental data after 

appropriate normalization. However, the Hill coefficient for the estimated values somewhat 

overestimates the Hill coefficient derived from the exponential fits (i.e. 2.6 vs. 1.79, 

respectively) reflecting some methodological differences in assessing kobs (or kobs
f ) from 

estimated rate constants vs. directly from experimental data.
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Fig. 8. 
Assessment of single exponential rate of decay, kobs (in s−1), obtained from fits of 

experimental data (Boussouf et al., 2007a). (A) Single exponential fits through whole set of 

data and through a range of data which are represented by the linear portion in semi-

logarithmic plot of the fractional fluorescence vs. time at pCa = 7.0. At these low Ca2+ 

concentrations the fit through the range of data better estimates initial time delay, tdelay, and 

eliminates bias of the fit caused by data noise at long times; (B) the same plot as in A but in 

log–log plot demonstrates the accuracy of the fits. (C) Calcium dependence of kobs obtained 

from the fits through all data vs. the range of data. This dependence is compared to kobs 

reported in Boussouf et al. (2007a). The Hill coefficients for all three sets of kobs are 1.86 for 

all data, 1.79 for the range data and 1.72 for kobs from Boussouf et al., and the midpoint at 

pCa ≈ 6.0. The delay time also showed inverse sigmoidal relationship vs. time.
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Fig. 9. 
Experimental imperfections and quality of the fit. Estimated parameters at pCa = 5.2 shown 

in Figs. 6 and 7 significantly differ from the values estimated at neighboring Ca 

concentrations, as well as those estimated by different parameter estimation methods at pCa 

= 5.2. Parameter values for KB and KT vary in wide range (Kb = 11.22, 15.79 and 29.81, KT 

= 0.0988, 0.0848 and 0.0870, for DSL, QN and SA, respectively), but all three fits differ a 

little and differences in errors are minimal (error=3.260 × 10−5, 3.327 × 10−5 and 3.318 × 

10−5, respectively). Thus the main difference of the estimated parameters at pCa = 5.2 is 

rather in high sensitivity of estimated fits to minor perturbations in experimental data. In 

contrast, large deviation of the estimated values at pCa = 5.2 compared to neighboring 

concentrations is rather caused by imprecise determination of the timing of the beginning of 

the experiment or some other experimental imperfection (the beginning of any stopped-flow 

transient is always the most error-prone because of flow or stopping artefacts. Also, at the 

initial time points where signal changes can be large there can be an effect of the amplifier 

time constant if it is chosen to be optimal for the full transient). The reverse constants are 

denoted in Fig. 1 and the concentrations of actin and S1 are the same as in Fig. 3. Only KB 

and KT are estimated while K1 and K2 are kept constant at values of 0.25 μM−1 and 170, 

respectively.
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Fig. 10. 
Robustness of the estimates of KB and KT evaluated by the DLS method. RM denotes 

values of diagonal elements of KB and KT in the RM. The RM value close to one indicates 

highly resolved and linearly independent estimates of KB and KT, while low values of RM 
indicate a poor resolution of the estimated parameters. All fixed model parameters are the 

same as shown in legend of Fig. 6.
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Fig. 11. 
Convergence of estimated MG model parameters KB, KT, K2 for excess actin concentration 

to S1 (i.e. [A] = 2.5mM and [S1] = 0.25mM), and at pCa=4.6. For the damping parameter ε 
= 0.3 all parameters steadily converge at about 100 iterations, except KB which requires 

more iterations to fully converge. The myosin binding equilibrium constant, K1, is 

prescribed at 0.25 μM−1. Also all backward rate constants are denoted in Fig. 1. The 

estimated values of parameters (at iteration 100) are: KB is between 6.50 and 7.49, KT is 

between 0.116 and 0.123, K2 between 167.6 and 167.8, and error≅3.91 × 10−5.
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Fig. 12. 
Convergence of Kb (A) and error (B) for different values of the damping parameter ε. All 

input parameters are the same as in Fig. 11. The decrease of ε significantly increases speed 

of convergence and typically converges all estimated parameters in less than 20 iterations if 

ε ≤ 0.1. However, for low values of ε some instabilities appear due to interference between 

experimental error and the change of estimated parameter values between two subsequent 

iterations. Fully converged parameter values are: Kb = 7.07, Kt = 0.114, K2 = 167.7, and 

error≅3.90 × 10−5.
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Fig. 13. 

Speed of convergence of Kb. (A) Convergence of the mean value of KB
(r) = (KB

(r) + KB
(r − 1))/2, 

where i is current iteration; (B) convergence of the change Kb value between two 

consecutive iterations ΔKB/KB
(r) = 2( KB

(r) − KB
(r − 1) )/(KB

(r) + KB
(r − 1)). Mean value of Kb 

converges to 7.07. The speed of convergence rapidly increases with decrease of ε and the 

value of ΔKB/KB
(r) settles at about 0.1% (see inset in A). The ripples are caused by the 

numerical instabilities at low values of ε. All fixed parameter values are the same as in Fig. 

11.
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Fig. 14. 
Evolution of the resolution matrix (RM) with the damping parameter ε. The line plot shows 

the evolution of the determinant of RM with ε. Note that det(RM) = 1 in the ideal case when 

all the model parameters are independent of each other all the diagonal terms of the RM are 

equal to 1 and the off-diagonal terms of the RM are equal to zero. The insets next to each 

data point in the curve are a graphical representation of the RM for the corresponding value 

of ε. Data are taken from Table 3.
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