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Abstract

Labor intensive experiments are typically required to identify the causal disease variants from a list of
disease associated variants in the genome. For designing such experiments, candidate variants are ranked by
their strength of genetic association with the disease. However, the two commonly used measures of genetic
association, the odds-ratio (OR) and p-value, may rank variants in different order. To integrate these two

measures into a single analysis, here we transfer the volcano plot methodology from gene expression analysis
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to genetic association studies. In its original setting, volcano plots are scatter plots of fold-change and ¢-test

statistic (or —log of the p-value), with the latter being more sensitive to sample size. In genetic association

studies, the OR and Pearson’s chi-square statistic (or equivalently its square root, chi; or the standardized

arXiv

log(OR)) can be analogously used in a volcano plot, allowing for their visual inspection. Moreover, the geometric
interpretation of these plots leads to an intuitive method for filtering results by a combination of both OR
and chi-square statistic, which we term “regularized-chi”. This method selects associated markers by a smooth
curve in the volcano plot instead of the right-angled lines which corresponds to independent cutoffs for OR
and chi-square statistic. The regularized-chi incorporates relatively more signals from variants with lower
minor-allele-frequencies than chi-square test statistic. As rare variants tend to have stronger functional effects,

regularized-chi is better suited to the task of prioritization of candidate genes.
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Introduction

Volcano plots are graphical tools that are commonly used in the analysis of mRNA expres-

sion levels as obtained from microarray technology (Jin et al., 2001, ICui and Churchill, 2003,

2012). In principle, volcano plots are scatter plots, with each point representing a probe set

or a gene, and the z-coordinate being the (log) fold-change (FC) and y being the t-statistic or
—log,, of the p-value from a t-test. The reason for the popularity of volcano plot in microarray
data analysis is due to its simultaneous display of two, albeit correlated, pieces of information
— fold-change and t-statistic. Ranking genes by fold-change and by t-test does not necessarily
lead to the same order in the differential expressed gene list, and can give rise to different
biological conclusions.

However, there is a fundamental relationship between log-fold-change and t-statistic: while

log(FC) is a measure of the magnitude of a “signal”, the t-statistic is approximately log(FC)
E 2019).

divided by its standard error, i.e., a signal-to-noise ratio (Zhang and Cao, 2009,

This means that the log(FC) is an unstandardized measure of differential expression, whereas
t-statistic is a noise-level-adjusted standardized measure. The distinction between the two
types of measures of differential expression has parallels to the long standing discussions in

behavioral science, psychology, epidemiology, meta-analysis, and engineering under the theme

of “effect size” (Cohen,|1988). As one possible strategy to address this issue, volcano plots

display both measures simultaneously.
In genetic association study, there has been a similar issue on deciding which measure of

association is more useful: odds-ratio (OR) or x? test (either the chi-square test statistic or the

p-value from y? test) (Li)[2008). Currently, most association analyses apply a x? test as the
primary single-nucleotide-polymorphism (SNP) selection criterion in the initial screening, and
use the OR as a secondary measure in a re-examination. However, the distinction between the
role of two measures and their connection has not always been explained. Because selecting
candidate SNPs and regions from the first stage for the replication stage is of great practical
importance, one would like to add more information in the screening stage. We believe the
application of volcano plots can be beneficial towards this goal.

One particular advantage of volcano plot in microarray analysis is that it provides a natural
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context in addressing “joint gene filtering” (Zhang and Cao, 2009, 2012), which are the
measures of differential expressions using both log-FC and t-statistic. In comparison, the ad

hoc selection criterion such as “FC > 1.5, and p-value < 1073” could be called “double gene

filtering” (Zhang and Cao/l2009, 2012). In a volcano plot, the discriminant lines for double

filtering are right-angled lines formed by the vertical and the horizontal lines, whereas those

in joint filtering are smooth curves. The well known significance analysis of microarray (SAM)

Tusher et al.}[2001, [Chu et al., |[2007) has a discriminant line in the form of y = c¢q+cy /tan(6),

where 6 is the angle between the y-axis and the line connecting the gene point and the plot

origin, @ 2012).

Our goal in transferring volcano plots from expression analysis to genetic association analy-
ses is to find SNP-filtering criteria that incorporate information from both OR and y? test re-

sults. This effort may help the prioritization of SNPs and chromosome regions in a genome-wide

association study (Cantor et al.,|[2010). Prioritization of candidate genes has wide application

in every “omics” field (Tranchevent et al.)[2011,| Moreau and Tranchevent [2012). Usually, the

prioritization strategies rely on external information of gene products, such as protein-protein

interaction (Pattin and Moore, 2009) and pathways (Chen et al.,| 2009, [Wang et al.| 2010,

Peng et al.;[2010). In contrast, our approach is purely statistical, with the underlying assump-
tion that OR may provide more biological information than y2-test p-value in a realistic setting
(finite sample size and sample heterogeneity).

The questions that are discussed in this paper are as follows: (i) How does the minor allele
frequency of markers appear in a volcano plot? (ii) How can one choose the penalty term in
a regularized-chi statistic for genetic data, and is the choice of this term important? (iii) Do
any other unstandardized and standardized measurements exist that may be used for z- and

y-axes in the volcano plot, besides OR and x? test statistic?

Methods and Materials

Unstandardized and sample-size-insensitive measures of differential allele fre-
quencies: Denote the 2 x 2 allele count contingency table as {n;;} (i, j= 1,2) where row

i is the case (i = 1) or control (i = 2) label, and column j is the minor (j = 1) or ma-
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jor (j = 2) allele label. The minor-allele-frequency (MAF) in the case (control) group is
p1 = ni1/(n11 + ni2) = i1 /nie (p2 = noi/na.). The major-allele-frequencies are ¢; = 1 — py
(g2 = 1 — py) for the case (control) group.

One can define several “differential allele frequency” measures that are insensitive to the
sample size, for instance, the odds-ratio (OR) which is defined as ny1n95/(n19m21) or p1ga/ (p2q1)-

It is well known that the log-transformed OR, log(OR) = log(niinge) — log(niane), ap-

proximately follows a normal distribution (Woolf|[1955). Another unstandardized measure

is the direct calculation of allele frequency difference between the case and control group:
dyarp = p1 — P2 = Ni1/Nax — Na1/Nas = (N11N2e — N1anat)/(N1sne.). Furthermore, Wright’s
fixation index, Fy; = 1 — (p1q1 + p2q2)/(2D - Q) = 1 — 0.5n%(n11n12/N1s + Na1os /Mo )/ (Ma1Nsn)
P=(p1+p2)/2,9=(q1 + q2)/2 = 1 — p) provides an unstandardized measure of differential

allele frequency(Wright, 1951)). Fy is a measure of allele frequency difference between two

subpopulations that is used in population genetics and estimates the proportion of variations
explained by population stratification. Here we assume for simplicity the two subpopulations
are case and control population, with a 50:50 mixing ratio.

Standardized and sample-size-sensitive measures of differential allele frequen-
cies: As a standardized and sample-size sensitive measure of differential allele frequency, the

X statistic (n = n.. = >, ny) (e.g., (Yates) 1984, [Suh and Li)[2007))

2
NN — n12n21) n

v

M1 M2 M51 T2 (p1m1s + Panos) (qin1s + ganax)

is clearly proportional to sample size n, in the asymptotic limit, given p; # po. Alternatively,
log-OR itself can be standardized by its standard error, log(OR)/SE(log(OR)), where (Woolf
1955)

1 1 1 1 1 1
SE(log(OR)) =/ —+ —+ —+ — = \/ + . (2)
N N1z N21 N22 P1qinix  P2galiox
The standardized log(OR) is of the form of a Wald statistic.
A SNP dataset for illustration: For illustration purpose, we first use a genotyping data

of an autoimmune disease on one chromosome only (chromosome 6) with 809 cases and 505

controls (Freudenberg et al., [2011). The initial 38735 SNPs are reduced to 35855 SNPs by

requiring that both the case and the control group to have at least one copy of the minor allele

(which allele is the minor is defined by the control group). This removes many SNPs with
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minor allele frequency (MAF) less than 0.05, though many low-MAF SNPs remain. These
data are used in Fig[ll Figl2, and FigHl
Genome-wide association study (GWAS) case-control data for type 2 diabetes:

We use The Wellcome Trust Case Control Consortium (WTCCC) data for the type 2 diabetes

(T2D), with 1924 T2D cases and 2938 controls (The Wellcome Trust Case Control Consortium

2007, |Zeggini et _al.|[2007). Differing from several other autoimmune diseases including rheuma-

toid arthritis and type 1 diabetes, there is no major susceptibility locus in MHC region for type
2 diabetes. The genotyping was carried out by the Affymetrix GeneChip 500k array. There
are 459,446 autosomal SNPs which had already passed a quality control (QC) procedure by
WTCCC.

We impose a further filtering criterion: (i) p-value for testing unbiased typing ratio is larger
than 10~%; (ii) p-value for testing Hardy-Weinberg equilibrium in both the control and the case
group is larger than 10™%; (ii) MAF in both control and case group is larger than 0.005. This
reduces the number of SNPs to 388,023 (84.45% of the original number).

Our MAF criterion is more relaxed than the 0.01 used in early analysis of these data

The Wellcome Trust Case Control Consortium/2007, [Zeggini et al./2007), which leads to the

inclusion of more rare variants. Although violation of HWE in the case group might be

considered as part of disease signal (Feder et al.)[1996, Nielsen et al.) 1998, [Song and Elston
2006, |ISuh and Li, 2007, [Li et al.| 2008, Zheng et al.; [2012), we noticed that in this data, it

actually leads to SNPs with genotype distribution inconsistent between the case and the control

group (e.g. the SNP rs3777582 on chromosome 6). This data is used in FigBl

Results

MAF of SNPs and angle in the volcano plot: To evaluate the role of the MAF of
SNPs, we are using the volcano plots with z = log(OR) = log(niing) — log(niang), and
y = log(OR)/SE(log(OR)). In microarray analysis, the angle 6 between the y-axis and the
line linking a gene dot and the origin is directly related to the standard error of the log-fold-

change(Li)2012), tan(f) = SE(log(F(C)), and SE in turn is roughly the standard deviation of

log-expression level divided by /n. Consequently, points closer to the y-axis are genes with
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low-variances. There is a parallel situation here by replacing fold-change with odds-ratio.
Using the formula in Eq.(2]), we can write SE(log(OR)) as (assuming equal number of case

and control samples: 1y, = ng, = n/2):

SE(log(OR)) \/7\/ 2+ (1/p2+1/q)dnar (3)

P2g1(1 4+ dpar/p2)(L 4+ dyar/q1)

If MAF is approaching zero (e.g. p; — 0), then SE(log(OR)) ~ 1/,/p; — oo and 6 — 90°.
These are the points close to the z-axis which can have any OR values.

Figl shows how the angle 6 stratifies SNPs with different MAFs. The SNPs colored with
red, orange, purple, blue correspond to those with control MAF < 0.01, (0.01, 0.05), (0.05,
0.2), and > 0.2. Note that the quality control step has already removed SNPs with very low
MAFs and the control MAFs are greater than 0.00198. Also note that points with different
colors may overlap, because according to Eq.(3]), tan(0) is a function of both p, (control MAF)
and p; (case MAF).

Regularized y-statistic: Later in this section, we will establish that standardized log(OR)
is approximately equal to the square-root of y? statistic, or simply y. By following the

similar definition of regularized t-statistic, or SAM for significance of analysis of microar-

ray (Tusher et al.; 2001, |Chu et al.,|2007), we define the regularized y-statistic as (through
standardized log(OR)):

_ |log(OR)| _ |log NN — log n12n21| _ |10gP1Q2 - logp2q1| (4)
Xres = S B(log(OR)) + s T s R
niini2 n21n22 0 P1g1n1x P2q2m2x 0

If we use ¢ to index SNPs, x4 contains SNP-specific allele frequencies (p1, p2);, but s is the
same for all SNPs. The introduction of the constant s, makes the y-statistic more robust —
less sensitive to chance fluctuation of SNP-specific standard error estimation.

Though not further used in this paper, we note that there are other ways to define a
regularized test statistic. For example, we may use the definition of y2-statistic and add an
extra constant in the denominator (this is parallel to a proposed regularized ¢-test in microarray

analysis (Baldi and Long, |12001)):

(p1 — p2)2 (5)

(p1n1x+panz«)(qinis+qanax)
+ 80
nN1N2s

2
Xreg
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where the first term in the denominator is approximately the variance of p; — ps; or

|p1 _p2‘ (6)

/ _
Xreg -

(p1m1s +pzzf:)(Q1 n1x+ganas) 1 80
1xM2x

where the first term in the denominator is approximately the SE of p; — ps.
If we select SNPs by the criterion x,., > ¢, it is equivalent to(Li)l2012) y = |log(OR)|/SE =
[|[1og(OR)|/(SE + so)] - [(SE + s0)/SE] > ¢(1 + so/log(f)). In other words, instead of the

horizontal line, the discriminant line is a smooth curve which moves up as it is closer to the

y-axis (Figlll). The regularized-y combines information from both y? test and OR.
The choice of s; in regularized y-statistic: The regularization constant sy in SAM
for expression analysis is chosen to minimize the dependence of relative variation of the SAM

statistic on the standard error (Tusher et al.| 2001, (Chu et al.,| 2007, |Astrand, 2008). The

more detailed procedure in choosing so in SAM is the following: genes are grouped into 100
bins by their percentile of standard errors; within each bin, the variability of the SAM statistic
is measured by the median absolute deviation (MAD); the dependency of relative variation of
MAD on bin is calculated by sd(MAD)/mean(MAD); the constant sy is chosen to minimize
sd(MAD)/mean(MAD).

In Figl(A), we examine the MAD of 100 bins of SE values at different sq’s: 10%, 90%,
95%, and 100% percentiles of SE. There are several observations: first, the non-robust behavior
mainly occurs at bins with large SE’s. Second, in terms of absolute variation, the choice of
sp = max(SE) seems to lead to lowest variation. Third, even if the lowest absolute variation
occurs at sg = max(SE), because the averaged MAD level is low, it is unclear whether the
relative variation is also low.

Figld(B) and (C) show indeed that the absolute variation of MAD decreases with sg, but
relative variation increases, for both the parametric and non-parametric version of the mea-
sure of variation (sd, MADy;, for absolute variation, sd/mean, MAD;,/median for relative
variation). If the relative variation is considered, as in the original discussion of SAM, then
the sy = min(SE) would be chosen.

Here, we consider an alternative measure of the robustness by combining both absolute and
relative variation of MAD’s. For all sy values, we rank absolute (and relative) variation from

low to high; then we add these two ranks; the sg with the lowest total rank is the value we use
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to regularize y. From Figl(D), either the min(SE) or 3% or 4%-percentile of SE depending
on whether the parametric or non-parametric measure is used. For non-parametric measure,
one can see that the averaged rank is quite stable for all sy values.

The consequence of sq is illustrated in Figlll Four discriminant lines are shown for y =
|log(OR)|/(SE + s9) = xo. The SNP filtering criterion is x > xo. All four lines plus the
horizontal line (or sg = 0) selects top 70 SNPs (the corresponding p-value for the unregularized
x? test is 107%). This can be accomplished by tuning y, as the same time when various s
values are chosen. It can be seen that with a small sy value (0% or 4% percentile), there is
already a great change in the shape of discriminant line (from straight line to curve), and many
SNPs with less significant x? test result but larger ORs will be selected. The discriminant line
with large sq (e.g. 100% percentile) should probably be avoided because it is too different from
a unregularized y? test.

Re-examination of a published genome-wide association studies (GWAS) result
by regularized y-statistics: We draw the volcano plot for 388,023 SNPs (see the Methods
and Materials section) from The Wellcome Trust Case Control Consortium type 2 diabetes data

in Figl3l The three strongest signals are from the gene TCF7L2 (chr10), KIAA1005 (chr16) and

CDKALI (chr6), consistent with the report in Table 3 of (The Wellcome Trust Case Control Consortium

2007). In the subsequent validation stage, TCF7L2 and KIAA1005 signal remains (Table 1 of
Zeggini et al.|2007)) whereas KIAA1005 is dropped from the top gene list.

Fig Bl shows strikingly that the top results in such a GWAS run are biased towards common
variants, as these genes are located at the inner envelope with the highest possible MAFs
(smallest 0 angle values). We have added two more genes further down the list: TSPANS
(chr12) and RBMSI (chr2). Interestingly, there are SNPs on both sides of the gene TSPANS,
and there are also both positive (OR > 1) and negative (OR < 1) signals. More data on
TSPANS8 was reported in (Zeggini et _al.)2008), and the RBMSI region has later been validated
by more GWAS projects (Qi et al./2010)

There are usually no published GWAS results for rare variants using the commercial geno-
typing arrays with the typical SNP density (e.g. 500k). To illustrate this in volcano plot, we
highlight the two SNPs near the gene HAPLNI (chrb) in Figl3] whose rankings increase the
most when regularized-y is used. These two SNPs pass the Hardy-Weinberg equilibrium tests
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in control (p-value=0.7) as well as in case (p-values=0.47, 0.52), and they pass the differential
typing test (p-value=0.31, 0.11), lacking an indication of bad typing quality. The MAF is
increased from 0.0065 in control to 0.015 in case, with y2-statistic of 20.36, 14.93 (p-values=
6x107%), 1x107*, and ORs 2.5, 2.2. However, these two SNPs would not have passed the
filtering in the original WTCCC analysis because the MAF is lower than 0.01. Using volcano
plot and regularized-y, these rare variants are easily highlighted and deserve further attention.

Other potential choices of x- and y-axis of volcano plots: Besides the log-odds-
ratio, other candidate for the unstandardized variables for the z-axis include minor allele
frequency difference dy;4r and the fixation index Fy,. The MAF difference dyjar = (nq1n2e —
n12n21)/(n1.n2.) may look very different from log(OR), but under the null hypothesis (i.e. zero

allele frequency difference), the two measures are related, because:

dMAF) ( dMAF) dyrar  dyar 9 dparar 9
log(OR) =log | 1 + 1+ ~ + +0(d =—1+0(d
g( ) g ( D2 Y D2 @ ( MAF) (1 — p1)p2 ( MAF

Thus, if dyar is far from zero, there is no simple relationship between the two. FigHl(A)
shows the existence of two distinct branches in the dyar vs. log(OR) scatter plot. The first
branch is for rare-allele SNPs (low py, p» value), which more or less trace the line log(OR) ~
py “dasar. The second branch is for common alleles (p; & py ~ 0.5), where log(OR) ~ 4dpar.
Both approximations can be obtained from Eq.([ ). SNPs with low MAF are more likely to
achieve high OR wvalues, but never high dj;4r; whereas SNPs with common MAF tend to
have large dy;4r, but only limited OR. Note that SNPs which rank high by x? test result
shown in Fig[3 belong to the common variant branch, whereas those ranking relatively high in
regularized-y (Figl3) tend to belong to the rare variant branch.

The fixation index Fy; is highly correlated with log(OR) (Figld(B)). Interestingly, points
(SNPs) with different MAF values overlap with each other on Figld(B), thus not stratified by
MAF (result not shown). It can be shown that

d2
Fs _ MAF ’ 8
! (p1 +p2)(2—p1 — p2) (®)

so Fy scales as the square of allele frequency differences.
Here we used the standardized log(OR) as the y-axis, but could instead also have used

the y2-statistic. In fact, the two are very similar (see FigllC)), and both are expected to
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approximate a standard normal distribution. FigllD) and Fig[llshow two versions of a volcano
plot, with the former uses x? vs. log(OR), and second uses log(OR)/SE(log(OR)) vs. log(OR).
The difference between the two is mostly due to the fact that y? is the square of a normally

distributed variable, so that straight lines in Fig[ll become parabola in Fig[d(D).

Discussion

Like any graphical representation of data or analysis results, such as effect size vs. sample

size in the funnel plot (Egger et al.)|1997), true positive rate vs. false positive rate in receiver

operating characteristic (ROC) curve (Swets and Pickett,[1982), etc., the introduction of vol-

cano plot to the genetic association studies brings in new perspectives. The role of MAF in
balancing test p-value and OR, and in the biased selection of variants in GWAS, can be easily
concluded from the volcano plot.

The idea of regularized-y is the same as that of regularized-t (or SAM) in microarray
analysis: the avoidance of over-confidence in the ability to exactly estimate variances. The
consequence is that those SNPs (or genes in microarray data) with extremely good test result
(due to low standard error estimations) — but mediocre signal strength — move down in the
ranking list.

The goal of the current paper is to introduce the concept of regularized-y, whereas more
details have to be worked out in future publications. For example, the choice of sy here is not
based on a solid theoretical ground. However, the same comment may also be made on the
SAM in microarray analysis. And we have shown that for sy being non-zero is more important
than having a specific value. Also, we mainly focus on the effect of regularization on the
ranking order of SNPs, thus the choice of the threshold value and the resulting distribution of
type I and type II error rates has not been discussed.

Regularized-x can be applied to published GWAS results even when only the summary
statistics are available. We have known in FigHl(C) that the square-root of x*-statistic is
approximately equal to the standardized log(OR), or log(OR)/SE(log(OR)). Consequently,
SE(log(OR)) is equal to log(OR)/+/x2. Even if we may not know the distribution of SE(log(OR))
for all SNPs when a publication only provides the top-ranking results, these SNPs tend to have
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lower value of SE(log(OR)); the minimum of them could be the s, value in defining regularized-
X-

Unlike the regularized-t in microarray analysis, in genetic association analysis we have a
clear understanding of the cause for a low standard error. This can be seen from Fig[ll where
the points/SNPs forming small angles with the y-axis, thus having low standard errors, are all
common variants with higher MAFs. Indeed, common SNPs have more statistical power than
rare variants, but the true disease susceptibility genes with low allele frequencies are likely
to be missed if p-values are used as the filtering criterion. The purpose or consequence of
regularized-y then becomes clear: it puts the signal originating from rare variants as measured
by OR in the context of common variant association signals.

On the practical side, this effect of regularized-x to select rare variants can come in con-
flict with the quality control, because genotyping errors can be mistaken as rare variants.
Points/SNPs with the lowest MAFs form the bottom layer of the envelope in Figll, and the
only way these would pass the regularized-y threshold is to have large OR values. In fact,
the OR could be infinity when one of the allele count is zero (though in principle, it could be
avoided by a Yate’s correction). As a result, requiring a minimum number of minor allele (in
both case and control group) to be included in the dataset can be an effective way to exclude
low-quality SNPs to be selected. However, as sample size increases and genotyping technology
matures, this becomes less of a concern. Ultimately, appropriate filtering threshold for MAF
depends on the genotyping technology (e.g. microarray versus exome sequencing) and its error
rate.

It is well known that genetic association signals from rare variants using array-based geno-
typing data is difficult. With the low density (500k) SNPs and low number of samples, rare
disease-gene-containing haplotype may not be tagged effectively. However, with the next-
generation sequencing (NGS) data, rare variances are called with more confidence, and we

expect the volcano plot could play an important role in the analysis of such data.
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FIGURE CAPTIONS

Fig.1: Volcano plot of 38735 SNPs located in chromosome 6 for a GWAS for an autoimmune disease
with 809 cases and 505 controls. The angle # is related to the standard error of log(OR) by the equation:
tan(f) = SE(log(OR)). The colors red, orange, purple,and blue label SNPs with control MAFs in the intervals
of (0.00198, 0.01), (0.01, 0.05), (0.05,0.2), and (0.2, 0.5). The horizontal line corresponds to \/x2 = 3.89 or
p-value equal to 10~*. The threshold y > 3.89 filters 70 SNPs. The threshold for regularized x with so = 0.08
(minimum of SE), so = 0.08049 (4% percentile), so = 0.2194957 (90% percentile), and so = 1.00086 (maximum
of SE) are also shown, where the xo (x > xo0) is chosen so that exactly 70 SNPs are filtered.

Fig.2: (A) MAD (median of absolute deviation) of regularized x’s in 100 bins of SE(log(OR))’s at 4 sq
values: so = 0.081 (10% percentile), so = 0.2194957 (90% percentile), so = 0.344 (95% percentile), and
so = 1.00086 (maximum or 100% percentile). (B) Two measures of absolute variation of MAD’s in (A) along
bins: standard deviation (sd(MAD)) and median of absolute deviation (MADy;, (MAD) multiplied by 1.4826),
as a function of sy. (C) Two measures of relative variation of MAD’s in (A) along bins: coefficient of variation
(sd(MAD)/mean(MAD)) and MADy;,,(MAD)/median(MAD), as a function of sg. (D) Sum of rank of absolute
variation in (B) and rank of relative variation in (C) divided by 2. The ranking is from low to high values.
The z-axis is the bin number for s¢’s.

Fig.3: The volcano plot for The Wellcome Trust Case Control Consortium (WTCCC)’s type 2 diabetes
(T2D) data, with 1924 cases and 2938 controls. Only a small portion of the 388,023 SNPs are shown as
the background, with those on the following genes are highlighted: TCF7L2 (chr10, blue), KIAA1005 (chrl6,
purple), CDKALI (chr6, green), RBMS1 (chr2, orange, on the negative branch), TSPANS (chrl12, brown, on
both positive and negative branch), and HAPLNI (chr5, red, rare variant).

Fig.4: (A) Scatter plot of dyrap (z-axis) and log(OR) (y-axis). Points far away from the origin are not
plotted. Points (SNPs) are stratified by MAF in control group: crosses for low MAF (MAF < 0.05), circles for
high MAF (MAF > 0.2), with all other points represented by dots. The two straight lines seem to envelope
all points: one with slope 4 which traces common-allele SNPs; and another with slope 1/ min(ps) which traces
rare-allele SNPs. (B) Scatter plot of Fy (a-axis) and log(OR) (y-axis). (C) scatter plot of square-root of
x2-statistics (z) and standardized log(SE) in absolute value, |log(OR)|/SE(log(OR)) (y). (D) volcano plot
with log(OR) as x, x2-statistics as y.
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