
Computational investigations of folded
self-avoiding walks related to protein folding

Jacques M. Bahi, Christophe Guyeux, Kamel Mazouzi, and Laurent Philippe*

Computer science laboratory DISC,
FEMTO-ST Institute, UMR 6174 CNRS

University of Franche-Comté, Besançon, France
{jacques.bahi, christophe.guyeux, kamel.mazouzi, laurent.philippe}@femto-st.fr

May 16, 2018

Abstract

Various subsets of self-avoiding walks naturally appear when inves-
tigating existing methods designed to predict the 3D conformation of a
protein of interest. Two such subsets, namely the folded and the unfold-
able self-avoiding walks, are studied computationally in this article. We
show that these two sets are equal and correspond to the whole n-step
self-avoiding walks for n 6 14, but that they are different for numerous
n > 108, which are common protein lengths. Concrete counterexamples
are provided and the computational methods used to discover them are
completely detailed. A tool for studying these subsets of walks related to
both pivot moves and proteins conformations is finally presented.

1 Introduction

Self-avoiding walks (SAWs) have been studied over decades for the extent and
difficulty of the mathematical problems they provide [2, 9, 16], and for their
various contexts of application in physics, chemistry, and biology [11, 12, 18].
Among other things, they are used to model polymers such as DNA, RNAs,
and proteins. Numerous protein structure prediction (PSP) software iterate
on self-avoiding walk subsets, often not clearly defined, of various lattices,
in such a way that the last produced SAW S has the length of the targeted
protein P and, when labeling S with the amino acids of P, S is (one of) the
best solution(s) according to a scoring function that associates a value to a 2D
or 3D conformation (depending on physical properties of the conformation as
hydrophobic neighboring residues, etc.).

*Authors in alphabetic order

1

ar
X

iv
:1

30
6.

42
70

v1
 [

q-
bi

o.
B

M
]

 1
8

Ju
n

20
13

In previous studies [4–6], authors of this manuscript have investigated some
protein folding models of dynamics. They have shown that the possible sets
of conformations reachable by these numerous PSP software are not equal,
which raises severe questionings on what is indeed really predicted by such
software. In particular, they have shown that software that iteratively stretch
the conformation from one amino acid until a self-avoiding walk having the
length n of the protein, can reach all the n-step SAWs Gn. Contrarily, the ones
that iterate±90◦ pivot moves on the n-step straight line can only reach what they
called the subset of folded self-avoiding walks f SAW(n). It has been clearly
established that, for some well-defined small n‘s, f SAW(n) , Gn. After having
obtained this result, the authors’ intention was then to investigate more deeply
these new kind of self-avoiding walks and other related subsets of walks they
called unfolded SAWs, and to determine consequences of these investigations
regarding the protein structure prediction problem.

This article is the third of a series of three researches we publish in that
field. In [8] we provide a general presentation of folded and unfoldable SAWs,
and the collection of results we have obtained on these objects using both
theoretical and computational approaches. Article [7] focuses more specifically
on the mathematical study of theses subsets of self-avoiding walks, by proving
in particular that the number of unfolded SAWs is infinite. This article, for its
part, presents our computational investigations in detail.

After having recalled in the next section the basis of self-avoiding walk,
of folded SAWs obtained by iterating pivot moves on the straight line, and of
unfoldable SAWs on which no pivot move can be applied without breaking
the self-avoiding property, we explain in Section 3 how the number of folded
self-avoiding walks has been computed and how we checked the unfoldable
property in practice. The various methods that have been implemented to find
the shortest currently known unfoldable SAW are presented too in this section.
Then, in Section 4, some heuristics that could be determinant in further studies
concerning these subsets of walks are introduced. The next section contains the
last contribution of this research work: a free software realized to facilitate the
study of folded and unfoldable SAWs. This document ends by a conclusion
section, in which all these contributions are summarized and intended future
work is proposed.

2 Presentation of Folded Self-Avoiding Walks

We recall in this section various notions and properties of self-avoiding walks
and of some of theirs folded subsets. Authors that would investigate more
deeply these walks are referred to [15, 17, 18] for the SAWs in general, and
to [7, 8] for the folded case.

2

Figure 1: The first SAW shown to be not connected to any other SAW by 90°
rotations (Madras and Sokal, [16]).

2.1 Definitions and Terminologies

Let N be the set of all natural numbers, N∗ = {1, 2, . . .} the set of all positive
integers, and for a, b ∈ N, a , b, the notation Ja, bK stands for the set {a, a +
1, . . . , b − 1, b}. |x| stands for the Euclidean norm of any vector x ∈ Zd, d > 1,
whereas x1, . . . , xn are the n coordinates of x. The n−th term of a sequence s
is denoted by s(n). Finally,]X is the cardinality of a finite set X. Using this
material, self-avoiding walk can be defined as follows [15, 17, 18].

Definition 1 (Self-Avoiding Walk) Let d > 1. A n−step self-avoiding walk from
x ∈ Zd to y ∈ Zd is a map w : J0,nK→ Zd with:

• w(0) = x and w(n) = y,

• |w(i + 1) − w(i)| = 1,

• ∀i, j ∈ J0,nK, i , j⇒ w(i) , w(j) (self-avoiding property).

2.2 Notations

In absolute encoding [3, 14], a n-step walk w = w(0), ...,w(n) ∈
(
Z2
)n+1

with
w(0) = (0, 0) is a sequence s = s(0), ..., s(n − 1) of elements belonging into Z/4Z,
such that:

• s(i) = 0 if and only if w(i + 1)1 = w(i)1 + 1 and w(i + 1)2 = w(i)2, that is,
w(i + 1) is at the East of w(i).

3

• s(i) = 1 if and only if w(i + 1)1 = w(i)1 and w(i + 1)2 = w(i)2 − 1: w(i + 1) is
at the South of w(i).

• s(i) = 2 if and only if w(i + 1)1 = w(i)1 − 1 and w(i + 1)2 = w(i)2, meaning
that w(i + 1) is at the West of w(i).

• Finally, s(i) = 3 if and only if w(i + 1)1 = w(i)1 and w(i + 1)2 = w(i)2 + 1
(w(i + 1) is at the North of w(i)).

Let us now define the following functions [6].

Definition 2 The anticlockwise fold function is the function f : Z/4Z −→ Z/4Z
defined by f (x) = x − 1 (mod 4) and the clockwise fold function is f−1(x) =
x + 1 (mod 4).

Using the absolute encoding sequence s of a n−step SAW w that starts from
the origin of the square lattice, a pivot move of +90° on w(k), k < n, simply
consists to transform s into s(0), . . . , s(k−1), f (s(k)), . . . , f (s(n)). Similarly, a pivot
move of −90° consists to apply f−1 to the queue of the absolute encoding
sequence, like in Figure 2.

2.3 A graph structure for SAWs folding process

We can now introduce a graph structure describing well the iterations of ±90°
pivot moves on a given self-avoiding walk.

Given n ∈ N∗, the graphGn, formerly introduced in [6], is defined as follows:

• its vertices are the n−step self-avoiding walks, described in absolute en-
coding;

• there is an edge between two vertices si, s j if and only if s j can be obtained
by one pivot move of ±90° on si, that is, if there exists k ∈ J0,n − 1K s.t.:

– either s j(0), . . . , s j(k − 1), f (s j(k)), . . . , f (s j(n)) = si

– or s j(0), . . . , s j(k − 1), f−1(s j(k)), . . . , f−1(s j(n)) = si.

Such a digraph is depicted in Figure 3. The circled vertex is the straight line
whereas strikeout vertices are walks that are not self-avoiding. Depending on
the context, and for the sake of simplicity,Gn will also refers to the set of SAWs
in Gn (i.e., its vertices).

Using this graph, the folded SAWs introduced in the previous section can
be redefined more rigorously.

Definition 3 f SAWn is the connected component of the straight line 00 . . . 0 (n
times) in Gn, whereas Sn is constituted by all the vertices of Gn.

The Figure 1 shows that the connected component f SAW(223) of the straight
line in G223 is not equal to the whole graph: G223 is not connected. More
precisely, this graph has a connected component of size 1: it is unfoldable

4

(a) 000111 (b) 001222 = 00 f−1(0) f−1(1) f−1(1) f−1(1)

Figure 2: Effects of the clockwise fold function applied on the four last compo-
nents of an absolute encoding.

whereas SAW of Fig. 4 can be folded exactly once. Indeed, to be in the same
connected component is an equivalence relation Rn on Gn,∀n ∈ N∗, and two
SAWs w, w′ are considered equivalent (with respect to this equivalence relation)
if and only if there is a way to fold w into w′ such that all the intermediate walks
are self-avoiding. When existing, such a way is not necessarily unique.

These remarks lead to the following definitions.

Definition 4 Let n ∈ N∗ and w ∈ Sn. We say that:

• w is unfoldable if its equivalence class, with respect to Rn, is of size 1;

• w is a folded self-avoiding walk if its equivalence class contains the n−step
straight walk 000 . . . 0 (n − 1 times);

• w can be folded k times if a simple path of length k exists between w and
another vertex in the same connected component of w.

Moreover, we introduce the following sets:

• f SAW(n) is the equivalence class of the n−step straight walk, or the set of
all folded SAWs.

• f SAW(n, k) is the set of equivalence classes of size k in (Gn,Rn).

• USAW(n) is the set of equivalence classes of size 1 (Gn,Rn), that is, the set
of unfoldable walks.

• f 1SAW(n) is the complement of USAW(n) in Gn. This is the set of SAWs
on which we can apply at least one pivot move of ±90◦.

Example 1 Fig. 2 shows the two elements of a class belonging into f SAW(219, 2)
whereas Fig. 1 is an element of USAW(223).

5

Figure 3: The digraph G(3)

Figure 4: A self-avoiding walk in f SAW(219, 2)

6

3 Computing the number of folded self-avoiding
walks

3.1 The number]Gn of all possible s-step SAWs

To recall in detail how the number]Gn of all possible SAWs has been computed
until n = 71 is not the goal of this article. Let us just remark that, in [10],
Conway et al. have presented an algebraic technique for enumerating self-
avoiding walks on a rectangular lattice, by rewriting the generating function
for SAWs on this lattice using 5 irreducible components, whose generating
functions are easier to calculate (see Formula 2.17 of [10]). These irreducible
components are obtained by considering projections of walks onto the y axis,
and classify irreducible segments by the number of y bonds they span. The
obtained cardinality of Gn, is recalled in Table 2 for n 6 31. For further detail,
the reader is referred to [10].

Authors of this research work have tried to adapt this very interesting
approach by searching a way to decompose the generating function of folded
self-avoiding walks in other generating functions easier to calculate. However
the way to take into account pivot moves that define such folded SAWs has not
yet been discovered. This is why the algebraic method has been abandoned
after unsuccessful attempts to the benefit to a constructive brute force approach
detailed in the following sections.

At each of our investigations, a draft program in Python language has been
released first, to test rapidly the correctness of the approach. This code as been
translated in an optimized C program and deployed in the supercomputer
facilities of the Mésocentre de calcul de Franche-Comté. For readability and
compactness, only the python programs are presented thereafter.

3.2 Preliminaries

Python function called walks (Listing 5) produces the list of all possible n-step
walks as follows: the n-step walks are the walks of lenght n − 1 with 0, 1, 2, or
3 added to their tails (recursive call). The return is a list of walks, that is, a list
of integers lists.

1 def walks (n) :
2 i f n==1:
3 return [[0]]
4 e lse :
5 L = []
6 for k in walks (n−1) :
7 for i in range (4) :
8 L . append (k+[i])
9 return L

Figure 5: Obtaining all the walks

7

To obtain the walks belonging intoGn, we first introduce the function points
which aims is to produce the list of points (two coordinates) of the square lattice
that corresponds to a given walk C. Programs that encodes a walk described as
a list of points in its absolute encoding is provided in Listing 6 with its decodes
associated function.

1 def encodes (points) :
2 L= []
3 for k in range (1 , len (points)) :
4 i f points [k−1][0]== points [k] [0] :
5 i f points [k−1] [1] < points [k] [1] :
6 L . append (3)
7 e lse :
8 L . append (1)
9 e lse :

10 i f points [k−1] [0] < points [k] [0] :
11 L . append (0)
12 e lse :
13 L . append (2)
14 return L
15
16 def decodes (C) :
17 L = [(0 , 0)]
18 for c in C:
19 P = L[−1]
20 i f c == 0 : L . append ((P [0]+1 ,P [1]))
21 e l i f c == 1 : L . append ((P [0] , P[1] −1))
22 e l i f c == 2 : L . append ((P[0] −1 ,P [1]))
23 e l i f c == 3 : L . append ((P [0] , P [1]+1))
24 return L

Figure 6: Encoding and decoding walks

Function is_saw returns a Boolean: it is true if and only if the walk C
satisfies the self-avoiding property. To do so, the list of its points in the lattice
(its support) is produced, and it is regarded whether this list contains twice a
same point (in other words, if the support has the same size than the list of
points).

Finally, saws function produces a generator. It returns the next SAW at each
call of the next method on the generator. To do so, an exhaustive iteration of
the list produced by walks is realized, and the is_saw function is applied to each
element of this list, to test if this walk is self-avoiding.

These functions have been written and optimized in C language.

3.3 A backtracking method to discover unfoldable walks

All the possible pivot moves (either in the clockwise direction, or in the anti-
clockwise) are checked to determine if a self-avoiding walk is unfoldable. The
fold function tests, considering a given walk, a pivot move on residue number
position following the given direction (+1 or -1, if clockwise or not). Function
is_unfoldable applies the fold function to each residue of the candidate, and for
the two possible directions. The function returns True if and only if no pivot
move is possible.

8

1 def points (C) :
2 L = [(0 , 0)]
3 for c in C:
4 P = L[−1]
5 i f c == 0 : L . append ((P [0]+1 ,P [1]))
6 e l i f c == 1 : L . append ((P [0] , P[1] −1))
7 e l i f c == 2 : L . append ((P[0] −1 ,P [1]))
8 e l i f c == 3 : L . append ((P [0] , P [1]+1))
9 return L

10
11 def is_saw (C) :
12 L = points (C)
13 return len (L) == len (l i s t (s e t (L)))
14
15 def saws (n) :
16 for k in walks (n) :
17 i f is_saw (k) :
18 y i e l d k

Figure 7: Finding the self-avoiding walks

1 def fo ld (walk , pos i t ion , d i r e c t i o n) :
2 i f p o s i t i o n == 0 :
3 return walk
4 new = []
5 for k in range (len (walk)) :
6 i f k<abs (p o s i t i o n) :
7 new . append (walk [k])
8 e lse :
9 new . append ((walk [k]+ d i r e c t i o n) %4)

10 return decodes (new)
11
12 def i s _ u n f o l d a b l e (saw) :
13 for k in range (1 , len (saw)) :
14 i f is_saw (fo ld (saw , k , −1)) :
15 return Fa lse
16 e l i f is_saw (f lod (saw , k , +1)) :
17 return Fa lse
18 return True

Figure 8: Testing whether a self-avoiding walk is unfoldable

Listing 9 details how to enumerate walks in f 1SAW(n) (the complement of
USAW(n)) by constructing using a backtracking method all the k-step walks
for k lower than a given threshold n, and increasing a counter at each time the
walk is not unfoldable and of length n. The factor 4 at the end of the program
is due to the fact that we consider that the first step of these walks is 1 (South).

Backtracking method of Listing 9 has been translated in C language, opti-
mized, parallelized, and launched on the supercomputer facilities (at each time,
SAWs are separated over available processors using MPI routines) as follows.

A first version of the program, with the print line above turned as non
commented, has been launched with N = 14 and N = 20. By doing so, all the
walks ofGN that start in the East direction have been obtained (for N = 20, they
represent 224424291 walks stored in 3 gigabytes of data). Then each of these
|GN |/4 self-avoiding walks has been the starting point of another backtracking

9

1 def s t r e t c h (P , c) :
2 i f c == 0 : return (P [0]+1 ,P [1])
3 e l i f c == 1 : return (P [0] , P[1] −1)
4 e l i f c == 2 : return (P[0] −1 ,P [1])
5 e lse : return (P [0] , P [1]+1)
6
7 def backtrack (w, n) :
8 global nb
9 i f len (w)>=n :

10 return
11 for a in range (4) :
12 u = s t r e t c h (w[−1] , a)
13 i f u not in s e t (w) :
14 w1 = w+[u]
15 i f not i s _ u n f o l d a b l e (encodes (w1)) :
16 i f len (w1)==n−1:
17 nb += 1
18 # p r i n t ’ ’ . j o i n ([s t r (k) f o r k in w1])
19 backtrack (w1, n)
20
21 nb=0
22 n=13
23 backtrack (decodes ([1]) , n+2)
24 print n , 4 * nb

Figure 9: Backtracking method of USAW(n)

discovery until n > N, and the unfoldable property of each of these n-step walk
has been finally tested. This systematic approach as been successively launched
until reaching n = 28, see Table 2. For (N,n) = (20, 28), 64 processors have been
used during 70 hours in order to test the unfoldable property of 2351378582244
28-step self-avoiding walks, whereas no result has been obtained after 20 days of
computation using the same facilities with (N,n) = (28, 30). We can summarize
these results as follows.

Proposition 1 ∀n 6 28, f 1SAW(n) = Gn.

3.4 Investigating the f SAW(n) set

In the previous section, self-avoiding walks that can be folded at least once
have been enumerated. That is, the cardinality of f 1SAW(n) has been obtained
for n 6 28. A breadth first search is now presented to show howGn = f SAW(n)
has been obtained for n 6 14.

The graph structure used in the Python draft program has been provided by
the networkx library [13], which is thus imported in the first line of Listing 10.
The graph G representing G(n) is instantiated in the first line of Listing 12, and
the three following lines of this listing adds the node of the n-step straight line,
shown as a word of n zeros. The association between relative encoding of a
n-step walk described as an integer list and words on the alphabet {0, 1, 2, 3} of
length n in the nodes of G is provided by function toString of Listing 10.

Let us recall that there is an edge between two nodes in G if and only if the
SAW of the second node can be obtained by a pivot move on the first walk.

10

1 from networkx import *
2
3 def fo ld (walk , pos i t ion , d i r e c t i o n) :
4 new = []
5 for k in range (len (walk)) :
6 i f k<abs (p o s i t i o n) :
7 new . append (walk [k])
8 e lse :
9 new . append ((walk [k]+ d i r e c t i o n) %4)

10 return new
11
12 def t o S t r i n g (e n c o d i n g _ l i s t) :
13 return "" . j o i n ([s t r (k) for k in e n c o d i n g _ l i s t])

Figure 10: Preliminaries for f SAW(n) investigations

1 def explore (G, node) :
2 future_nodes = []
3 for k in range (1 , len (node)) :
4 for d i r e c t i o n in [−1 , 1] :
5 new = fo ld (node , k , d i r e c t i o n)
6 newString = t o S t r i n g (new)
7 i f not G. has_node (newString) :
8 i f is_saw (new) :
9 future_nodes . append (new)

10 G. add_edge (t o S t r i n g (node) , newString)
11 e lse :
12 G. add_edge (t o S t r i n g (node) , newString)
13 return (G, future_nodes)

Figure 11: The breadth first search explore function

This pivot moves is realized on the integer lists of the relative encoding of the
walk using the fold function presented in the previous section. This latter must
be adapted a little, to match with the fact that G contains words (not lists of
integers). This adaptation is given too in Listing 10.

Then the whole connected component of the straight line is constructed
using a breadth first search approach: at each iteration, the list of new walks
that result from a fold on the last added nodes is obtained (with function explore
of Listing 11) and required connections are provided between last added walks
and new discovered ones. The main issue in this approach is to prevent from
visiting twice a given node, which is verified with the G.has_node method.

More precisely, given a last added node, function explore realizes an one
depth exploration starting from this node, adds the new discovered nodes to G
with related edges, and returns G with the list of these new nodes x. This x is
used in Listing 12 to constitute the next depth of exploration.

3.5 In search of the shortest unfoldable self-avoiding walks

The current smallest unfoldable self-avoiding walk is an 107-step walk, as de-
picted in Figure 13. The production of this counterexample and the systematic

11

1 G = Graph ()
2 n=6
3 nodes = [[0] * n]
4 G. add_node (t o S t r i n g (nodes [0]))
5
6 while nodes != [] :
7 new_nodes = []
8 for node in nodes :
9 [G, x] = explore (G, node)

10 for k in x :
11 i f k not in new_nodes :
12 new_nodes . append (k)
13 nodes = new_nodes
14
15 print (4 * len (G))

Figure 12: Main program to compute the size of the connected component of
the straight line.

exploration of the connected component of the straight walk ofGn for small n’s
presented previously allows us to claim that (see Table 2):

Proposition 2 Let νn the smallest n > 2 such that USAW(n) , ∅. Then 15 6 νn 6
107. In other words, ∀n 6 14, f SAW(n) = Gn, whereas f SAW(107) (G107.

Figure 13: Current smallest (107-step) unfoldable SAW

The key idea leading to our first discovery of an unfoldable self-avoiding
walk is represented in Figure 14(a): a SAW constituted by two subwalks that
both fill almost 50% of a disc (approximately the same radius for the two
subwalks), when concatenated, can lead to an unfoldable self-avoiding walk if:

12

• when superposed, they fill almost 100% of the disc,

• the extremities of the concatenated walks are near the center of the super-
posed disc.

Additionally, it is required that the first subwalk ends itself by visiting its
boundary circle whereas the second subwalk starts by visiting this circle (more
precisely, an equivalent circle with a slight different radius). These two sub-
walks have been obtained by following two closed spiral trajectories in the
opposite direction.

(a) Pivot move at the border of a walk
constituted by two intricately linked
discs.

(b) First unfoldable SAW found,
obtained by this approach.

Figure 14: Obtaining unfoldable SAW constituted by two overlapped discs

By this way, no pivot move should be realized without breaking the self-
avoiding property. Indeed, due to the compactness of the resulted walk having
the form of a disc, no pivot move should be achieved inside the disc, whereas a
pivot move at its bounds (the circle) separates the whole disc in two overlapping
ones, as depicted in Figure 14(a). A first realization of such an unfoldable SAW
is shown in Figure 14(b).

After obtaining our first unfoldable self-avoiding walks, the second stage
was to reduce their number of steps by removing the central part of the discs
and reducing, bit by bit, its radius. The first operation has been realized by
removing the head of the first subwalk and the tail of the second one, whereas
the second operation consists in removing the end (resp., the beginning) of the
spirals mentioned above. After having found a self-avoiding walk having the
form of a smaller disc, the use of the backtracking program of Listing 9 has often
been required to make this SAW as unfoldable. 1840 unfoldable self-avoiding
walks have been discovered by doing so, a few of them being represented in
Table 1, while they are counted according to their number of steps in Table 2.

A second approach to obtain unfoldable SAWs is to take a compact unfold-
able SAW bounded by a kind of circle, and to extend it by two connected spirals
covered in opposite direction, as depicted in Figure 15 A proof of the correct-

13

STEPS RELATIVE ENCODING
109 033222333221212121000011111122233322233333303030300000010101011111122112

3330033332323232222121212111100011103
111 123332223333030303000010101011112221110033003333332323232222221212121111

110001110003333332222303030300111000112
112 333222333303030300001010101111211103303333332323232222221212121111110001

1100333332223303030300111101121003333011
115 333222333303030300001010101111211103303333332323232222221212121111110001

1100333332223303030300111101122100033033223
123 232323233330303030000101010111121212100303033333323232322222212121211111

101010100033232323233030303001010101122321232330012
145 222323332300033300301000111010111221122112223222232333233333030303003000

0010012223222122121212111011101000010330033003232332322211121101003333321
146 2223233323000333003010001110101112211221122232222323332333330303030030000

0100122232221221212121110111010000103300330032323323222111211010303230032

Table 1: A short list of unfoldable SAWs

ness of this approach, leading to an infinite number of unfoldable self-avoiding
walks, is detailed in [7]. However, as by this extension-based method it is ob-
viously impossible to obtain the shortest unfoldable self-avoiding walk, such
an approach will not be discussed in detail in this research work (for further
details about this approach, the reader is referred to [7]).

4 Toward Heuristic Approaches

A first quite optimistic heuristic method to discover smaller unfoldable self-
avoiding walks is to follow a Monte-Carlo approach, as described in what
follows. Starts first with the origin (0, 0), then at each iteration:

1. Pick randomly a stretching direction among the {0, 1, 2, 3} set.

2. If it is possible to extend the current walk in that direction while preserving
the self-avoiding property, then:

• do the extension;
• if the obtained walk has the targeted number of steps, then tests if it

is unfoldable.

3. If not, try to pick a new stretching direction again until reaching a pre-
defined number of attempts. If this number is reached, then restart the
whole process.

Of course, when picking a new direction in {0, 1, 2, 3}, the previous one is
considered beforehand and the set is adapted: if the previous move was 0, then
the next one is picked in {0, 1, 3}, as direct reversals are banished to preserve the
self-avoiding property.

14

n]Gn] f 1SAW(n)]USAW(n) =] f 1SAW(n)] f SAW(n)
1 4 4 0 4
2 12 12 0 12
3 36 36 0 36
4 100 100 0 100
5 284 284 0 284
6 780 780 0 780
7 2172 2172 0 2172
8 5916 5916 0 5916
9 16268 16268 0 16268

10 44100 44100 0 44100
11 120292 120292 0 120292
12 324932 324932 0 324932
13 881500 881500 0 881500
14 2374444 2374444 0 2374444
15 6416596 6416596 0 ?
16 17245332 17245332 0 ?
17 46466676 46466676 0 ?
18 124658732 124658732 0 ?
19 335116620 335116620 0 ?
20 897697164 897697164 0 ?
21 2408806028 2408806028 0 ?
22 6444560484 6444560484 0 ?
23 17266613812 17266613812 0 ?
24 46146397316 46146397316 0 ?
25 123481354908 123481354908 0 ?
26 329712786220 329712786220 0 ?
27 881317491628 881317491628 0 ?
28 2351378582244 2351378582244 0 ?
29 6279396229332 ? ? ?
30 16741957935348 ? ? ?
31 44673816630956 ? ? ?
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

107 ? ? > 1 ?
108 ? ? > 1 ?
111 ? ? > 5 ?
112 ? ? > 1 ?
113 ? ? > 2 ?
114 ? ? > 2 ?
115 ? ? > 5 ?
116 ? ? > 3 ?
117 ? ? > 4 ?
118 ? ? > 2 ?
119 ? ? > 2 ?
121 ? ? > 4 ?
122 ? ? > 5 ?
123 ? ? > 1 ?
132 ? ? > 7 ?
133 ? ? > 6 ?
134 ? ? > 95 ?
135 ? ? > 165 ?
136 ? ? > 40 ?
137 ? ? > 50 ?
138 ? ? > 175 ?
139 ? ? > 179 ?
140 ? ? > 66 ?
141 ? ? > 119 ?
142 ? ? > 322 ?
143 ? ? > 476 ?
144 ? ? > 8 ?
145 ? ? > 18 ?
146 ? ? > 54 ?
235 ? ? > 1 ?
239 ? ? > 1 ?
391 ? ? > 1 ?
575 ? ? > 1 ?
791 ? ? > 1 ?

Table 2: Cardinalities of various subsets of SAWs
15

(a) w0 (239-step walk) (b) w1 (391-step walk)

(c) w2 (575-step walk) (d) w3 (791-step walk)

Figure 15: Generating walks that cannot be folded out

An implemented improvement of this Monte-Carlo based approach for find-
ing unfoldable self-avoiding walks is to consider that such walks are perhaps
more compact than other SAWs, as any pivot move must meet the tail of the
structure. To take benefits of such an assessment, assuming that to be true,
we have required in a new version of the Monte-Carlo program that the walks
must stay in a N × N lattice, restarting the process at each time a SAW has an
height or a width exceeding N. We have experimentally limiting the lattice to
a square of size 12 × 12 and to self-avoiding walks having a number of steps
lower than 100. However, no smaller unfoldable SAW has been discovered
after 15 days of computation on the supercomputer facilities.

Remark that a second version of the backtracking algorithm has been written
too, to take into account restrictive N×N square lattices. However, this program
has not allow the author’s to discover smaller unfoldable self-avoiding walks
than the one depicted in Figure 13.

16

Figure 16: Yet another stretching method

Other investigated approaches encompass stretching method presented in
Figure 16, the computing of the fact that the extremities of the walk should
be closed one to each other, and an adaptable probability distribution of the
stretching direction set {0, 1, 2, 3} for favoring the ones that stretch the walk in
the center of the walk. They all have lead to a failure in discovering shorter
unfoldable self-avoiding walks.

5 PySAW software

To investigate folded and unfoldable self-avoiding walks, we have developed a
Python [1] interface hosted in https://code.google.com/p/pysaw and freely
available1. The interface is depicted in Figure 17 and its current functionality
is detailed below.

The interface is divided in four parts: a sandbox where the SAW is drawn,
two frames for configuration and backtracking, and the relative encoding of
the depicted self-avoiding walk at the bottom of the window. A menu bar with
common File, Edit, and Help items completes the interface.

In the sandbox frame, is is possible to construct a SAW step by step by using
arrow keys (left, right, up, bottom). The initial vertex is the black square while
the green square represents the last vertex. Other vertices and the remainder
of the walk are represented in blue. A vertex V is represented by a circle
when at least one of the two ±90◦ pivot moves on V leads to a new walk
satisfying the self-avoiding property, whereas it is a square when this vertex is
unfoldable. Intersections in the walk, for its part, are depicted by a red square,
as represented in Figure 17.

Various modification capabilities of the depicted walk have been added. Del
key removes the last vertex whereas Back Space one deletes the first vertex. An
item in the Edit menu allows the deletion of a subwalk between two vertices
selected by the right mouse button: the two remainder subwalks are then
concatenated. The Edit menu contains too an item that reverse the walk (maps
w(0)...w(n) in w(n)...w(0). A click of the left mouse button on a vertex realizes a

1This python code is maintained by Christophe Guyeux (christophe.guyeux@univ-fcomte.fr,
any feedback is welcome).

17

https://code.google.com/p/pysaw
christophe.guyeux@univ-fcomte.fr

Figure 17: PySAW software

+90◦ pivot moves on this point whereas a right click makes a pivot moves in
the reverse direction. Another computed facility is the capability to extend a
walk between two points by a right button drag-and-drop: the walk between
the two extremities (vertices) of this drag-and-drop is replaced by the walk
of the mouse motion. Control-s is a fast save of the walk in length.txt file,
while Control-q quit the program. Finally, Control-z combination undoes the
last modification whereas Control-Z redoes it. Let us remark that, at each
modification, the relative encoding of the walk provided at the bottom of the
window is naturally updated.

The representation of the walk in the sandbox can be altered by two check
boxes in the Configuration panel. The Vertices check box enables or not the
representation of the vertices as circles. When enabled, a second check box enti-
tled “Unfoldable” enables the computation of each vertex: unfoldable (square)
or not (circle). In Figure 17 this check box is enabled whereas it is disabled
in Figure 18. To disable this check box is a necessity for very long walks, due
to computation time. Another check box specifies if origin and axes must be
represented in the sandbox (the origin can be changed in the Edit menu). Other
information represented in the Configuration panel are the number of steps
of the walk (length), its width and height, its number of intersections and of
unfoldable vertices. Such information is used when representing the walk.

18

Figure 18: PySAW software

Indeed, when the check box “Figure adaptation” is enabled, then the represen-
tation of the walk is modified in such a way that this walk is always contained
in the frame: the length of the step and the position of the walk are adapted to
the frame, depending on the weight and height of the walk. If not enabled, the
walk can goes outside the frame during a pivot move (for instance), which can
be desired to understand well the effects of a given pivot move: the head of the
walk does not move, is not adapted to the figure, during this pivot.

The position of the mouse is given too in the Configuration panel, depending
on te chosen origin. Initially, this origin is set to the first node of the walk but,
as stated before, it is possible to change it using New origin of the Edit menu.
When the mouse is positioned on a vertex w(k) of the walk, its position k
is informed in parenthesis and, if the “Show future intersection” check box
is enabled, the list of intersections implied by ±90◦ pivot moves on w(k) is
provided at the bottom of the Configuration panel.

Other functionality of the PyUSAW software encompasses a backtracking
search of unfoldable SAWs, which is based on Listing 9: the self-avoiding walk
of the sandbox is extended systematically until reaching the specified deepness
and, at each time an unfoldable SAW is found, its relative encoding is print in
the terminal. Drawn self-avoiding walks can be saved as a relative encoding
text file, which can contain or not the position of w(0) in the square lattice, and

19

naturally these text files can be opened by PyUSAW. Finally, the walk can be
exported too in various image formats (SAWs represented in this research work
have been obtained using this interface).

6 Conclusion

In this article, various computational methods have been proposed to inves-
tigate the newly discovered folded and unfoldable subsets of walks. These
methods encompass backtracking, breadth first search, and Monte-Carlo ap-
proaches. The targeted goals was to find when the set of folded SAWs becomes
different from the set of all self-avoiding walks, and to discover the shortest un-
foldable SAWs. Significant advances have been achieved and explained with
detail, and an original Python tool to facilitate the study of these important
SAW subsets has finally been presented.

In future work, the authors’ intention is to restrict the range of uncertainties
regarding the smallest n such that f SAW(n) , Gn, which is currently known
to belong in J15, 107K. To do so, computational methods presented in this arti-
cle, often quite naive, will be enhanced and optimized. Heuristic approaches
encompassing swarm particles and genetic algorithms, will be regarded too to
discover shorter unfoldable SAWs, if exist. Theoretically speaking, a complex-
ity study of the protein structure prediction problem in the subset of folded
SAWs will be realized, and we will try to rewrite the generating function of
folded SAWs in other generating functions easier to calculate. Finally, conse-
quences regarding the best ways to make protein structure prediction will be
investigate.

Acknowledgement

The authors wish to thank Thibaut Cholley, Raphaël Couturier, Jean-Marc
Nicod, and Alain Giorgetti for their help in understanding folded and unfold-
able SAWs. All the computations presented in the paper have been performed
on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté.

References

[1] www.python.org.

[2] Axel Bacher and Mireille Bousquet-Mélou. Weakly directed self-avoiding
walks. J. Comb. Theory Ser. A, 118(8):2365–2391, November 2011.

[3] R. Backofen, S. Will, and P. Clote. Algorithmic approach to quantifying
the hydrophobic force contribution in protein folding, 1999.

20

[4] Jacques Bahi, Nathalie Côté, and Christophe Guyeux. Chaos of protein
folding. In IJCNN 2011, Int. Joint Conf. on Neural Networks, pages 1948–1954,
San Jose, California, United States, July 2011.

[5] Jacques Bahi, Nathalie Côté, Christophe Guyeux, and Michel Salomon.
Protein folding in the 2D hydrophobic-hydrophilic (HP) square lattice
model is chaotic. Cognitive Computation, 4(1):98–114, 2012.

[6] Jacques M. Bahi, Wojciech Bienia, Nathalie Côté, and Christophe Guyeux.
Is protein folding problem really a NP-complete one ? First investigations.
arXiv:1306.1372, October 2012. Submitted to Journal of Bioinformatics and
Computational Biology (Elsevier).

[7] Jacques M. Bahi, Alain Giorgetti, and Christophe Guyeux. Unfoldable
self-avoiding walks are infinite. Consequences for the protein structure
prediction problem. arXiv.org, 2013.

[8] Jacques M. Bahi, Christophe Guyeux, Jean-Marc Nicod, and Laurent
Philippe. Protein structure prediction software generate two different
sets of conformations. Or the study of unfolded self-avoiding walks.
arXiv:1306.1439, 2013.

[9] Nicholas R. Beaton, Philippe Flajolet, Timothy M. Garoni, and Anthony J.
Guttmann. Some new self-avoiding walk and polygon models. Fundam.
Inf., 117(1-4):19–33, January 2012.

[10] A. R. Conway, I. G. Enting, and A. J. Guttmann. Algebraic techniques for
enumerating self-avoiding walks on the square lattice. Journal of Physics A
Mathematical General, 26:1519–1534, April 1993.

[11] P. G. de Gennes. Exponents for the excluded volume problem as derived
by the Wilson method. Physics Letters A, 38(5):339–340, February 1972.

[12] Paul J. Flory. The Configuration of Real Polymer Chains. The Journal of
Chemical Physics, 17(3):303–310, 1949.

[13] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings of the
7th Python in Science Conference (SciPy2008), pages 11–15, Pasadena, CA
USA, August 2008.

[14] Md. Hoque, Madhu Chetty, and Abdul Sattar. Genetic algorithm in ab
initio protein structure prediction using low resolution model: A review.
In Amandeep Sidhu and Tharam Dillon, editors, Biomedical Data and Appli-
cations, volume 224 of Studies in Computational Intelligence, pages 317–342.
Springer Berlin Heidelberg, 2009.

[15] Barry D. Hughes. Random walks and random environments, Volume 1: Random
walks. Clarendon Press, Oxford, March 1995.

21

[16] Neal Madras and Alan D. Sokal. The pivot algorithm: A highly efficient
monte carlo method for the self-avoiding walk. Journal of Statistical Physics,
50:109–186, 1988.

[17] Neal Noah Madras and Gordon Slade. The self-avoiding walk. Probability
and its applications. Birkhäuser, Boston, 1993.

[18] Gordon Slade. The self-avoiding walk: a brief survey. Blath, Jochen (ed.) et
al., Surveys in stochastic processes. Selected papers based on the presenta-
tions at the 33rd conference on stochastic processes and their applications,
Berlin, Germany, July 27–31, 2009. Zürich: European Mathematical Society
(EMS). EMS Series of Congress Reports, 181-199 (2011)., 2011.

22

	1 Introduction
	2 Presentation of Folded Self-Avoiding Walks
	2.1 Definitions and Terminologies
	2.2 Notations
	2.3 A graph structure for SAWs folding process

	3 Computing the number of folded self-avoiding walks
	3.1 The number Gn of all possible s-step SAWs
	3.2 Preliminaries
	3.3 A backtracking method to discover unfoldable walks
	3.4 Investigating the fSAW(n) set
	3.5 In search of the shortest unfoldable self-avoiding walks

	4 Toward Heuristic Approaches
	5 PySAW software
	6 Conclusion

