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Abstract
Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of
the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to
interact more strongly than other categories of proteins, even essential proteins, in the human
interactome. However, it remains unclear whether this observation was introduced by the bias
towards more cancer studies in humans. Here, we examined this important issue by uniquely
comparing network characteristics of cancer proteins with three other sets of proteins in four
organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased
towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity,
shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential
proteins, and control proteins. Our statistical evaluation indicated that such observations were
overall unlikely attributed to random events. Considering the large size and high quality of the PPI
data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI
networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins
might cause major changes of cellular systems and result in abnormal cell function leading to
cancer.

Keywords
Cancer proteins; Cancer genes; Protein-protein interactions; Protein interaction network; Global
network characteristics; Network topology

1. Introduction
Protein–protein interactions (PPIs) play fundamental roles in cellular systems such as DNA
replication, transcription regulation, signal transduction, molecule transportation, and
recognition and modification of foreign molecules [Xia, et al., 2010]. PPIs have been widely
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used in the investigation of the causal mechanisms of diseases and disease comorbidity
[Goh, et al., 2007]. During the last decade, rapid progress in high-throughput experimental
techniques, especially yeast two-hybrid system, has greatly accelerated the generation of PPI
data [Stelzl, et al., 2005; Krogan, et al., 2006]. In parallel, a great number of computational
algorithms and methods have been developed to assist investigators to predict PPIs in one or
multiple organisms [von Mering, et al., 2005; Sun, et al., 2007]. With the available massive
amount of PPI data, investigators further developed framework to better interpret and
evaluate the data, such as construction of a comprehensive PPI network in an organism
(interactome) or subnetworks [Yu, et al., 2008; Venkatesan, et al., 2009]. So far, the quantity
and quality of PPIs in several model organisms, especially in humans and yeast, have
enabled investigators to construct reliable interactomes that serve as references in
biomedical research, especially in studying molecular mechanisms of complex diseases
[Uetz, et al., 2000; Giot, et al., 2003; Li, et al., 2004; Krogan, et al., 2006]. Specifically in
humans, PPI data has been widely applied to identify and prioritize disease candidate genes,
understand the relationship between disease genes, explore network properties of disease
genes, and reconstruct disease-specific subnetworks [Goh, et al., 2007; Chen, et al., 2009;
Zanzoni, et al., 2009; Kann, 2010; Barabasi, et al., 2011; Jia, et al., 2011].

Cancer is one of the most severe human diseases. It has been widely investigated by
numerous approaches, among which include examining cancer proteins’ topological
features, searching dynamic modularity, and predicting novel cancer genes by subnetwork
analysis [Jonsson and Bates, 2006; Platzer, et al., 2007; Taylor, et al., 2009; Sun and Zhao,
2010]. Recently, we systematically examined the global and local network characteristics of
cancer proteins in the human interactome and compared their features with other proteins
encoded by essential genes or control genes [Sun and Zhao, 2010]. Our analysis revealed
that, relative to essential or control proteins, cancer proteins had higher connectivity and
betweenness centrality values but shorter distance in the human interactome, suggesting that
cancer proteins tend to interact strongly and serve as biologically important hubs [Sun, et al.,
2010; Sun and Zhao, 2010]. Here, connectivity (degree) measures the number of the direct
links of a protein node in the PPI network; distance measures the length of the path having
the smallest number of links between a pair of selected nodes (i.e., shortest path); and
betweenness centrality measures the sum of the fractions of shortest paths between all
possible pairs of nodes in the network that traverse the node. However, it is well known that
cancer genes and their proteins have been extensively studied due to investigators’ special
interest in cancer as well as substantial funding of cancer research. As a result, the
observation of strong interaction of cancer proteins might be an artifact introduced by the
bias of human PPI data [Cai, et al., 2010; Sun, et al., 2010]. Whether this artifact is real or
not remains unclear to us.

Here, we examined this important issue by comparing network characteristics of cancer
proteins with other proteins in three other organisms (fly, worm, and yeast), whose
interactomes are largely not biased toward cancer or other diseases. We first identified four
sets of human genes: cancer genes, non-cancer essential genes, non-cancer disease genes,
and control genes. Then, we found their homologous genes in three organisms: fly
(Drosophila melanogaster), worm (Caenorhabditis elegans), and yeast (Saccharomyces
cerevisiae). Finally, we examined their network properties by three common measurements:
degree, distance and betweenness centrality. Our results confirmed that cancer proteins
interact strongly not only in humans but also in all the three non-human organisms,
suggesting that perturbation of cancer proteins might cause major changes of cellular
systems and result in abnormal cell function leading to cancer.
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2. Materials and methods
2.1 Protein-protein interaction data

We downloaded the most recent version of the PPI data from the Protein Interaction
Network Analysis (PINA) platform (http://csbi.ltdk.helsinki.fi/pina/, March 4, 2010) [Wu, et
al., 2008]. We retrieved PPI data in four organisms: human (Homo sapiens), fly (Drosophila
melanogaster), worm (Caenorhabditis elegans), and yeast (Saccharomyces cerevisiae),
because these four organisms have largest amount of available annotated PPI data. Only the
experimentally verified PPI data was extracted for analysis. The protein identifications were
then mapped to the official gene symbols in the National Center for Biotechnology
Information Gene database (NCBI, http://www.ncbi.nlm.nih.gov/gene/). After removing
redundancy and self-interactions, we used the PPIs with matched gene symbols to construct
protein interaction networks for the four organisms. Table 1 summarizes the number of
proteins and their interactions in the four organisms.

2.2 Classification of human protein-coding genes
First, we retrieved 427 human cancer genes and their annotations from the Cancer Gene
Census database (CGC, http://www.sanger.ac.uk/genetics/CGP/Census/, 2010-03-30
version) [Futreal, et al., 2004]. Among them, 420 cancer genes had official gene symbols in
the NCBI Gene database. We considered these genes as cancer genes. Second, we obtained
human disease genes from two public resources: Online Mendelian Inheritance in Man
(OMIM, http://www.ncbi.nlm.nih.gov/omim/, downloaded on October 18, 2010) [Hamosh,
et al., 2005] and Genetic Association Database (GAD, http://geneticassociationdb.nih.gov/,
downloaded on October 26, 2010) [Blekhman, et al., 2008]. We mapped the disease genes in
these two databases to the genes with official gene symbols in NCBI. Then, we excluded the
cancer genes retrieved from the CGC database. This step resulted in a total of 4666 genes;
we considered them as non-cancer disease gene set. Third, we obtained a human essential
gene set from our previous work based on mouse lethality phenotype [Sun and Zhao, 2010].
After we excluded the cancer genes, we had 2253 non-cancer essential genes. Finally, we
used all the protein-coding genes included in the human interactome as a representative set
of well-characterized human genes. Those genes that did not appear in any of the above
three gene sets were considered as control genes. This process resulted in a total of 5857
control genes. In the next step, we identified genes in these four sets that could be mapped to
the human interactome. We had 370 cancer genes, 3132 non-cancer disease genes, 1832
essential genes, and 5857 control genes whose proteins were included in the human
interactome; we defined them as four protein sets accordingly (Table 1).

2.3 Human homologous genes in other organisms
The homologs of human cancer genes, essential genes, non-cancer disease genes, and
control genes in the other three organisms (i.e. fly, worm and yeast) were retrieved from the
NCBI HomoloGene database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=homologene,
release 64). For comparison purposes, those genes were considered as the corresponding
cancer genes, non-cancer disease genes, essential genes, and control genes in the
corresponding organisms.

The total number of protein-coding genes in each of the four genomes was retrieved from
the GENE_INFO file downloaded from
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO (downloaded on October 18, 2010).

2.4 Network topological measures and statistical analysis
In a PPI network, a node denotes a protein encoded by a gene and an edge denotes an
interaction between two proteins. We used three common network topological measures,
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i.e., degree, distance and betweenness centrality, to examine network topological properties
of four sets of proteins in the PPI network. We briefly describe the measurement here; more
details were provided in our previous study [Sun and Zhao, 2010]. For a node in a PPI
network, degree (also connectivity) measures the number of links for the node to other
nodes; distance measures the number of links of the shortest path traveling from the node to
another node; and betweenness centrality measures the sum of the fractions that the node is a
member of the set of shortest paths that connect all the pairs of nodes in the network
[Freeman, 1977]. We used an R package, igraph (http://igraph.sourceforge.net/), to calculate
these network topological measures.

To evaluate the significance of the network properties of each protein set, we applied an
empirical re-sampling approach. First, for each protein set of interest that had n proteins, we
randomly selected n proteins from all the available proteins (i.e., random protein set) and
calculated the network properties (degree, distance and betweenness centrality). We
repeated this re-sampling process 1000 times. Next, to estimate the significance of average
degree or betweenness centrality observed in a protein set of interest, we counted the
number of random protein sets whose average degree (Nd) or betweenness centrality (Nb)
was higher than the observed average degree or betweenness centrality, respectively.
Similarly, for the distance, we counted the number of random protein sets whose average
distance (Ns) was shorter than the observed distance. Finally, we calculated their empirical P
value by Nd/1000, Nb/1000, and Ns/1000, respectively, for these three corresponding
network topological measures.

3. Results and discussion
3.1 Data summary for cancer protein analysis

We reconstructed the whole human interaction network based on all the available
experimentally verified PPIs. It contained 10,324 nodes (corresponding to 10,324 unique
genes or proteins) and 50,100 edges (corresponding to 50,100 unique PPIs). Similarly, there
were 7474 nodes and 25,026 PPIs in the whole fly network, 3885 nodes and 6876 PPIs in
the whole worm network, and 5433 nodes and 54,376 PPIs in the whole yeast network
(Table 1). Those proteins in the interactomes accounted for 43.70%, 54.06%, 19.25% and
92.37% of the total proteins encoded by the protein-coding genes in the human, fly, worm
and yeast genomes, respectively. The amount of data indicated it is overall sufficient for a
comparative PPI study for cancer and other proteins. In humans, we had 420, 4666, 2253
and 5857 cancer proteins, non-cancer disease proteins, essential proteins and control
proteins, among which, 370, 3132, 1832 and 5857 could be mapped onto the whole human
PPI network, respectively. Note that the essential protein set is not mutually exclusive from
the non-cancer disease protein set – there were 867 proteins shared. For these four sets of
proteins, their homologous genes (proteins) were identified in fly, worm, and yeast and were
summarized in Table 1. Except for the worm data, the majority of proteins in each protein
set could be mapped to the corresponding network. For example, among the 362
homologous non-cancer disease proteins in yeast, 355 could be mapped to the whole yeast
network (Table 1).

3.2 Strong cancer protein interaction in four organisms
In this section, we compared four sets of proteins in four organisms by three network
topological measurements: degree, distance, and betweenness centrality. Table 2
summarizes the network properties of proteins encoded by cancer, non-cancer disease,
essential and control genes.
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Degree is the most elementary characteristic in a network. In humans, the average degree of
cancer proteins was 24.48, which was more than two times that of non-cancer disease
proteins (10.70), approximately one and a half times that of essential proteins (16.17), and
more than three times that of control proteins (7.14). This observation confirmed our
previous report of stronger interaction of cancer proteins than other proteins in the whole
human network [Sun and Zhao, 2010]. We then examined this features in the other three
organisms whose PPI data was not biased towards cancer or general disease studies. As
shown in Table 2, cancer proteins had much stronger interactions than any other proteins,
regardless of whether the other proteins were categorized as non-cancer proteins, essential
proteins, or control proteins. Specifically, cancer proteins had approximately 1.7, 1.8 and 1.4
times as many interaction partners as non-cancer disease proteins in fly, worm and yeast,
respectively. For a more detailed view of the degree characteristic, we separated the nodes
by their degree value and examined their degree distribution (Fig. 1). For human proteins,
we found that the cancer proteins tend to skew toward a higher degree than the non-cancer
disease, essential or control proteins (Fig. 1A). This feature was subsequently confirmed in
the fly, worm and yeast data, though the extent was different (Fig. 1B, 1C, 1D). We noted
that the difference in distributions between cancer proteins and any other proteins is always
strong in the human, fly and worm; this difference was seen in the yeast too. However,
compared to human PPI distribution, the difference among the non-cancer disease, essential
or control proteins was not as prominent in fly, worm, or yeast (Fig. 1). It is worth noting
that yeast exhibits a flatter trend than human, fly and worm (Fig. 1). This observation might
be caused by the small number of homologs of human genes used in the analysis of the yeast
interactome (Table 1).

Furthermore, the cancer proteins, non-cancer proteins, and essential proteins had
significantly more direct interactions than randomly selected proteins (empirical P values
were 0, 0 and 0, respectively; here P=0 means there was no randomly selected protein set
having a higher average degree than the observed value of cancer proteins, non-cancer
disease proteins or essential proteins), while control proteins had the opposite characteristic
(empirical P=1; all randomly selected protein sets had a higher average degree than the
observed values of the control proteins) (Table 2). Similar to the human data, we found the
empirical P values for the observed degree of the cancer proteins, non-cancer disease
proteins, and essential proteins in the other three organisms were all less than 0.05,
indicating that the features were not random. For example, the empirical P values were 0,
0.023, and 0 for fly cancer proteins, non-cancer disease proteins, and essential proteins,
respectively (Table 2).

We next examined distance. In a network, distance measures how many nodes need to pass
through from one node to another [Barabasi and Oltvai, 2004]. The average distance for the
cancer proteins (3.60) was shorter than that of non-cancer disease proteins (3.94), essential
proteins (3.77), or control proteins (3.98) in humans. Moreover, cancer proteins and
essential proteins had significantly shorter distance than randomly selected proteins (both
empirical P values were 0), while non-cancer disease proteins and control proteins had the
opposite characteristic (empirical P values were 0.836 and 1, respectively). This is not
surprising because non-cancer disease proteins (3132) and control proteins (5857) accounted
for the majority of proteins in the human protein network (Table 1). Importantly, we
confirmed that cancer proteins had shorter distance than other proteins in fly, worm, and
yeast (Table 2). For example, in fly, the average distance of cancer proteins was 4.13,
shorter than that of the non-cancer disease proteins (4.24), essential proteins (4.20), or
control proteins (4.24).

Finally, we examined betweenness centrality of the four sets of proteins. Betweenness
centrality measures how many shortest paths go through a particular node in a specific
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network. It can be used to reflect how many signals might have paths through the node in a
network. In humans, the average betweenness centrality of the cancer proteins (5.34 × 104)
was substantially greater than that of the non-cancer disease proteins (1.79 × 104), essential
proteins (2.95 × 104), or control proteins (0.84 × 104), respectively. This pattern was
confirmed in fly and worm, e.g., the average betweenness centrality of cancer homologous
proteins had the highest values among the four protein sets. For example, the average
betweenness centrality of cancer proteins was 3.08 × 104, greater than that of non-cancer
disease proteins (1.40 × 104) or essential proteins (1.74 × 104) in fly. The empirical P values
of proteins encoded by cancer, non-cancer disease and essential genes were 0, 0.023 and 0,
respectively. These results suggested that the cancer proteins tended to occupy network
positions that are of global importance in communications between protein pairs compared
to the non-cancer disease proteins, essential proteins or control proteins. However,
compared to humans, fly, and worm, betweenness centrality values among four sets of
proteins were similar in yeast: 0.72 × 104 (cancer proteins), 0.70 × 104 (non-cancer disease
proteins), 0.82 × 104 (essential proteins), and 0.85 × 104 (control proteins). This might be
partially due to the small sample size of yeast cancer proteins relative to the yeast
interactome size. Further investigation of this feature is needed in future.

In this study, we excluded self-interactions of proteins in the measurement of network
topological properties. Examination of self-interactions might shed additional light on the
molecular mechanisms of cancer, as protein duplication usually stabilizes the PPI network
but cancer proteins tend to have strong perturbation in the network. We examined protein
dimers (self-interacting proteins) in the four organisms. There were 1069, 69, 3, and 183
protein dimers in the human, fly, worm, and yeast interactomes, respectively. Among them,
we found 56, 4, 0, and 2 dimers belonged to cancer proteins in these four organisms. While
the number of cancer protein dimers is small and consistently smaller than that in other three
categories of protein sets (e.g., 2, 23, 10, 148 dimers in the cancer proteins, non-cancer
disease proteins, essential proteins, and control proteins in the yeast interactome), the
proportion of dimers in the cancer protein set is not always smaller than that in other three
categories of protein sets (e.g. the proportion is 0.057, 0.065, 0.047, and 0.227 in yeast
cancer, non-cancer disease, essential, and control protein sets, respectively). Considering the
likely biases in the human data and smaller number of protein dimers in other three
organisms, this analysis of self-interactions could not provide much insight on network
stabilization reduction of cancer proteins, and thus, this is a preliminary analysis.

4. Conclusion
In this study, we examined whether the previous report of stronger cancer protein
interactions and its unique network topological characteristics is due to the bias of the
protein interaction data generated by prevalent cancer research in humans. We addressed
this issue by uniquely comparing the network topological characteristics of cancer proteins
with other proteins in four organisms, three of which (fly, worm, and yeast) did not have
biased PPI data towards cancer. We confirmed that cancer proteins have stronger
connectivity, shorter distance, and larger betweenness centrality than non-cancer disease
proteins, essential proteins, and control proteins in all four of these organisms. Our statistical
evaluation indicated that such observations were overall unlikely due to the randomness of
the data. Although the PPI data is still incomplete in any organisms, considering the large
size and high quality of the PPI data in the four organisms used in this study, the conclusion
that cancer proteins interact strongly in the PPI networks should be reliable and robust. This
conclusion has important implications for cancer proteins’ biological function in cellular
system, especially at the interactome level. It also helps cancer investigators to better
interpret cancer risk genes and design effective drug targets.
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Fig. 1.
Degree distribution and average degrees of four sets of proteins (cancer, non-cancer disease,
essential, and control proteins) in four organisms. (A) Human. (B) Fly. (C) Worm. (D)
Yeast. Y-axis represents the proportion of proteins having a specific degree. Note that the
scale of both the X-axis and Y-axis is not linear. The average degree of each protein set is
labeled in vertical line. Red dots denote cancer proteins, green dots denote non-cancer
disease proteins, black dots denote essential proteins, and grey dots denote control proteins.
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