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Summary
Affected relatives are essential for pedigree linkage analysis, however, they cause a violation of
the independent sample assumption in case-control association studies. To avoid the correlation
between samples, a common practice is to take only one affected sample per pedigree in
association analysis. Although several methods exist in handling correlated samples, they are still
not widely used in part because these are not easily implemented, or because they are not widely
known. We advocate the effective sample size method as a simple and accessible approach for
case-control association analysis with correlated samples. This method modifies the chi-square test
statistic, p-value, and 95% confidence interval of the odds-ratio by replacing the apparent number
of allele or genotype counts with the effective ones in the standard formula, without the need for
specialized computer programs. We present a simple formula for calculating effective sample size
for many types of relative pairs and relative sets. For allele frequency estimation, the effective
sample size method captures the variance inflation exactly. For genotype frequency, simulations
showed that effective sample size provides a satisfactory approximation. A gene which is
previously identified as a type 1 diabetes susceptibility locus, the interferon-induced helicase gene
(IFIH1), is shown to be significantly associated with rheumatoid arthritis when the effective
sample size method is applied. This significant association is not established if only one affected
sib per pedigree were used in the association analysis. Relationship between the effective sample
size method and other methods – the generalized estimation equation, variance of eigenvalues for
correlation matrices, and genomic controls – are discussed.
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Introduction
One of the major obstacles in statistical analysis of genetic association studies in a case-
control setting (Lewis, 2002; Balding, 2006; Li, 2008) is the violation of the independence
assumption. Dependence between samples, such as members from the same family,
invalidates a basic assumption in many statistical tests, thus potentially making the p-value
estimation unreliable.

As dependence has been an important theme in statistics for many years, there is large
amount of literature in genetics as well as in statistics to tackle the problem. For example,
the maximum likelihood or Bayes estimation of allele frequencies in relatives (Boehnke
1991; Thomas and Camp, 2006; Coram and Tang, 2007); the use of principal components or
eigenvectors to identify clusters of samples (Price et al., 2006; Patterson et al., 2006), or the
reduction of effective number of markers in a linkage disequilibrium block (Cheverud, 2001;
Nyholt, 2004); sample weighting to suppress contributions from correlated samples
(Broman, 2001; Browning et al., 2005), etc.

The transition from genetic linkage analyses to association studies (Risch and Merikangas,
1996; Li et al., 2005) presents a situation when affected sibs or affected pedigree members
are often used as case samples in a case-control association study (Bourgain, 2005; Epstein
et al., 2005; Moore et al., 2005; Biedermann et al., 2006; Klei and Roeder, 2007; Köhler et
al., 2007; Yoo et al., 2007; Visscher et al., 2008; Knight et al., 2009). Since the correlation
structure between sibs or relatives is given, it is not necessary to use techniques such as the
generalized estimating equation as has been carried out in (Silverberg et al., 2003). Instead,
variance of correlated samples can be calculated (Slager and Schaid, 2001) and its effect on
the test statistic can be determined. The method discussed in (Slager and Schaid, 2001) is
however only applied to the Armitage trend test.

To avoid confusion, Fig.1 illustrates the situation to be addressed in this paper. Fig.1(A) is
the standard situation where samples are independent. Fig.1(B) shows the situation where all
samples are correlated with one another. This is however not the situation we will address.
Fig.1(C) consists of correlated clusters, whereas there is no correlation between clusters
themselves. Fig.1(C) is the situation when relatives of the same family are used for
association analysis.

Fig.1(B) leads to a smaller variance compared to independent situation Fig.1(A) with the
same number of samples. Since larger sample size leads to smaller variance, it is as if the
“effective sample size” is increased in Fig.1(B). The trend in Fig.1(C) is the opposite: the
“effective sample size” is actually reduced. Take an extreme example of monozygotic twins:
since monozygotic twins have identical genotypes, a pair of twins provide the same genetic
information as one twin, and the two points within a circle in Fig.1(C) is equivalent to one
point. In other words, the effective sample size is only half of the apparent sample size.
These concepts have already been understood in the study of clustered/clumped data and are
associated with phrases like “variance inflation” and “overdispersion”.

In this paper, we advocate the use of “effective sample size” (ESS) as a simple method to
capture the effect of sample correlation and variance inflation. The term effective sample
size has appeared in the literature before (Kish, 1965; Thiébaux and Zwiers, 1994; Rosner
and Milton, 1988; Rao and Scott, 1992; Madden and Hughes, 1999) but has not become a
commonly used tool in genetic analysis. We define effective sample size NE as the
equivalent number of independent samples that leads to the same variance of an intensive
quantity, i.e., a quantity that does not change with the sample size.
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For example, if the sample proportion of heads in a coin tossing is estimated to be p, its
variance is p(1−p)/N where N is the number of coin tosses; if the observed variance is larger
than what is expected from this equation, and can be fitted by the formula p(1−p)/NE, then
NE is the effective sample size. Note that this definition of NE is very similar to the
“variance effective size” used in population genetics, but different from, and should not be
confused with, the “inbreeding effective population size” (Ne) also used in population
genetics (Wright, 1938).

In genetic case-control studies, the association signal originates from the allele or genotype
frequency difference in the diseased and the normal group. The estimation of allele or
genotype frequency is very much like the estimation of heads proportion in the tossing coin
example given above. We will show that for allele frequency, effective sample size captures
the effect of sample correlation exactly. Even for situations where the effective sample size
does not provide an exact solution, for example, in estimating genotype frequencies, an
averaged parameter usually leads to good approximation. Because the calculation of test
statistics X2, p-value, and power all directly involve sample size, replacing the apparent
sample size with the effective sample size is a quick and convenient solution to the problem
of correlated samples without the need to use a custom program.

As there are many publications on the effect of sample correlation on association analysis,
and on using pedigrees in association studies, related questions that are not addressed here
include: (1) combining linkage and association signals (Göring and Terwilliger, 2000; Li et
al., 2005); (2) family-based associations such as transmission disequilibrium test (TDT) and
its extensions (Nagelkerke et al., 2004; Allen-Brady et al., 2005; Gray et al., 2009); (3)
association using multiple family members with novel test statistics instead of the standard
chi-square test (Risch and Teng, 1998; Teng and Risch, 1999; Li et al., 2000); (4)
association with unknown (“cryptic”) correlations (Voight and Pritchard, 2005; Astle and
Blading, 2009; Rakovski and Stram, 2009; Thornton and McPeek, 2010; Sillanpää, 2011)
where the relativeness between samples is detected instead of given (Weir et al., 2006; Choi
et al., 2009). This paper is about a simple and accessible method to incorporate sample
correlations in genetic case-control studies within the standard chi-square test framework.

Mathematical Details
Effective sample size for sibpairs

For simplicity, let’s first consider Nsib sibpairs. For the quantity of interest xi (i = 1,
2,⋯2Nsib, the 2Nsib × 2Nsib correlation matrix for xi is:

(1)

Each 2-by-2 sub-matrix in Eq.(1) represents a sibpair with off-diagonal element r being the
correlation coefficient Cor(xi, xi+1) between two sibs i and i + 1. The variance of the
extensive variable X = ∑i xi is then equal to the weighted sum:
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where σi and σj is the standard deviation of x for person i and j, and the variance of the
intensive quantity x = ∑i xi/(2Nsib) is

Since here we are dealing with sibpairs of the same affection status, σi = σj = σ, which
simplifies the variance for the correlation matrix in Eq.(1):

The equivalent number independent samples that lead to the same variance for x can be
derived by equating σ2 · 2(1 + r)/(2Nsib) = σ2/NE, or, the ESS for sibpairs is:

(2)

The effective sample size reduction α is defined as the ratio between the ESS and the
apparent sample size, and for sibpairs, it is equal to:

(3)

Effective sample size for larger sibships
For Ntri pedigrees each with three siblings, the 3Ntri × 3Ntri correlation matrix can be written
as:

(4)

and the variance of x, ESS, and sample size reduction are:

(5)

More generally, for sibship of k sibs, the sample size reduction is

(6)
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Effective sample size for a mixture of relatives
For pedigrees with a specific mixture of relatives, for example, two sibs and one uncle, the
correlation matrix consists of identical sub-blocks:

where r1 is the correlation coefficient between two sibs, and r2 is that between a sib and the
uncle. It can be shown that the sample size reduction is

(7)

where the averaged correlation r ̄ = (1/3)r1 + (2/3)r2 is defined in such a way that we can
assume all relatives were similar and any two relatives have a correlation coefficient of r ̄.
The similar derivation can be generalized to any combination of relatives.

Correlation coefficient of two relatives’ allele counts
The correlation coefficient between allele count x (x=2,1,0 for marker genotype AA, AB, BB,
with probability of p2, 2pq, q2) of two sibs is:

The mean and variance of the number of alleles is E[x] = 2p, Var[x] = 2pq, and the joint
probability E[xsib1, xsib2] can be calculated by the Li-Sacks conditional probability given the
identity-by-descent (IBD) status (Li and Sacks, 1954; Li 1998; Li and Reich 2000; Dai and
Weeks, 2006). The three Li-Sacks matrices (the so called ITO matrices) are the probability
of the second relative to have one of the genotypes given the genotype of the first relative,
and given the IBD status between the two relatives:

By using the ITO matrices, we have (πk is the probability of k copies of IBD alleles between
two relatives):
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Inserting it back to the correlation coefficient formula, we have:

The probability that a randomly selected allele from one relative is IBD with a randomly
selected allele from another relative, called kinship coefficient Φ, is equal to Φ = π2(1/2) +
π1(1/4) (Malécot, 1948; Lange 1997). The correlation coefficient r is twice the value of
kinship coefficient: r = 2Φ. The same relationship was derived more tediously in, e.g.,
(Broman, 2001) without using the ITO matrices.

Correlation coefficient of two relatives’ genotype indicator variable
Genotype indicator variable x is 1 for a particular genotype of interest, and 0 for other
genotypes. For example, x=1,0,0 for AA, AB, BB is the indicator variable for the
homozygous genotype AA. Using the same ITO matrices, the joint probability for AA-
indicator variable x between two relatives is

and correlation coefficient is:

(8)

Similarly, for AB and BB indicator variable,

(9)

Correcting X2 test statistic and 95% confidence interval of odds-ratio by the effective
sample size

Single-marker case-control association analysis can be carried out with chi-square test,
odds-ratio (OR), and confidence interval of OR. Typically, the control samples are randomly
collected from a normal population with no need for correcting correlated samples, whereas
case samples might be collected during the linkage analysis stage, thus are correlated. For
allele-based analysis (Sasieni, 1997), denote the allele counts in case group as NA,case,
NB,case and those in control group as NA,con, NB,con, the Pearson’s chi-square test statistic
can be recalculated by replacing NA,case, NB,case with αNA,case and αNB,case:

(10)

The modified test statistic  can then be used to determined the p-value.
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For OR θ ̂ = NA,caseNB,con/(NA,conNB,case), the uncorrected 95% confidence interval (CI) is
estimated by the Woolf’s formula: [l, u] = [elog θ̂−1.96σ ̂(log θ̂), elog θ̂+1.96σ ̂(log θ̂)], with σ̂(log θ̂)
= (1/NA,case + 1/NB,case + 1/NA,con + 1/NB,con)0.5. This can be corrected in a similar way by
replacing NA,case,NB,case with αNA,case and αNB,case:

(11)

It can be shown that  and σ̂e/σ̂ > 1, when α < 1. In other words, when the
effective sample size is smaller than the apparent sample size, the test statistic is smaller
(leading to larger p-values), and the 95% CI of OR is wider.

Results
Diminishing return in adding more relatives from the same pedigree in an association
study

The kinship coefficients and sample size reduction with respect to allele frequency
estimation of common relative pairs are listed in Table 1, and those for sibships with 1,2, …
siblings are listed in Table 2. For more complicated relationships or pedigrees with loop, one
can consult (Maruyama and Yasuda, 1970; Lange 1997). Several rules-of-thumb can be
stated: two siblings contribute 1.333 samples, uncle-nephew pair contributes 1.6 samples,
three siblings are equivalent to 1.5 samples, etc. If the relationship between two pedigree
members is distant, the correlation is close to zero and they can be treated as two
independent samples (e.g., second cousins contribute 1.94 samples). For larger sibship, there
is a diminishing return in adding extra sibs: adding the second, the third, the fourth, and the
fifth sibs only adds 0.333, 0.167, 0.1, 0.067 samples. Even in the limit of infinite number of
sibs, the effective sample size can not be larger than 2, as the extra sibs merely resample the
finite pool of four parental alleles.

These results show that while one should include as many samples as possible, whether
correlated or not, in an association study, it does not seem necessary to include too many
relatives from the same pedigree. While distant relatives are essentially independent
samples, for close relatives such as siblings, two persons are perhaps a good compromise
between the desire to add more samples and the diminishing return due to correlations.

When a mixture of relatives from the same pedigree is included, one can use the averaged
correlation coefficient discussed in the Method section. For example, with two siblings and
one aunt/uncle, the averaged correlation coefficient r ̄ = (1/3)0.5 + (2/3)0.25 = 1/3. The ESS
for the two-sib-one-uncle is 1.8, larger than the value of 1.6 for three siblings.

Improving p-value by using all samples
For the PTPN22 data in Table 4, if one affected sib per sibpair is selected for association as
in (Begovich et al., 2004), X2 = 31.42 leads to p-value of 2.1 ×10−8 (with Fisher’s exact test,
the p-value is 5.6 ×10−8), and 95%CI of OR is (1.55–2.50). We know this is an underuse of
the samples as the second sibs in sibpairs were discarded. Using all sibs in sibpairs without
correction leads to the incorrect result of X2 =53.26, p-value of 2.9 ×10−13, and 95% CI of
OR of (1.73–2.62). The overall ratio of effective sample size and the apparent sample size
is: α = (86 + 377 × 2 × 2/3)/(86 + 377 × 2) ≈ 0.70. Using the Eq.(10) and Eq.(11), the
modified X2 = 45.73 leads to p-value of 1.36 ×10−11, and modified 95% CI of OR (1.70–
2.66). Compared to the one-sib-per-pair dataset, even though the conclusion on statistical
significance is unchanged, the p-value is 1500 times smaller.
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The ratio of two chi-squares, one for all samples with ESS correction and another without, is
calculated to be . This ratio can also be approximately estimated
from ESS. Since X2 and  can be written in the form: X2 = (p̂A,case − p̂A,control)2/[(1/Ncase +

1/Ncontrol)·p̄·q̄],  (in an approximation,
the pooled allele frequency estimation for A and B is not greatly affected by the change of
sample size), .

For the IFIH1 gene in Table 5, we applied the effective sample size method both globally or
pedigree-type-specifically. Using Eqs.(2,5,6,7), and by a conservative use of relatives in
assuming all relatives to be sibships, we have the averaged effective number of allele counts:
2(67+512·2/(1+0.5)+64·3/(1+2×0.5)+8·4/(1+3×0.5)+5/(1+4×0.5)+8/(1+7×0.5) ≈ 1724, or,
the average sample reduction of α = 861.9111/1328 ≈ 0.649. The ESS-based method leads
to a p-value of 0.0023 in chi-square test, improved upon the p-value of 0.0179 when only
one case per family is used (second line in Table 5). At the significance level of 0.01, adding
correlated samples in this dataset makes an insignificant result significant.

The SNP minor allele frequency (MAF) for the control population in the IFIH1 gene was
reported to be 40.4% in the initial round, and 38.7% in the follow-up round (Smyth et al.,
2006); that in the type 1 diabetes population was 35.3% in the first round, and 34.0% in the
second round, each with thousands of samples. The control MAF in Table 5 is 40.8%,
consistent with the value in (Smyth et al., 2006). However, the MAF for the rheumatoid
arthritis samples in Table 5 is 36.2%, larger than the MAF for the type 1 diabetes samples.
The weaker association signal in rheumatoid arthritis study as compared to diabetes study
implies a larger sample size requirement for its detection, and as a result, ESS method
proves to be important in incorporating extra sibling samples to increase the sample size.

One can also apply the ESS method to each pedigree-type specifically. We count the T and
C alleles in pedigrees with only affected sibpairs, then reduce the count by the factor 1/(1 +
0.5) = 2/3. Similarly, the allele counts in pedigrees with three affected sibs are reduced by
the factor of 1/(1 + 2 × 0.5) = 1/2, etc. The pedigree-type-specific allele count reduction
leads to p-value of 0.00467. We can partially explain why this p-value is not as good as the
one derived by the global sample size reduction: the association signal is largely due to an
enrichment of the major allele T in the case group; however, the largest pedigree with 8
affected members with 13 counts of the T allele leads to an effective contribution in the
“local method” of 3.3 counts, as versus the 9.7 counts in the “global method”.

A single effective sample size does not capture all variance inflations in genotype
frequency estimations, but it provides a good approximation

With the correlation coefficient for genotype indicator variable in Eq.(8,9), we can derive
the sample size reduction α and variance inflation 1/α for genotype frequencies obtained
from relative pairs, sibships, and cluster of relatives: αG = 1/(1 + rG), 1/(1 + (k − 1)rG), and
1/(1+(k − 1)r ̄G) respectively, where rG (G=(AA,AB, BB) is the genotype-specific
correlation coefficient. Compared to the variance inflation for allele frequency estimation,
the number of ESSs for genotype frequencies is 3 instead of 1, as rAA, rAB, rBB are not equal
to each other. Furthermore, these correlation coefficients depend on p, q.

We illustrate these properties by the example of sibpairs. Using Eq.(8,9,3), the genotype-
specific sample size reductions are:
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(12)

Figure 2 shows αG,sibpair’s of the three genotypes as a function of p; also shown are the
genotype frequency variance (multiplied by the sample size). Variances of genotype
frequencies calculated from independent samples are shown in solid lines as a comparison.
It can be seen from Figure 2 that the variance inflation of allele frequency is distinct from
those of genotype frequencies in that its α is a constant value 2/3 independent of p. It
illustrates that one should not expect a single parameter to correct the variance inflation in
correlated samples for all circumstances.

The genotype-specific sample size reductions in Eq.(12) can be applied in the following
way: (1) the allele frequency p is estimated from the data; (2) three αGs are calculated by Eq.
(12); (3) each genotype count is discounted by the genotype-specific αG, then these modified
genotype counts can be used for further genotype-based association. Notice that αG’s in Eq.
(12) are confined to the range (2/3, 4/5). One can also obtain an averaged ESS by averaging
over three genotypes: αavg,sibpair(p) = p2α1 + 2pqα2 + q2α3, and αavg,sibpair (p is estimated
from the data first) can be used to discount all three genotype counts by the same factor. In

yet another approach, αavg,sibpair can be averaged over p: . This leads to ᾱ =
0.7096. One can use ᾱ to discount all three genotype counts without the need to estimate p
first. Note that this sample size reduction is less severe than that to account for variance
inflation in allele frequency estimation, α = 0.6667.

Effective sample size method performs well in simulation and in comparing the score test
Using the simulated data described in the Methods and Material section, we have checked
the validity of the effective sample size method. We first compare the test errors in using the
uncorrected chi-square test statistic X2 and the ESS-corrected , for the allele-based test.
Table 3 shows the type I error under the null distribution in chi-square test using the naive
X2 and ESS-corrected . Note that for the null distribution, different disease model has no
effect on the allele/genotype frequencies, and we simply consider the R/A/D models in
Table 3 as three independent runs. It is clear that  leads to the more correct type I errors,
practically identical to the nominal significance, whereas the naive X2 clearly leads to larger
type I errors.

The locally most powerful test among all tests with the correct type I errors is the score test
(Cox and Hinkley, 1974) which sets a standard other tests can be compared to. For allele-
based analysis, ESS-corrected  is identical to the score test, sharing the same power. For
genotype-based test (i.e. chi-square test on 2-by-3 genotype count table), chi-square test
using ESS-corrected  is not identical to the score test. Here we adopt the simplest ESS
correction for genotype data: multiplying the genotype counts by a constant reduction value
ᾱ = 0.7096. The power curve in Figure 3 shows that the difference between the ESS-
corrected  test and score test is negligible for dominant or additive disease models. The
difference for recessive models is non-zero, but nevertheless small.
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Discussion
Cheverud’s formula for the number of independent variables

Based on the idea that the overall amount of correlation among several variables can be
measured by the variance of the eigenvalues derived from their correlation matrix, Cheverud
proposed a formula to calculate the effective number of variables (Cheverud, 2001):

(13)

where N is the number of variables, and λ = (λ1, λ2,…λN) are the eigenvalues of the N × N
correlation matrix for these N variables. Eq.(13) has been applied to QTL mapping in the
inbreeding system and to human association analysis to determine the number of
independent markers in a linkage disequilibrium block (Cheverud, 2001; Nyholt, 2004).
Although this formula has not been used to determine the number of independent samples, it
can be interesting to compare Eq.(13) with the ESS formula derived in this paper.

We consider the large sibship situation where the correlation matrix is characterized by Eq.
(4). It can be shown that each submatrix (the 3 × 3 block in Eq.(4)) contributes an
eigenvalue equal to 1 + (3 − 1)r = 1 + 2r, and two eigenvalues equal to 1 − r. The variance
of the eigenvalues for Eq.(4) is then equal to 2r2(N/(N −1)). Inserting it to Eq.(13), we have
the Cheverud’s effective number of variables: N − 2r2. Compared to the ESS of N/(1 + 2r)
determined by Eq.(5), Cheverud’s formula leads to a larger effective number of degrees of
freedom, and less reduction, in particular in the large N limit.

We believe that our effective sample size formula makes better sense: in the three-sib
sibship case, because each sibship is independent of another, the number of independent
samples is at least N/3. Note that the ESS formula involves an operation of rescaling the
original sample size N, instead of subtracting a correction term. In order for Cheverud’s
formula to have a similar effect, the variance of eigenvalues has to increase with the sample
size N. This can be true only if there is a collective correlation for all variables, or if there is
haplotype block-block correlation. If the variables (samples) can be split into independent
blocks, the effective degrees of freedom (sample size) should always be a rescaled version
of the original one. Interestingly, for a model discussed in (Salyakina et al., 2005) where the
correlation coefficient within a block is 1 and those between blocks are small non-negative
values, the effective number of variables is indeed a rescaled value of the original number of
variables.

The variance inflation factor in the genomic control method
The genomic control method in association studies was proposed in (Devlin and Roeder,
1999; Bacanu et al., 2000; Devlin et al., 2001) to correct population stratification and
“cryptic relatedness” between samples. Despite quantitative differences in the mechanism
for correlation, population stratification and family clusters could have similar
consequences, and this similarity is exploited in a unified framework for association studies
of quantitative traits (Yu et al., 2006). In the genomic control method, neutral markers are
used to estimate the variance inflation factor λ, and λ is used to divide the chi-square

statistic:  for a modified test statistic. This can be compared to our formula for an
ESS-corrected chi-square test statistic in Eq.(10),  (if the allele counts

NA,con,NB,con in control group are not too small). In this approximation,  if α = 1/λ.
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Whether genomic control can correctly capture the population substructures is still under
debate (Devlin et al., 2004), with reports of either under- or over-correcting the correlation
depending on the number of markers used (Marchini et al., 2004; Köhler and Bickeböller,
2006), and its performance perhaps also depends on whether the markers used to estimate λ
are ancestral-informative or not. For whole genome association studies with a large number
of markers, it is recommended to use a Bayesian version of the genomic control (Devlin et
al., 2004). In our situation, we are correcting the known relatedness between samples, and
there is no issue of under- and over-correcting the test statistic.

One key debate on genomic control is whether  follows a central or non-central chi-
square distribution (Gorroochurn et al., 2006). For a truly admixed population with a
positive Wright’s FST value, the variance of the allele frequency is Varp = p(1 − p)(FST −
FST /N + 1/(2N)) (the inbreeding coefficient is assumed to be zero) (Weir, 1996), which is
inflated by a factor (FST−FST /N+1/(2N)). This admixture-induced variance inflation cannot
be accounted for by a simple sample size reduction, because even of the infinite sample limit
the residual variance is still nonzero. At the infinite sample size limit, the variance inflation
factor is equal to FST, which is why FST is also called the standardized measure of variance,
or Wahlund’s variance (Cavalli-Sforza and Bodmer, 1971). The only way to reconcile the
variance inflation and sample size reduction here is to set α = 1/(1+2(N−1)FST), i.e., the
sample size reduction itself depends on sample size. All these issues in correcting admixed
subpopulations are not problematic for our relative samples because we assume the allele
frequency does not change from pedigree to pedigree.

Comparison to the generalized estimation equation approach
The method of generalized estimation equation (GEE), similar to ESS method, has a goal of
utilizing correlated samples in an analysis (Liang and Zeger, 1986; Hanley et al., 2003).
However, one major difference between GEE and ESS is that GEE relies on data to estimate
the within-cluster correlation among samples, whereas ESS calculates the correlation by the
information given. Typically in GEE, only a single correlation coefficient r is estimated for
all clusters, which can be unreliable if clusters of different natures are included in the data.
For example, if the dataset contains both sibpairs and cousin-pairs, the r for samples within
sibpairs should be larger than that for cousin-pairs. Another difference is that GEE corrects
not only variance, but also mean as well, whereas ESS only modifies variance. Similar to an
argument made in (Devlin et al., 2004), we believe that sample correlation mainly affects the
variance, and has less effect on bias.

We use the IFIH1 genotype data in Table 5 to illustrate differences between GEE and ESS.
Using the corstr=“exchangeable” option in the gee subroutine in R statistical package (VJ
Carey, T Lumley, and B Ripley, “The gee package”, version 4.13–12, Feb 2007), the
averaged within-family correlation coefficient for the allele count variable was estimated as
r =0.4349. This r value is slightly smaller than that for sibpairs (r =0.5), but close, reflecting
the fact that this dataset is dominated by sibpairs. In the Results section, we have shown that
using r = 0.5, the sample size reduction for the dataset in Table 5 is equal to 0.649. If we use
the within-group correlation coefficient r =0.4349 estimated by GEE, the sample size
reduction is 0.678. The GEE and ESS results are more or less the same, though GEE does
not seem to correct the correlation enough. A similar observation that GEE tends to
underestimate variance for smaller sample sizes was made in (Trégouët et al., 1997).

The estimation equation is essentially a procedure to determine weights of samples. When
samples are correlated, their weights are lower than 1. It was shown in Hanley et al., (2003)
that the weight for sibpairs w that minimizes the variance is exactly equal to the Eq.(3) used
in this paper. We expect that in general, the weight of related samples determined by
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minimizing the variance will be equal to the sample size reduction α if the weight for
independent individuals is set to 1.

In conclusion, among alternative approaches in handling correlated samples in genetic
association studies, such as likelihood-based approach (Bourgain et al., 2003), sample
weighting (Browning et al., 2005), and estimation equation (Trégouët et al., 1997), effective
sample size is perhaps the most accessible method: easier to use, and with no need to have
new computer software. Since the reason that correlated samples are often avoided in
practice is not because solutions do not exist, but because the existing methods are relatively
hard to use, we believe the ESS method discussed here will help medical geneticists to
routinely use pedigree data in association studies.

Methods and Materials
Data sets

A missense SNP rs2476601 in the protein tyrosine phosphatase non-receptor type 22 gene
on chromosome 1 (PTPN22) was shown to be associated with the autoimmune disease
rheumatoid arthritis (Begovich et al., 2004; Lee et al., 2005). The rheumatoid arthritis
samples were collected by the North American Rheumatoid Arthritis Consortium (NARAC)
for genetic linkage analysis (Jawaheer et al., 2001, 2003), and all pedigrees contain two or
more affected siblings. In the original report (Begovich et al., 2004), one sib per affected
sibpair is randomly selected from 377 affected sibpairs for the association analysis (plus 86
singletons). This procedure cuts the number of case samples almost by half. An association
analysis of all affected sibs with a correction of the correlation between sibs was not carried
out. We reproduce this dataset in Table 4 (corresponds to the “replication study” in Table 1
of (Begovich et al., 2004)).

Another dataset used here is the genotype of a non-synonymous SNP in IFIH1 gene on
chromosome 2, also collected by NARAC. IFIH1 gene has recently been shown to be
associated with type 1 diabetes (Smyth et al., 2006), but its association status with
rheumatoid arthritis is unknown. This dataset consists of 1344 independent control samples
and 1328 case samples distributed in 653 pedigrees – including 67 singletons, 512 affected
relative-pairs (the majority are affected sibpairs), 64 affected triples (most are sibship with 3
affected sibs), 8 affected quadruples, and two pedigrees with 5 and 8 affecteds. The three
genotype counts of this SNP are listed in Table 5.

Simulations
Simple simulated datasets were created for checking the effective sample size method as
applied to sibpair data. For each replicate, genotypes of 500 “case” samples consisting of
250 sibpairs and 500 “control” samples were simulated. The genotype in control group was
sampled from the genotype distribution of Pcontrol(G) = (p2, 2pq, q2) for genotypes AA, AB,
BB. Those in the case group is sampled by the model:

(14)

where f(G) represents the disease models, a is the baseline log-odds, and b is the log-odds
ratio. The dominant model (D) is equivalent to f(G)=(1,1,0) for genotype AA, AB, BB;
recessive model (R) corresponds to f(G)=(1,0,0); and additive model (A) corresponds to f(G)
= (1, 0.5, 0). For the null distribution to be used to check the type I error, b = 0, i.e, genotype
has no effect on the disease status, and Pcase = Pcontrol. For the alternative distribution to be
used to check the power, a is chosen at −4 and b is chosen between 0 and 0.5.
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Figure 1.
Illustration of three situations concerning sample correlations: (A) samples are independent;
(B) all samples are correlated with each other to form one cluster; (C) samples within a
cluster are correlated, whereas there is no correlation between clusters. This is called
“cluster-correlated data” in (Williams, 2000).
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Figure 2.
(Upper row) expected variance of genotypes AA, AB, BB and allele A (multiplied by the
sample size) as a function of the allele frequency p(A). The solid line indicates the result
from independent samples, and dashed line from sibpairs. (Lower row) effective genotype
count reduction α1, α2, α3 for sibpair data as a function of p(A) (Eq.(12)). For allele count,
the sample size reduction is a constant number of 2/3. The grey line is the αa(p), the
weighted average of α1, α2, α3. The α=0.7096 line is the average of αa(p) over p’s.
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Figure 3.
Empirical power curve for the genotype-based test of three different models (recessive,
additive, dominant) at the nominal significance level of 0.01 (upper row) and 0.05 (lower
row). The x-axis is the log-odds ratio parameter b in the disease model Eq.(14). Two power
curves are shown: using effective sample size corrected  (solid line), and by the score test
(dashed line).
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Table 2

The sample size reduction α and effective sample size NE of sibships with 2, 3, 4, 5, and k sibs.

size of sibship α NE

2 2/3 4/3 ≈ 1.333

3 1/2 3/2=1.5

4 2/5 8/3=1.6

5 1/3 5/3 ≈ 1.667

k 2/(k+1) 2k/(k + 1) ≈ 2(1 − 1/k)
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