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Abstract

Protein structure prediction is considered as one of the most challenging and computationally intractable combi-

natorial problem. Thus, the efficient modeling of convoluted search space, the clever use of energy functions, and

more importantly, the use of effective sampling algorithms become crucial to address this problem. For protein

structure modeling, an off-lattice model provides limited scopes to exercise and evaluate the algorithmic develop-

ments due to its astronomically large set of data-points. In contrast, an on-lattice model widens the scopes and

permits studying the relatively larger proteins because of its finite set of data-points. In this work, we took the

full advantage of an on-lattice model by using a face-centered-cube lattice that has the highest packing density

with the maximum degree of freedom. We proposed a graded energy—strategically mixes the Miyazawa-Jernigan

(MJ) energy with the hydrophobic-polar (HP) energy—based genetic algorithm (GA) for conformational search.

In our application, we introduced a 2 × 2 HP energy guided macro-mutation operator within the GA to explore

the best possible local changes exhaustively. Conversely, the 20 × 20 MJ energy model—the ultimate objective

function of our GA that needs to be minimized—considers the impacts amongst the 20 different amino acids and

allow searching the globally acceptable conformations. On a set of benchmark proteins, our proposed approach

outperformed state-of-the-art approaches in terms of the free energy levels and the root-mean-square deviations.
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1. Introduction

Protein folding, by which the primary protein chain with amino acid residue sequence folds into its

characteristics and functional three-dimensional (3D) structure in nature, is yet a very complex physical

process to simulate [1, 2, 3]. Once the folded 3D shape is available, it enables protein to perform specific

tasks for living organisms. Conversely, misfolded proteins are responsible for various fatal diseases, such

as prion disease, Alzheimers disease, Huntingtons disease, Parkinsons disease, diabetes, and cancer [4, 5].

Because of these, protein structure prediction (PSP) problem has emerged as a very important research

problem.

Homology modeling, threading and ab initio are the broad categories of available computational ap-

proaches. However, while homologous template is not available, ab initio becomes the only computation

approach, which aims to find the three dimensional structure of a protein from its primary amino acid

sequence alone such that the total interaction energy among the amino acids is minimized.

Ab initio computational approach for PSP is a daunting task [6] and for modeling the structure on a

realistic continuum space such as off-lattice space is even more daunting. However, there are several existing

off-lattice models such as Rosetta [7], Quark [8], I-TASSER [9], and so on which map the structures on the

realistic continuum spaces rather than using discretized on-lattice spaces and hence, those approaches need

to deal with the astronomical data-points incurring heavy computational cost. On-lattice model on the other

hand, i) due to reduced complexity helps fast algorithms developments and ii) widens the scope as well as

permits relatively longer protein chains to examine, which is otherwise prohibitive [10, 11, 12, 13, 14, 15]. The

computed on-lattice fold can be translated to off-lattice space via hierarchical approaches to provide output

in real-space [16, 17, 18, 19]. The Monte Carlo (MC) or, Conformational Space Annealing (CSA) used in

Rosetta can be replaced with better algorithm developed using on-lattice models [16, 17, 18]. For instance,

we embedded one of our previous on-lattice algorithm [17] within Rosetta and the embedded algorithm

improved [20] the average RMSD by 9.5% and average TM-Score by 17.36% over the core Rosetta [7].

Similarly, the embedded algorithm also outperformed [20] I-TASSER [9]. These improvements motivated us

further developing superior algorithms using on-lattice models.

The two most important building blocks of an ab initio PSP are i) an accurate (computable) energy

function [19] and ii) an effective search or sampling algorithm. For a simplified model based PSP, it is

possible to compute the lower bound [21]. It is also possible to know what would be the best score and

hence the native score of a sequence by exhaustive enumeration [22, 23] (which is feasible to compute for

smaller sequences only). Even though, there exists no efficient sampling algorithm yet that can conveniently

obtain the known final structure starting from a random structure for all possible available cases [24, 25].

Therefore, a number of efforts are being made, such as, different types of meta-heuristics have been used in

solving the on lattice PSP problems. These include Monte Carlo Simulation [26], Simulated Annealing [27],

Genetic Algorithms (GA) [24, 25, 28, 29], Tabu Search with GA [30], GA with twin-removal operator [31],

Tabu Search with Hill Climbing [32], Ant Colony Optimization [33], Particle Swarm Optimization [34, 35],
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Immune Algorithms [36], Tabu-based Stochastic Local Search [37, 38], Firefly Algorithm [39], and Constraint

Programming [40, 41].

Krasnogor et al. [42] applied HP model for PSP problem using the square, triangular, and diamond lattices

and further extended their work applying fuzzy-logic [43]. Islam et al. further improved the performance of

memetic algorithms in a series of work [44, 45, 46, 47] for the simplified PSP models. They also proposed

a clustered architecture for the memetic algorithm with a scalable niching technique [48, 49, 50] for PSP.

However, using 3D FCC lattice points, the recent state-of-the-art results for the HP energy model have

been achieved by genetic algorithms [51, 52], local search approaches [38, 53], a local search embedded

GA [54], and a multi-point parallel local search approach [55]. Kern and Lio [56] applied hydrophobic-core

guided genetic operator for efficient searching on HP, HPNX and hHPNX lattice models. Several approaches

towards the 20× 20 energy model include a constraint programming technique used in [57, 58] by to predict

tertiary structures of real proteins using secondary structure information, a fragment assembly method [59]

to optimize protein structures. Among other successful approaches, a population based local search [60] and

a population based genetic algorithm [61] are found in the literature that applied empirical energy functions.

In a hybrid approach, Ullah et al. [62] applied a constraint programming based large neighborhood search

technique on top of the output of COLA [63] solver. The hybrid approach produced the state-of-the-art

results for several small sized (less than 75 amino acids) benchmark proteins. In another work, Ullah et

al. [64] proposed a two stage optimization approach combining constraint programming and local search

using Berrera et al. [11] deduced 20×20 energy matrix (we denote this model as BM). In a recent work [65],

Shatabda et al. presented a mixed heuristic local search algorithm for PSP and produced the state-of-the-art

results using the BM model on 3D FCC lattice. Although the heuristics themselves are weaker than the

BM energy model, their collective use in the random mixing fashion produce results better than the BM

energy itself. In a previous work [66], we applied BM and HP energy models in a mixed manner within a

GA framework and showed that hybridizing energies performs better than their individual performances.

In this work, we propose a graded as well as hybrid energy function with a genetic algorithm (GA) based

sampling to develop an effective ab initio PSP tool. The graded energy-model strategically mixes 20 × 20

Miyazawa-Jernigan (MJ) contact-energy [10, 11] with the simple 2 × 2 Hydrophobic-Polar (HP) contact-

energy model [12], denoted as MH (MJ+HP → MH) in this paper. Specifically, we propose a hydrophobic-

polar categorization of the HP model within a hydrophobic-core directed macro-mutation operator to explore

the local benefits exhaustively while the GA sampling is guided by the MJ energy Matrix globally. While the

fine grained details of the high resolution interaction energy matrix can become computationally prohibit,

a low resolution energy model may effectively sample the search-space towards certain promising directions

particularly emphasizing on the pair-wise contributions with large magnitudes which we have implementa-

tion strategically via a macro mutation. Further, we use an enhanced genetic algorithm (GA) framework [51]

for protein structure optimization on 3D face-centered-cube (FCC) lattice model. Prediction in the FCC

lattice model can yield the densest protein core [24] and the FCC lattice model can provide the maximum

degree of freedom as well as the closest resemblance to the real or, high resolution folding within the lattice
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constraint. FCC orientation can therefore align a real protein into the closest conformation amongst the

available lattice configurations [25].

On a set of standard benchmark proteins, our MH model guided GA, named as MH GeneticAlgorithm

(MH GA), shows significant improvements in terms of interaction energies and root-mean-square deviations

in comparison to the state-of-the-art search approaches [62, 65, 61] for the lattice based PSP models. For

a fair comparison, we run [62] and [65] using MJ energy model and in the result section, we compare

our experimental results with the results produced by [62] and [65]. Further, we present an experimental

analysis showing the effectiveness of using the hydrophobic polar categorization of the HP model to direct

macro-mutation operation.

2. Background

Anfinsen’s hypothesis [67] and Levinthal’s paradox [68] form the basis and the confidence of the ab initio

approach, which inform that the protein structure prediction can be relied only on the amino acid sequence

of the target protein as well as there should be a non-exhaustive pathway to obtain the native fold. Thus,

we set our goal to model the folding process using on-lattice model. Further, it has been argued in [69, 70],

“... protein folding mechanisms and landscapes are largely determined by the topology of the native state

and are relatively insensitive to details of the interatomic interactions. This dependence on low resolution

structural features, rather than on high resolution detail, suggests that it should be possible to describe

the fundamental physics of the folding process using relatively low resolution models ... The observation

that protein folding mechanisms are determined primarily by low resolution topological features and not

by high resolution details suggests that a simple theory incorporating features of the native state topology

should be successful in predicting the broad outlines of folding reactions”. A rigorous discussion on on-

lattice models can be found in [71, 72]. Further, exploration of an astronomically large search space and the

evaluation of the conformations using a real energy models are the big challenges often being computationally

prohibitive, especially for sequences > 200 residues long, whereas simplified models can aid in modeling and

understanding the protein folding process feasibly. Next, we describe the model that we use.

2.1. Simplified model

In our simplified model, we use 3D FCC lattice points to map the amino acids of a protein sequence. In

the mapping, each amino acid of the sequence, occupies a point on the lattice to form a continuous chain of

a self-avoiding-walk. We apply the MJ energy matrix in conjunction with the HP energy model in a genetic

algorithm framework for PSP. The FCC lattice, the HP and MJ energy models, and the GA are briefly

described below.
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Figure 1: A 3-dimensional face-centered-cubic lattice space. The 12 basis vectors of the neighbors of the origin (0, 0, 0)
in a Cartesian coordinate system.

FCC lattice

The FCC lattice has the highest packing density compared to the other existing lattices [73]. Thus, FCC

model can provide maximum degree of freedom within a constrained space. In FCC, each lattice point (the

origin in Figure 1) has 12 neighbors with closest possible distance having 12 basis vectors as follows:

v1 = (1, 1, 0) v4 = (−1,−1, 0) v7 = (−1, 1, 0) v10 = (0, 1,−1)

v2 = (1, 0, 1) v5 = (−1, 0,−1) v8 = (1,−1, 0) v11 = (1, 0,−1)

v3 = (0, 1, 1) v6 = (0,−1,−1) v9 = (−1, 0, 1) v12 = (0,−1, 1)

In simplified PSP, conformations are mapped on the lattice by a sequence of basis vectors, or by the

relative vectors that are relative to the previous basis vectors in the sequence.

HP energy model

Based on the hydrophobic property, the 20 amino acids which are the constituents of all proteins, are

broadly divided into two categories: (a) hydrophobic amino acids (Gly, Ala, Pro, Val, Leu, Ile, Met, Phe,
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Tyr, Trp) are denoted as H; and (b) hydrophilic or polar amino acids (Ser, Thr, Cys, Asn, Gln, Lys, His, Arg,

Asp, Glu) are denoted as P. In the 2× 2 HP model [12], when two non-consecutive hydrophobic amino acids

become topologically neighbors, they contribute a certain amount of negative energy, which for simplicity

is considered as −1 (Table 1). The total energy EHP (Equation 1) of a conformation based on the HP

model becomes the sum of the contributions over all pairs of the non-consecutive hydrophobic amino acids

(Figure 2a).

Table 1: The 2 × 2 HP energy model.

H P

H -1 0

P 0 0

EHP =
∑

i<j−1

cij × eij (1)

where, cij = 1 if amino acids at positions i and j in the sequence are non-consecutive but topological

neighbors on the lattice, otherwise cij = 0. The eij = −1 if the ith and jth amino acids are both hydrophobic,

otherwise eij = 0.

a) HP energy calculation b) MJ energy calculation

Figure 2: On a lattice based model, (a) is showing H-H contact energy −4 (−1× 4) using the HP model for a random
sequence: HPHPPHPH (b) is showing the sum of the pair-wise contact potentials 0.34 ((−0.08) + (−0.19) + (0.00)×
2 + (−0.07) + (0.34) × 2) using the MJ model for a random sequence: GHAACHVC.

MJ energy model

By analyzing crystallized protein structures, Miyazawa and Jernigan [10] statistically deduced a 20 × 20

energy matrix (better known as MJ energy model) that considers residue contact propensities between the

amino acids. BM is a similar energy matrix as MJ deduced by Berrera et al. [11] by calculating empirical

contact energies on the basis of information available from a set of selected protein structures and following

the quasi-chemical approximation. In this work, we use MJ energy model. The total energy EMJ (Equation
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Table 2: The 20× 20 MJ energy model by Miyazawa and Jernigan [10]. The bold-faced amino acids are Hydrophobic
(H) and others are Polar (P).

CYS -1.06

MET 0.19 0.04

PHE -0.23 -0.42 -0.44

ILE 0.16 -0.28 -0.19 -0.22

LEU -0.08 -0.20 -0.30 -0.41 -0.27

VAL 0.06 -0.14 -0.22 -0.25 -0.29 -0.29

TRP 0.08 -0.67 -0.16 0.02 -0.09 -0.17 -0.12

TYR 0.04 -0.13 0.00 0.11 0.24 0.02 -0.04 -0.06

ALA 0.00 0.25 0.03 -0.22 -0.01 -0.10 -0.09 0.09 -0.13

GLY -0.08 0.19 0.38 0.25 0.23 0.16 0.18 0.14 -0.07 -0.38

THR 0.19 0.19 0.31 0.14 0.20 0.25 0.22 0.13 -0.09 -0.26 0.03

SER -0.02 0.14 0.29 0.21 0.25 0.18 0.34 0.09 -0.06 -0.16 -0.08 0.20

GLN 0.05 0.46 0.49 0.36 0.26 0.24 0.08 -0.20 0.08 -0.06 -0.14 -0.14 0.29

ASN 0.13 0.08 0.18 0.53 0.30 0.50 0.06 -0.20 0.28 -0.14 -0.11 -0.14 -0.25 -0.53

GLU 0.69 0.44 0.27 0.35 0.43 0.34 0.29 -0.10 0.26 0.25 0.00 -0.26 -0.17 -0.32 -0.03

ASP 0.03 0.65 0.39 0.59 0.67 0.58 0.24 0.00 0.12 -0.22 -0.29 -0.31 -0.17 -0.30 -0.15 0.04

HIS -0.19 0.99 -0.16 0.49 0.16 0.19 -0.12 -0.34 0.34 0.20 -0.19 -0.05 -0.02 -0.24 -0.45 -0.39 -0.29

ARG 0.24 0.31 0.41 0.42 0.35 0.30 -0.16 -0.25 0.43 -0.04 -0.35 0.17 -0.52 -0.14 -0.74 -0.72 -0.12 0.11

LYS 0.71 0.00 0.44 0.36 0.19 0.44 0.22 -0.21 0.14 0.11 -0.09 -0.13 -0.38 -0.33 -0.97 -0.76 0.22 0.75 0.25

PRO 0.00 -0.34 0.20 0.25 0.42 0.09 -0.28 -0.33 0.10 -0.11 -0.07 0.01 -0.42 -0.18 -0.10 0.04 -0.21 -0.38 0.11 0.26

CYS MET PHE ILE LEU VAL TRP TYR ALA GLY THR SER GLN ASN GLU ASP HIS ARG LYS PRO

2) of a conformation based on the MJ energy model is the sum of the contributions of all of the non-

consecutive amino acid pairs that are topological neighbors (Figure 2b).

EMJ =
∑

i<j−1

cij × eij (2)

where, cij = 1 if amino acids at positions i and j in the sequence are non-consecutive neighbors on the

lattice, otherwise cij = 0; and eij is the empirical energy value between the ith and jth amino acid pair

specified in the MJ energy matrix as shown in Table 2.

Algorithm 1: The standard genetic algorithm
/* INPUT: Protein sequence, Crossover rate, Mutation rate, Population size */

/* OUTPUT: Global best solution */

1 initialize population with encoded protein sequences as chromosomes (individuals);
2 evaluate population;
3 repeat
4 Select the best-fit individuals for reproduction;
5 Breed new individuals using crossover and mutation operations according to the rates;
6 Evaluate the new individuals;
7 Replace least-fit individuals with new best-fit individuals;

8 until (termination criteria);
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2.2. Genetic algorithms

GAs [74] are a family of population-based search algorithms which can be applied for PSP as an op-

timization problem. The outline of GA as given in Algorithm 1, follows simple steps: Line 1 initializes

the population; the Line 2 evaluates the solutions to rank them by relative quality; and the Lines 4-7 are

repeating on generating, evaluating and replacing the least-fitted off-springs within the population until the

termination criteria arises. For the coding scheme, non-isomorphic encoding [75] has been applied and the

v1, . . . , v12 (in Figure 1) can be thought of be renamed as a, . . ., l respectively.

Figure 3: Typical crossover operator: exchanging parts and forming new chromosomes.

A typical crossover operator randomly splits two solutions at a randomly selected crossover point and

exchanges the parts between them (Figure 3) and a typical mutation operator alters a solution at a random

point (Figure 4). In the case of PSP, conformations are regarded as solutions of a GA population.

Figure 4: Typical mutation operator: mutating one point into some other point.

3. Methods

This section describes the proposed MH GA framework along with the implementation level detail. We

implemented the framework in Java (J2EE), using Rocks clusters. The code for MH based GA is freely
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available online1.

Crossover operator Mutation operators
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a) single-point crossover b) rotation c) diagonal d) pull e) tilt

Figure 5: The primitive operators used in our genetic algorithms. The crossover operator applied on two parent conformations
to exchange their parts to generate two child conformations (as shown in a) and the mutation operators are applied on single
conformation to generate single child conformation (as shown in b, c,d, and e). The operators are implemented in 3D space,
however, for simplification and easy understanding the figures are presented in 2D space. The black solid circles represent the
hydrophobic amino acids and others are polar.

3.1. The primitive operators implemented in the GA framework

The primitive operators that we implemented within the MH GA framework are crossover (Figure 5a),

rotation mutation (Figure 5b), diagonal move (Figure 5c), pull moves (Figure 5d), and tilt moves (Figure 5e).

The Rotation, diagonal move, pull moves and tilt moves are implemented as mutation operators.

1. Crossover: At a given crossover point (dotted circle in Figure 5a), two parent conformations exchange

their parts and generate two children. The success rate of crossover operator decreases with the increase

of the compactness of the structure.

2. Rotation: One part of a given conformation is rotated around a selected point (Figure 5b). This move

is mostly effective at the beginning of the search.

3. Diagonal move: Given three consecutive amino acids at lattice points A,B, and C, a diagonal move

at position B takes the corresponding amino acid diagonally to a free position (Figure 5c). The diagonal

moves are very effective on FCC lattice [37, 41] points.

1Download JAR files from: http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
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4. Pull moves: The amino acids at points A and B are pulled to the free points (Figure 5d) and the

connected amino acids are pulled as well to get a valid conformation. The pull moves [23] are local,

complete, and reversible. These are very effective especially when the conformation is compact.

5. Tilt moves: Two or more consecutive amino acids connected in a straight line are moved by a tilt

move to immediately parallel lattice positions [29]. The tilt-moves pull the conformation from both

sides until a valid conformation is found. In Figure 5e, the amino acids at points C and D are moved

and subsequently other amino acids from both sides are moved as well.

3.2. Genetic algorithm framework

The pseudocode of MH GA framework is presented in Algorithm 2. It uses a set of primitive operators

(Figure 5) in an exhaustive generation approach to diversify the search, a hydrophobic core-directed macro-

mutation operator to intensify the search, and a random-walk algorithm to recover from the stagnation.

Like other search algorithms, it requires initializing the population and the solutions need to be evaluated

in each iteration.

Algorithm 2: MH GeneticAlgorithm (MH GA)
/* INPUT: Protein/Amino acid sequence, popSize : Population size; opR: Operator selection probabilities

*/

/* OUTPUT: Global best conformation */

/* VARIABLE: op: Operators; c, c′: Conformations; curP, newP: Current and new populations; mmCount:
Macro-mutation counter; rwCount: Non-improving random-walk counter */

1 curP←initialise ;
2 repeat
3 op←, selectOperator (opR);
4 if ( op is crossover) then

/* ** go for crossover */

5 while (¬ full (newP)) do
6 c, c′ ← randomConfs (curP);
7 newP.add (doCrossover);

8 end

9 else if ( op is mutation) then
/* ** go for mutation */

10 foreach (c ∈ curP) do
11 newP.add (doMutation);
12 end

13 else
/* ** go for macro-mutation */

14 foreach (c ∈ curP) do
15 newP.add (doHCDMacroMutation);
16 end

17 end
18 if (¬ improved (newP,rwCount)) then
19 newP←goRandomWalk ;
20 end
21 curP← newP;

22 until (termination criteria);
23 return bestConformation (curP);
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The algorithm initializes (Algorithm 2: Line 7) the current population with randomly generated individu-

als. At each generation, it selects a genetic operator based on a given probability distribution to use through

the generation (Algorithm 2: Line 9). In fact, we select the operators randomly by giving equal opportu-

nities to all operators. The selected operator is used in an exhaustive manner (Algorithm 2: Line 11-12 or

Line 14-16) to obtain all conformations in the new population. We ensure that no duplicate conformation

is added to the new population. The add() method (Line 12 or 16 in Algorithm 2) takes care of adding

the non-duplicate conformations to the new population. For a given number of generations, if the best

conformation in the new population is not better than the best in the current population, our algorithm

triggers a random-walk technique (Algorithm 2: Line 18) to diversify the new population. Nevertheless,

after each generation, the new population becomes the current population (Algorithm 2: Line 19); and the

search continues. Finally, the best conformation found so far is returned (Algorithm 2: Line 20). Along with

MJ potential matrix, the HP energy model is used during move selection by the macro-mutation operator.

The macro-mutation operator is used as other mutation operators (Figure 5b-e) in MH GA. The details of

initialization, evaluation of fitness, exhaustive generation, macro-mutation and stagnation recovery schemes

are presented below.

Initialization

Our algorithm starts with a feasible set of conformation known as population. We generate initial confor-

mations following a self-avoiding walk on FCC lattice points. The pseudocode of the algorithm is presented

in Algorithm 3. It places the first amino acid at (0, 0, 0). It then randomly selects a basis vector to place the

successive amino acid at a neighboring free lattice point. The mapping proceeds until a self-avoiding walk

is found for the whole protein sequence.

Evaluate the fitness

For each iteration, the conformation is evaluated by calculating the contacts (topological neighbor) po-

tentials where the two amino acids are non-consecutive. The pseudo-code in Algorithm 4 presents the

algorithm for calculating the interaction energy of a given conformation. The contact potentials are found

in MJ potential matrix [10] (see Table 2).

Exhaustive generation

Unlike standard genetic algorithm, in MH GA, the randomness is reduced significantly by applying ex-

haustive generation approach. For mutation operators, MH GA adds one resultant conformation to the new

population that corresponds to each conformation in the current population. Operators are applied to all

possible point (Algorithm 5) exhaustively until finding a better solution than the parent. If no better solution

is found, the parent survives through the next generation. On the other hand, for crossover operators, two

resultant conformations are added to the new population from two randomly selected parent conformations.

Crossover operators generate child conformations by applying the crossover operator in all possible points

11



Algorithm 3: initialise
/* Is called from Algorithm 2 in Line 1 */

/* INPUT: Protein/Amino acid sequence, FCC basis vectors, popSize : Population size */

/* OUTPUT: Initial population */

/* VARIABLE: AA : Array of amino acid; c : Conformations; point : Unoccupied point on 3D FCC Lattice space

*/

1 for (p = 1; p ≤ popSize; p++) do
2 AA[0]←− aminoAcid (0,0,0);
3 for a number of times do
4 for ( i =1 to seqLength-1) do
5 j←− getRandom (12);
6 point←− AA[i− 1] + basisVector[j];
7 if point is not free then
8 break;
9 else

10 AA[i]←− aminoAcid (point);
11 end

12 end

13 end
14 if full structure found then
15 c.AminoAcid←−AA [ ];
16 else
17 c ←− a deterministic structure;
18 end
19 c.fitness ←−evaluate (c.aminoAcid);
20 initPop.add (c);

21 end
22 return initPop

Algorithm 4: evaluate
/* Is called from Algorithm 3 in Line 19 */

/* INPUT: MJ energy matrix(20× 20), AA : Array of amino acid */

/* OUTPUT: Fitness of the structure */

/* VARIABLE: seqLength : Sequence length; pointI, pointj : Occupied point on 3D FCC Lattice space */

1 fitness←− 0
2 for ( i =0 to seqLength− 1) do
3 for ( j =i +2 to seqLength− 1) do
4 pointI←− AA [i];
5 pointJ←− AA [j];
6 sqrD←− getSqrDist (pointI, pointJ);
7 if sqrD =2 then
8 fitness←− fitness+Ebm[i][j];
9 end

10 end

11 end
12 return fitness;

(Algorithm 6) on two randomly selected parents. The best two conformations from the parents and the

children are then become the resultant conformations for the next generation.
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Algorithm 5: doMutation
/* Is called from Algorithm 2 in Line 11 */

/* INPUT: conf : Conformation */

/* OUTPUT: Best mutated conformation */

/* VARIABLE: c : Conformation; offspring : List of type conformation */

1 offspring.add(conf);
2 foreach (1 ≤ pos ≤ seqLength) do
3 c← applyOperator(conf, pos);
4 offspring.add(c);

5 end
6 return bestConformation(offspring);

Algorithm 6: doCrossover
/* Is called from Algorithm 2 in Line 7 */

/* INPUT: c1 and c2 : Conformations */

/* OUTPUT: Best two conformations after crossover */

/* VARIABLE: c, c′ : Conformations; offspring : List of type conformation */

1 offspring.add(c1, c2);
2 foreach (1 ≤ pos ≤ seqLength) do
3 c, c′ ← applyOperator(c1, c2, pos);
4 offspring.add(c, c′);

5 end
6 return best2Conformations(offspring);

Figure 6: A macro-mutation operator repeatedly used diagonal moves. The moves of an amino acid are guided by the distance
of current position (d1) and the distance of target position (d2) from the HCC. The operator is implemented in 3D space,
however, for simplification and easy understanding, the figures are drawn in 2D space.
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Macro-mutation operator

Protein structures have hydrophobic cores (H-Core) that hide the hydrophobic amino acids from water and

expose the polar amino acids to the surface to be in contact with the surrounding water molecules [76]. H-

core formation is an important objective of HP based PSP. Macro-mutation operator is a composite operator

(Figure 6) that uses a series of diagonal-moves (Figure 5c) on a given conformation to build the H-core around

the hydrophobic-core-center (HCC). The macro-mutation squeezes the conformation and quickly forms the

H-core. In MH GA, macro-mutation is used as other mutation operators. The Algorithm 7 presents the

pseudocode of macro-mutation algorithm.

Algorithm 7: doHCDMacroMutation
/* Is called from Algorithm 2 in Line 15 */

/* INPUT: HP energy matrix(2× 2), C: Conformation; repeat: Loop counter */

/* OUTPUT: Mutated conformation */

/* VARIABLE: T: Either hydrophobic (H) or polar (P); AA: Array of amino acid */

1 AA [ ]←−C.AminoAcid[ ];
2 for i = 1 to repeat do
3 T←− P if bernoulli(p), else H
4 AA[j] : jth amino acid in conformation
5 point: unoccupied new position for AA[j]
6 hcc ←−findHCC ()
7 foreach j : typeOf(AA[j]) = T do
8 dold ←−getDistance (AA[j],hcc)
9 if T = P then

10 point←−findFreePoint (AA[j])
11 applyDiagonalMove(AA[j], point)

12 end
13 else
14 point←−findFreePoint (AA[j])
15 dnew ←−getDistance (point,hcc)
16 if dnew ≤dold then
17 applyDiagonalMove(AA[j], point)
18 break

19 end

20 end

21 end

22 end
23 C.AminoAcid[ ]←−AA [ ];
24 return C

In macro-mutation, the HCC is calculated by finding arithmetic means of x, y, and z coordinates of all H

amino acids. In macro-mutation, for a given number of iterations, diagonal moves apply repeatedly either at

each P- or at each H-type amino acid positions. Whether to apply the diagonal move on P- or H-type amino

acids is determined by using a Bernoulli distribution (Algorithm 7 : Line 2) with probability p (intuitively

we use p = 20% for P-type amino acids). For a P-type amino acid, the first successful diagonal move is

considered. However, for a H-type amino acid, the first successful diagonal move that does not increase the

Cartesian distance of the amino acid from the HCC is taken. All the amino acids are traversed and the

successful moves are applied as one composite move.
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3.3. Stagnation recovery

Like other search algorithm, GA can get stuck in the local minima or, can be stalled. Stall condition

can occur when similarities with the chromosomes in GA increases heavily and the operators are unable to

produce better diverse solutions. Further, with the PSP search, resulting solutions become phenotypically

compact which reduce the likelihood of producing better solution from the population due to harder self-

avoid-walk (SAW) constraints [17, 77, 78]. It would rather require very intelligent moves to reform into

another competitive compact SAW. To deal with such situation, we apply the following two actions:

Removing duplicates

In genetic algorithm it has been observed that with increasing generations, the similarity among the

individuals within the population increases. In worst case scenario, all the individuals become similar and

forces the search to stall in the local minima. In our approach, we remove duplicates from each generation

to maintain the diversity of the population. During exhaustive generation, we check the existence of the

newly generated child in the new population. If it does not exist then the new solution is added to the new

population list. Our approach reduces the frequency of stagnations.

Applying random-walk

Sometimes, early convergence leads the search towards the stagnation situation. In the HP energy model,

premature H-cores are observed at local minima. To break these H-cores, in MH GA (Algorithm 2 : Line 18),

a random-walk algorithm (Algorithm 8) is applied. This algorithm uses pull moves [23] (as shown in Figure

5d) to break the H-core. We use pull-moves because they are complete, local, and reversible. Successful pull

moves never generate infeasible conformations. During pulling, energy level and structural diversification

are observed to maintain balance among these two. We allow energy level to change within 5% to 10% that

changes the structure from 10% to 75% of the original. We try to accept the conformation that is close to

the current conformation in terms of the energy level but as far as possible in structural diversity, and which

is determined by the function checkDiversity() in Algorithm 8 at Line 5. For genetic algorithm, random-walk

is very effective [79] to recover from stagnation.

The complete flow of MH GeneticAlgorithm (Algorithm: 2) is graphically presented in Figure 7. Further,

it describes the steps taken within macro mutation procedure (Algorithm: 7).

4. Performance Evaluation

To compare and evaluate the performance of the proposed PSP predictor with respect to the state-of-

the-art approaches, we used the measures Relative Improvement (RI) and RMSD comparisons. They are

defined below:
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Algorithm 8: goRandomWalk
/* Is called from Algorithm 2 in Line 19 */

/* INPUT: inPop: Current population; pct: Changed percentage (%) */

/* OUTPUT: New diverged population */

/* VARIABLE: outPop: New diverged population; AA: Array of amino acid; c, c′ : Conformations */

1 foreach (c ∈ inPop) do
2 isFound←− false;
3 AA [ ]←−c.AminoAcid[ ];
4 while (¬isFound) do
5 for (i = 1; i ≤ seqLength & ¬isFound; i++) do
6 applyPullMove(AA[i]);
7 c′.AminoAcid[ ]←−AA [ ];
8 isFound←− checkDiversity (c,c′,pct);

9 end

10 end
11 outPop.add (c′);

12 end
13 return outPop

  Generate initial Population 

           (Algorithm: 3)

  Evaluate initial population

          (Algorithm: 4)

  Current population

Is stop criteria 

 encountered?

Choose a genetic

      operator

Crossover operator Mutation operator

Macro-mutation operator
Primitive mutation operators

Pull Move Tilt Move

Diagonal Rotation

     Do crossover 

    (Algorithm: 6)

  Do mutation

(Algorithm: 5)

New population

New population

Global solution 

    improved? 

Apply random-walk

    (Algorithm: 8)

New population

YES NO

H P

Choose operand 

     type: H or P? 

Build conformation

Return conformation
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  Done with all 
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Move current AA to this point

  Done with all 
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Find the point of shortest distance 

Go through all the ’P’ amino acids
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Go through all the ’H’ amino acids
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Move current AA to first free point
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               (Algorithm: 7)

MH_GeneticAlgorithm Framework

              (Algorithm: 2)

Input:

Amino acid sequence

FCC basis vectors

Input:

[ 20 x 20 ] MJ 

energy matrix

Input:

[ 2 x 2 ] HP

energy model

Figure 7: A complete overview of our algorithmic approach. The macro-mutation procedure is described step by step (inside
the blue box). The procedural sub blocks are marked in bold along with the corresponding labels of the algorithms described
above.
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Relative Improvement (RI)

The difficulty to improve energy level is increased as the predicted energy level approaches to a known

lower bound of a given protein. For example, if the lower bound of free energy of a protein is −100, the

efforts to improve energy level from −80 to −85 is much less than that to improve energy level from −95 to

−100 though the change in energy is the same (−5). The RI computes the relative improvements that our

algorithm (target, t) achieved w.r.t. the state-of-the-art approaches (reference, r).

For each protein, the relative improvement of the target (t) w.r.t. the reference (r) is calculated using the

formula in Equation 3, where Et and Er denote the average energy values achieved by target and reference

respectively.

RI =
Et − Er

Er
× 100% (3)

RMSD comparison

The root mean square deviation (RMSD) is frequently used to measure the differences between values

predicted by a model and the values actually observed. We compare the predicted structures obtained by

our approach with the state-of-the-art approaches by measuring the root-mean-square w.r.t. the native

structures from PDB. For any given structure the root-mean-square is calculated using Equation 4,

RMSD =

√∑n−1
i=1

∑n
j=i+1(dp

ij − dn
ij)

2

n× (n− 1)/2
(4)

where dp
ij and dn

ij denote the distances between ith and jth amino acids respectively in the predicted struc-

ture and the native structure of the protein. The average distance between two α-Carbons in native structure

is 3.8Å. To calculate root-mean-square, the distance between two neighbor lattice points is considered as

3.8Å.

5. Results and discussion

In this section, we discuss the obtained results along with the comparison of the performance of

MH GeneticAlgorithm with the other state-of-the-art results [61, 62, 65]. Further, we present an analy-

sis of the results.

5.1. Benchmark

In our experiment, the protein instances are taken from the literatures. The first seven proteins

(4RXN,1ENH, 4PTI, 2IGD, 1YPA, 1R69, and 1CTF) in Table 3 are taken from [62] and [65], and the

next five proteins (3MX7, 3NBM, CMQO, 3MRO, and 3PNX) are taken from [65]. The two other protein

instances in Table 5 (2J61 and 2HFQ) are taken from [61].
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Table 3: The benchmark proteins used in our experiments.

ID Len Protein sequence

4RXN 54 MKKYTCTVCGYIYNPEDGDPDNGVNPGTDFKDIPDDWVCPLCGVGKDQFEEVEE

1ENH 54 RPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKI

4PTI 58 RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

2IGD 61 MTPAVTTYKLVINGKTLKGETTTKAVDAETAEKAFKQYANDNGVDGVWTYDDATKTFTVTE

1YPA 64 MKTEWPELVGKAVAAAKKVILQDKPEAQIIVLPVGTIVTMEYRIDRVRLFVDKLDNIAQVPRVG

1R69 69 SISSRVKSKRIQLGLNQAELAQKVGTTQQSIEQLENGKTKRPRFLPELASALGVSVDWLLNGTSDSNVR

1CTF 74 AAEEKTEFDVILKAAGANKVAVIKAVRGATGLGLKEAKDLVESAPAALKEGVSKDDAEALKKALEEAGAEVEVK

3MX7 90 MTDLVAVWDVALSDGVHKIEFEHGTTSGKRVVYVDGKEEIRKEWMFKLVGKETFYVGAAKTKATINIDAISGFA
YEYTLEINGKSLKKYM

3NBM 108 SNASKELKVLVLCAGSGTSAQLANAINEGANLTEVRVIANSGAYGAHYDIMGVYDLIILAPQVRSYYREMKVDA
ERLGIQIVATRGMEYIHLTKSPSKALQFVLEHYQ

3MQO 120 PAIDYKTAFHLAPIGLVLSRDRVIEDCNDELAAIFRCARADLIGRSFEVLYPSSDEFERIGERISPVMIAHGSY
ADDRIMKRAGGELFWCHVTGRALDRTAPLAAGVWTFEDLSATRRVA

3MRO 142 SNALSASEERFQLAVSGASAGLWDWNPKTGAMYLSPHFKKIMGYEDHELPDEITGHRESIHPDDRARVLAALKA
HLEHRDTYDVEYRVRTRSGDFRWIQSRGQALWNSAGEPYRMVGWIMDVTDRKRDEDALRVSREELRRL

3PNX 160 GMENKKMNLLLFSGDYDKALASLIIANAAREMEIEVTIFCAFWGLLLLRDPEKASQEDKSLYEQAFSSLTPREA
EELPLSKMNLGGIGKKMLLEMMKEEKAPKLSDLLSGARKKEVKFYACQLSVEIMGFKKEELFPEVQIMDVKEYL
KNALESDLQLFI

2J6A 135 MKFLTTNFLKCSVKACDTSNDNFPLQYDGSKCQLVQDESIEFNPEFLLNIVDRVDWPAVLTVAAELGNNALPPT
KPSFPSSIQELTDDDMAILNDLHTLLLQTSIAEGEMKCRNCGHIYYIKNGIPNLLLPPHLV

2HFQ 85 MQIHVYDTYVKAKDGHVMHFDVFTDVRDDKKAIEFAKQWLSSIGEEGATVTSEECRFCHSQKAPDEVIEAIKQN
GYFIYKMEGCN

3MSE 180 GISPNVLNNMKSYMKHSNIRNIIINIMAHELSVINNHIKYINELFYKLDTNHNGSLSHREIYTVLASVGIKKWD
INRILQALDINDRGNITYTEFMAGCYRWKNIESTFLKAAFNKIDKDEDGYISKSDIVSLVHDKVLDNNDIDNFF
LSVHSIKKGIPREHIINKISFQEFKDYMLSTF

3MR7 189 SNAERRLCAILAADMAGYSRLMERNETDVLNRQKLYRRELIDPAIAQAGGQIVKTTGDGMLARFDTAQAALRCA
LEIQQAMQQREEDTPRKERIQYRIGINIGDIVLEDGDIFGDAVNVAARLEAISEPGAICVSDIVHQITQDRVSE
PFTDLGLQKVKNITRPIRVWQWVPDADRDQSHDPQPSHVQH

3MQZ 215 SNAMSVQTIERLQDYLLPEWVSIFDIADFSGRMLRIRGDIRPALLRLASRLAELLNESPGPRPWYPHVASHMRRR
VNPPPETWLALGPEKRGYKSYAHSGVFIGGRGLSVRFILKDEAIEERKNLGRWMSRSGPAFEQWKKKVGDLRDFG
PVHDDPMADPPKVEWDPRVFGERLGSLKSASLDIGFRVTFDTSLAGIVKTIRTFDLLYAEAEKGS

3NO3 238 GKDNTKVIAHRGYWKTEGSAQNSIRSLERASEIGAYGSEFDVHLTADNVLVVYHDNDIQGKHIQSCTYDELKDLQ
LSNGEKLPTLEQYLKRAKKLKNIRLIFELKSHDTPERNRDAARLSVQMVKRMKLAKRTDYISFNMDACKEFIRLC
PKSEVSYLNGELSPMELKELGFTGLDYHYKVLQSHPDWVKDCKVLGMTSNVWTVDDPKLMEEMIDMGVDFITTDL
PEETQKILHSRAQ

3NO7 248 MGSDKIHHHHHHENLYFQGMTFSKELREASRPIIDDIYNDGFIQDLLAGKLSNQAVRQYLRADASYLKEFTNIYA
MLIPKMSSMEDVKFLVEQIEFMLEGEVEAHEVLADFINEPYEEIVKEKVWPPSGDHYIKHMYFNAFARENAAFTI
AAMAPCPYVYAVIGKRAMEDPKLNKESVTSKWFQFYSTEMDELVDVFDQLMDRLTKHCSETEKKEIKENFLQSTI
HERHFFNMAYINEKWEYGGNNNE

3ON7 280 GMKLETIDYRAADSAKRFVESLRETGFGVLSNHPIDKELVERIYTEWQAFFNSEAKNEFMFNRETHDGFFPASIS
ETAKGHTVKDIKEYYHVYPWGRIPDSLRANILAYYEKANTLASELLEWIETYSPDEIKAKFSIPLPEMIANSHKT
LLRILHYPPMTGDEEMGAIRAAAHEDINLITVLPTANEPGLQVKAKDGSWLDVPSDFGNIIINIGDMLQEASDGY
FPSTSHRVINPEGTDKTKSRISLPLFLHPHPSVVLSERYTADSYLMERLRELGVL

5.2. Comparing with the state-of-the-art

In the literature we found very few works [60, 61] that used 20× 20 MJ potential-matrix [10] for protein

structure prediction on 3D FCC lattice. However, Torres et al. [61] used 3D HCP lattice and Kapsokalivas

et al. [60] used 3D cubic lattice in their works for protein mapping. In other works, Ullah et al. [62] and
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Table 4: The energy values are obtained from different algorithms for the specified energy models. The average values are
calculated over 50 different runs. The bold-faced values indicate the winner (the lower the better).

The state-of-the-art Our approach

Protein Hybrid [62] Local Search [65] The MH GA

details MJ energy Time MJ energy Time MJ energy Time RI

Seq Size H Best Avg Avg Best Avg (r) Avg Best Avg (t) Avg over [65]

4RXN 54 27 -32.61 -30.94 1:02:12 -33.33 -31.21 -36.36 -33.60 7.66%

1ENH 54 19 -35.81 -35.07 1:02:03 -29.03 -28.18 -38.39 -35.67 26.58%

4PTI 58 32 -32.07 -29.37 1:01:26 -31.16 -28.33 -35.65 -31.01 9.46%

2IGD 61 25 -38.64 -32.54 1:43:08 -32.36 -28.29 1:00:00 -36.49 -33.75 1:00:00 19.30%

1YPA 64 38 n/a n/a -33.33 -32.15 -40.14 -36.33 13.00%

1R69 69 30 -34.2 -31.85 1:07:32 -33.35 -32.20 -40.85 -36.28 12.67%

1CTF 74 42 -38 -35.28 1:37:44 -45.83 -40.94 -51.5 -47.29 15.51%

3MX7 90 44 n/a n/a -44.81 -42.32 -56.32 -50.95 20.39%

3NBM 108 56 n/a n/a -52.44 -49.51 -53.66 -49.9 0.79%

3MQO 120 68 n/a n/a -64.04 -58.84 1:00:00 -62.25 -54.56 1:00:00 no RI

3MRO 142 63 n/a n/a -87.38 -82.24 -90.05 -82.32 0.10%

3PNX 160 84 n/a n/a -103.04 -96.86 -102.55 -88.06 no RI

3MSE 180 83 n/a n/a n/a n/a -92.61 -84.60 n/a

3MR7 189 88 n/a n/a n/a n/a -93.65 -83.93 n/a

3MQZ 215 115 n/a n/a n/a n/a -104.29 -95.22 2:00:00 n/a

3NO3 238 102 n/a n/a n/a n/a -122.97 -108.70 n/a

3NO6 248 112 n/a n/a n/a n/a -133.95 -117.11 n/a

3ON7 280 135 n/a n/a n/a n/a -116.88 -96.64 -n/a

n/a denotes the experimental results are not available.

Table 5: The average energy and average RMSD values achieved from two different variants of GA. The average values are
calculated over 50 different runs. The bold-faced values indicate the winner (the lower the better).

The state-of-the-art GA [61] The MH GA

Protein details Reported values Average values

MJ model MJ model MH model Gen

Seq Size H Energy RMSD Pop Gen Energy RMSD Energy RMSD Pop ( ≤)

2J6A 135 71 -815.82* 16.75 50 20000 -59.72 9.53 -61.40 9.48 50 2500

2HFQ 85 38 -543.17* 12.24 50 20000 -52.13 7.48 -52.72 7.31 50 7000

* the unusual values for MJ energy model.

Shatabda et al. [65] used 3D FCC lattice with 20 × 20 empirical energy matrix by Berrera et al. [11]. In

fact, we do not have any state-of-the-art results available for similar model to compare free energy level in

a straight way. Therefore, we ran the algorithms used in [62] and [65] using the MJ energy model [10] to

compare our results. However, the constraint programming based hybrid approach [62] failed to get any

solution for most of the large-sized proteins. In such cases, in Table 4, the results are denoted by n/a.

In Table 4, we present interaction energy values in two different formats: the global lowest interaction
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energy (Column Best) and the average (Column Avg) of the lowest interaction energies obtained from 50

different runs. In case of the global best energy, our approach outperforms the state-of-the-art approaches

in [62, 65] on 9 out of 12 benchmark proteins. However, in case of average energy, our approach outper-

forms both of the approaches on 10 out of 12 benchmark proteins. Based on the experimental results, the

performance hierarchy of the approaches used to validate our MH GA is shown in Figure 8.

Figure 8: The performance hierarchy among the state-of-the-art approaches and our MH GA. Our GA outperforms the other
to approaches in [62] and [65].

Outcome based on Relative Improvement (RI)

From the Column RI of Table 4, we see that for 2 proteins our GA fail to improve over the state-of-the-art.

However, for other 10 proteins it improves the average interaction energy level ranging from 0.10% to 26.58%

for different proteins.

Further, in Table 5, we present another two benchmark proteins taken from a GA based approach [61].

From the authors of [61], we tried to get their implemented codes so that we can run that by ourselves.

However, we failed to receive any response from the authors. Therefore, we present the reported values. For

fair comparison, we compare the results by generation-wise instead of by running-time.

Outcome based on RMSD comparison

We calculate RMSD of a structure that corresponds to the lowest MJ interaction energy for a particular

run. The reported RMSD values in Table 6 are the global minimum of 50 runs. In Table 5 and Table 6, the

bold-faced RMSD values indicate the winners for the corresponding proteins.

In Table 7, we present corresponding MJ energy values for global minimum RMSD and corresponding

RMSD values for global minimum MJ energy values over 50 runs for each proteins on identical settings. The

experimental results show that the global minimum energy in our experiment does not produce minimum

RMSD value.

5.3. Result Analysis

The MJ energy model actually implicitly bear the characteristic of hydrophobicity. The matrix values

present some variations within amino acids of the same class (H or P). A partition algorithm such as 2-
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Table 6: The best RMSD values reported, are the best amongst the 50 different runs. The bold-faced values indicate the
winner (the lower the better).

Protein details Local Search [65] The MH GA

Seq Size H MJ guided HP guided MJ guided MH guided

4RXN 54 27 5.74 4.70 4.83 4.76

1ENH 54 19 5.94 4.42 4.75 4.81

4PTI 58 32 6.02 6.18 6.24 6.06

2IGD 61 25 7.38 7.64 6.63 6.53

1YPA 64 38 6.54 5.17 5.52 5.39

1R69 69 30 6.12 4.44 4.76 4.64

1CTF 74 42 6.08 4.72 4.26 4.08

3MX7 90 44 8.17 7.10 7.21 7.20

3NBM 108 56 6.38 5.89 5.64 5.37

3MQO 120 68 6.92 6.44 6.33 6.38

3MRO 142 63 8.76 7.76 7.93 7.64

3PNX 160 84 8.78 7.90 8.04 7.60

3MSE 180 83 n/a 20.24 16.05 16.98

3MR7 189 88 n/a 10.43 9.42 9.36

3MQZ 215 115 n/a 11.21 8.88 9.04

3NO3 238 102 n/a 14.49 11.22 11.70

3NO6 248 112 n/a 13.20 13.88 12.04

3ON7 280 135 n/a 13.19 11.84 11.77

means clustering algorithm easily reveals the H-P partitioning within the MJ model. Given this knowledge,

we study the effect of explicitly using hydrophobic property within our GA.

Effect of HP in MH model

Our macro-mutation operator biases the search towards a hydrophobic core by applying a series of diagonal

moves and thus achieves improvements in terms of MJ energy values of the output conformations. We

implemented three different versions of our genetic algorithm.

1. MH: This version is our final algorithm that we described in detail, and used in presenting our main

results in Table 4 and in comparing with the state-of-the-art results. To reiterate, this version uses the

MJ energy model for search and energy reporting, and hydrophobicity knowledge in the macro-mutation

operator that repeatedly applies diagonal moves towards forming a hydrophobic core.

2. MJ: This version of our GA uses the MJ energy model for search and energy reporting. This version

has macro-mutation operator but not biased by hydrophobic properties of amino acids.

3. HP: This version of our GA uses the HP energy model for search. However, we report the energy

values of the final conformations returned by the GA in MJ energy model. Note that this version has

the hydrophobic core directed macro-mutation operator. This version will show whether HP model is

sufficient even when the energy of a conformation is to be in the MJ model.
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Table 7: Corresponding MJ energies for global minimum RMSD and corresponding RMSDs for global minimum MJ energies
over 50 runs for each proteins

Protein Energy corresponds to RMSD RMSD corresponds to energy

details HP MJ MH HP MJ MH

Seq Size H rmsd En rmsd En rmsd En En rmsd En rmsd En rmsd

4RXN 54 27 4.70 4.24 4.83 -26.68 4.76 -26.02 -12.41 6.30 -37.06 5.91 -36.36 5.99

1ENH 54 19 4.42 -0.67 4.75 -15.21 4.81 -10.8 -10.27 7.26 -38.85 7.68 -38.39 7.14

4PTI 58 32 6.18 -0.36 6.24 -8.03 6.06 -19.16 -6.95 7.00 -32.6 8.09 -35.65 8.62

2IGD 61 25 7.64 4.00 6.63 -18.21 6.53 -19.79 -10.28 9.4 -35.57 9.86 -36.49 8.69

1YPA 64 38 5.17 5.21 5.52 -26.90 5.39 -35.01 -17.1 8.37 -38.45 7.81 -40.14 8.32

1R69 69 30 4.44 3.59 4.76 -21.70 4.64 -22.37 -11.3 5.38 -39.89 7.16 -40.85 6.40

1CTF 74 42 4.72 -3.72 4.26 -32.55 4.08 -44.44 -18.06 7.19 -50.45 5.96 -51.50 5.94

3MX7 90 44 7.10 -0.08 7.21 -42.18 7.20 -50.85 -17.97 8.73 -56.55 10.05 -56.32 9.57

3NBM 108 56 5.89 -5.07 5.64 -35.75 5.37 -36.51 -23.09 8.27 -55.38 6.75 -53.66 7.34

3MQO 120 68 6.44 5.96 6.33 -51.44 6.38 -41.69 -15.47 9.31 -62.65 7.69 -62.25 8.13

3MRO 142 63 7.76 -10.97 7.93 -50.69 7.64 -68.41 -28.63 12.96 -90.56 11.89 -90.05 9.28

3PNX 160 84 7.90 -1.16 8.04 -73.90 7.60 -69.52 -26.79 10.81 -96.98 10.11 -102.55 10.12

3MSE 180 83 20.24 -14.41 16.05 -76.99 16.98 -77.73 -30.4 22.01 -91.02 19.12 -92.61 17.88

3MR7 189 88 10.43 -12.34 9.42 -84.28 9.36 -81.9 -26.99 10.56 -94.93 11.67 -93.65 10.84

3MQZ 215 115 11.21 -5.26 8.88 -98.75 9.04 -92.85 -15.51 11.53 -108.38 10.58 -104.29 10.7

3NO3 238 102 14.49 -14.51 11.22 -112.14 11.7 -100.79 -16.41 14.89 -119.9 13.2 -122.97 13.04

3NO6 248 112 13.2 -8.67 11.88 -120.23 12.06 -116.51 -44.07 13.96 -125.68 14.26 -133.95 13.09

3ON7 280 135 13.19 28.47 11.84 -105.63 11.77 -98.31 -8.59 13.95 -120.16 13.01 -116.88 16.58

From the Column RI in Table 8, we see that MH guided GA improves the average interaction energy level

over MJ model, ranging from 0.84% to 5.14% for all benchmark proteins. The improvements are not large

in magnitudes but consistently better for all the proteins.

Statistical significance

We know that the lower p-values are better. We performed the t-test with a confidence interval of 95%

(i.e., significance level is 5%) and the results are presented in Table 8. For MJ and MH models, the p-values

of all proteins are less than the significance level. However, for HP model, the p-value for 3MSE is below

the significance level and for other five sequences those are equal to the significance level. Therefore, the

experimental results are statistically significant.

Search progress

To demonstrate the search progress, we periodically find the best energy values obtained so far in each

run. For a given period, we then calculate the average energy values obtained for that period over 50 runs.

We used a 2 minute time interval. Figure 9 presents the average energy values obtained at each time interval

for two different proteins: 4RXN and 3PNX are the smallest and largest amongst the 12 benchmark proteins
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Table 8: The effect of using HP energy model within a macro-mutation operator. The bold-faced values indicate the winners.
The lower the energy value, the better the performance. The t-test was performed with a confidence interval of 95%.

Protein details Best of 50 runs Average[p-value] of 50 runs RI

Seq Size H HP MJ MH HP MJ( r) MH( t) on MJ

4RXN 54 27 -12.41 -37.71 -36.36 -3.54[2.4E-16] -33.32[5.9E-56] -33.60[1.7E-75] 0.84%

1ENH 54 19 -10.27 -37.37 -38.39 -7.29[3.8E-32] -34.86[1.1E-66] -35.67[1.2E-70] 2.32%

4PTI 58 32 -6.95 -35.31 -35.65 -2.81[1.5E-14] -30.93[3.6E-55] -31.01[4.8E-67] 0.26%

2IGD 61 25 -10.28 -36.97 -36.49 -6.75[2.7E-31] -33.65[3.5E-66] -33.75[4.0E-70] 0.30%

1YPA 64 38 -17.1 -39.13 -40.14 -9.90[2.3E-33] -35.20[6.4E-65] -36.33[2.8E-73] 3.21%

1R69 69 30 -11.3 -39.77 -40.85 -4.31[5.6E-19] -35.43[4.9E-65] -36.28[2.5E-68] 2.40%

1CTF 74 42 -18.06 -50.09 -51.5 -10.97[1.1E-32] -44.98[1.4E-61] -47.29[6.8E-70] 5.14%

3MX7 90 44 -17.97 -55.57 -56.32 -11.16[1.9E-31] -48.46[5.5E-62] -50.95[2.6E-70] 5.14%

3NBM 108 56 -23.09 -57.17 -53.66 -15.29[9.8E-36] -48.47[9.5E-60] -49.90[2.6E-70] 2.95%

3MQO 120 68 -15.47 -60.22 -62.25 -6.75[1.7E-18] -53.00[4.8E-61] -54.56[2.4E-66] 2.94%

3MRO 142 63 -28.63 -93.77 -90.05 -18.65[7.2E-31] -79.32[2.1E-62] -82.32[1.6E-67] 3.78%

3PNX 160 84 -26.79 -99.87 -102.55 -18.55[1.2E-34] -85.64[6.0E-60] -88.06[1.3E-60] 2.83%

3MSE 180 83 -30.4 -91.02 -92.61 -13.17[5.0E-21] -84.47[3.2E-70] -84.60[3.6E-69 0.20%

3MR7 189 88 -26.99 -94.93 -93.65 -5.54[1.4E-06] -85.70[4.1E-69] -83.93[1.9E-36] non

3MQZ 215 115 -15.51 -108.38 -104.29 6.86[8.7E-08] -96.58[1.5E-68] -95.22[6.7E-64] non

3NO3 238 102 -16.41 -119.9 -122.97 -2.41[5.1E-02] -108.68[1.1E-68] -108.70[3.3E-65] 0.12%

3NO6 248 112 -44.07 -125.68 -133.95 -12.65[2.0E-11] -116.31[1.8E-71] -117.11[7.0E-67] 0.70%

3ON7 280 135 -8.59 -120.16 -116.88 9.38[7.0E-10] -104.57[1.1E-56] -96.64[2.4E-45] non

respectively. From both of the charts, we see that the final version of our algorithm MH performs better

than the other two versions.
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Figure 9: The search progress over a time-span of 60 minutes for proteins 4RXN and 3PNX of sequence length 54 and 160
amino acids respectively.
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6. Discussion

By encoding the conformation with angular coordinates (φ and ψ), our GA might easily be applied in

high-resolution PSP. While the minimizing energy function is highly complex (such as molecular dynamics), a

simple guidance heuristic—such as hydrophobic property or exposed surface area—could be used to guide the

macro-mutation operator. Within GA framework, the macro-mutation operator could be applied optimizing

the segments of secondary structures (α−helix and β−sheet).

Our approach can easily divide the whole optimization process into two stages guided by two energy

models with different complexities. The macro-mutation operator can be guided by simpler energy models

such as distance from hydrophobic core, exposed surface area, hydrophobicity of amino acids, hydropathy

index of the amino acids, and so on. Conversely, the main objective function can be more realistic such as

molecular dynamics based energy models. This two-stage optimization will reduce the overall computational

complexities. As a result, our framework has a good chance to succeed in more realistic models even for

large sized proteins.

7. Conclusion

Our guided macro-mutation in a graded energy based genetic algorithm, ‘MH GeneticAlgorithm’, is found

to be an effective sampling algorithm for the convoluted protein structure space. The strategical switching

in between the Miyazawa-Jernigan (MJ) energy and the Hydrophobic-Polar (HP) energy made the proposed

algorithm perform better compared to the other state-of-the-art approaches. This is because, while the fine

graded MJ energy interaction computation become computationally prohibit, the low resolution HP energy

model can effectively sample the search-space towards certain promising directions. In addition, the GA

framework was enhanced and made powerful, since it uses not only crossover but also three effective move

operators. Further to diversify the population to keep sampling or, exploring the search space effectively,

a hydrophobic core-directed macro-mutation operator, twin removal as well as a random-walk algorithm to

recover from the stagnation have been applied. To compare the performance of our GA, we have extensively

compared with the existing state-of-the-approaches using the benchmark problem available and found our

approach to be consistently better and often found significantly better and t-test result in terms of p-values

have been provided. For the lattice configuration to be followed, we used 3D face-centered-cube (FCC)

lattice model because prediction in the FCC lattice model can yield the densest protein core and the FCC

lattice model can provide the maximum degree of freedom as well as the closest resemblance to the real or,

high resolution folding within the lattice constraint. This enables the predicted structure to be aligned and

hence, migrated to a real protein (prediction) model efficiently for future extensions.
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[37] M. Cebrián, I. Dotú, P. Van Hentenryck, P. Clote, Protein structure prediction on the face centered cubic lattice
by local search, in: Proceedings of the 23rd national conference on Artificial intelligence - Volume 1, 2008, pp.
241–246.

[38] S. Shatabda, M. A. H. Newton, D. N. Pham, A. Sattar, Memory-based local search for simplified protein structure
prediction, in: The ACM Conference on Bioinformatics, Computational Biology and Biomedicine (ACM-BCB),
ACM, Orlando, FL, USA, 2012.

[39] B. Maher, A. A. Albrecht, M. Loomes, X.-S. Yang, K. Steinhöfel, A firefly-inspired method for protein structure
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[62] A. D. Ullah, K. Steinhöfel, A hybrid approach to protein folding problem integrating constraint programming
with local search, BMC bioinformatics 11 (Suppl 1) (2010) S39.
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