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Abstract

Structural and computational biologists often need to measure the similarity of ligand binding 

conformations. The commonly used root-mean-square deviation (RMSD) is not only ligand-size 

dependent, but also may fail to capture biologically meaningful binding features. To address these 

issues, we developed the Contact Mode Score (CMS), a new metric to assess the conformational 

similarity based on intermolecular protein-ligand contacts. The CMS is less dependent on the 

ligand size and has the ability to include flexible receptors. In order to effectively compare binding 

poses of non-identical ligands bound to different proteins, we further developed the eXtended 

Contact Mode Score (XCMS). We believe that CMS and XCMS provide a meaningful assessment 

of the similarity of ligand binding conformations. CMS and XCMS are freely available at http://

brylinski.cct.lsu.edu/content/contact-mode-score and http://geaux-computational-bio.github.io/

contact-mode-score/
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1. Introduction

Molecular docking is a computational technique routinely used in protein function analysis 

and drug discovery (Cheng et al., 2012; Yuriev et al., 2015). Docking calculations usually 

consist of two successive stages, the prediction of the favorable orientation of a small 

molecule when bound to its target protein followed by the estimation of binding affinity 

and/or free energy of binding. Scoring functions widely used in molecular docking evaluate 

protein-ligand conformations in terms of the shape and electrostatic complementarity, as 

well as the presence of stabilizing interactions such as hydrogen bonds, salt bridges, and 

hydrophobic contacts (Yusuf et al., 2008). Since these factors hinge on the ligand binding 

mode, accurately predicted protein-ligand conformations are required for meaningful 

scoring.

A common practice in benchmarking docking programs is to evaluate predicted 

conformations against experimentally solved complex structures using the root-mean-square 

deviation (RMSD) (Kabsch, 1978). Typically, predictions within an RMSD of 2 Å are 

considered successful, whereas values higher than 3 Å indicate docking failures. A standard 

RMSD function quantifying the difference between two poses of the same molecule is 

computed as follows:

Eq. 1

where molecule poses A = {a1, a2, …, an} and B ={b1, b2, …, bn} are defined by sets of 

Cartesian coordinates ai and bi of individual heavy (non-hydrogen) atoms. This formulation 

shows that the RMSD is calculated based on a predefined one-to-one correspondence 

between atoms in poses A and B. Although equivalent atoms can be found by matching 

atom indices, the presence of symmetric functional groups may result in inflated RMSD 

values (Allen and Rizzo, 2014). Several modified RMSD calculation methods were 

developed to handle symmetric molecules (Allen and Rizzo, 2014; Trott and Olson, 2010). 

These techniques re-index atoms dynamically instead of using the predefined order of 

atoms.

Further, a strong dependence of the RMSD on the number of atoms complicates the 

assessment of molecules with different sizes (Reva et al., 1998; Stark et al., 2003). On the 

other hand, the development and optimization of scoring functions for molecular docking 

often involves tuning force field parameters against diverse datasets of protein-ligand 

complexes. For example, weight factors can be adjusted to maximize the capability to 

recognize near native conformations amongst a large set of docking decoys (Brylinski and 

Skolnick, 2009a, 2008; Ding et al., 2015). An imprecise classification of near native and 

Ding et al. Page 2

Comput Biol Chem. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



decoy conformations, e.g. by using a fixed RMSD threshold, may lead to suboptimal weight 

factors. Even though the number of ligand atoms can be taken into account by calculating 

the statistical significance of RMSD values (Reva et al., 1998; Stark et al., 2003), statistical 

testing is rarely employed in the development and optimization of docking algorithms and 

scoring functions.

Another issue is that ligand RMSD does not account for the protein environment (Kroemer 

et al., 2004). Depending on the ligand size and complexity, low RMSD values can be 

obtained even if key interactions with the protein are absent. Conversely, a substantial 

deviation from the experimental structure of a moiety that is irrelevant to binding (e.g., a 

solvent-exposed group) can notably increase the RMSD even when crucial binding features 

are recovered by docking calculations (Yusuf et al., 2008). To address this problem, the 

relative displacement error (RDE) (Abagyan and Totrov, 1997) was developed. The RDE 

down-weights large deviations, therefore, it is less sensitive to a small number of misplaced 

atoms compared to the RMSD. Nevertheless, similar to RMSD, the RDE takes no account of 

the protein environment.

Although conventional docking methods employ a single, static structure of the receptor, 

more recent approaches incorporate protein flexibility by docking against protein ensembles 

or using rotamer libraries for binding residue side chains (Chang et al., 2007; Lill, 2011; 

Meiler and Baker, 2006). The traditional ligand RMSD cannot be used to assess the 

accuracy of fully flexible molecular docking, where not only ligands, but also receptors 

change their internal conformations. For that reason, an alternative measure based on real 

space R-factors was proposed to compare electron density rather than to calculate the RMSD 

from Cartesian coordinates (Yusuf et al., 2008). Moreover, predicted binding modes can be 

visually inspected in order to identify key protein-ligand interactions recovered by docking 

calculations (Kroemer et al., 2004). However, the lack of automation makes this approach 

inapplicable to large datasets of docked ligand conformations.

The calculation of RMSD is straightforward and has a low computational complexity, 

therefore, it is still frequently used as the assessment measure, particularly across large 

datasets of protein-ligand complexes. Nevertheless, new techniques are highly desired to 

evaluate not only purely geometrical features, but also biological aspects of binding. On that 

account, we developed the Contact Mode Score (CMS), which effectively quantifies the 

similarity of ligand binding conformations. CMS compares the sets of interatomic contacts 

formed by a ligand and its receptor rather than ligand Cartesian coordinates. Such an 

approach also allows for the protein environment to be included in the assessment. Further, 

we developed the eXtended Contact Mode Score (XCMS), which provides a convenient 

template-based method to compare those protein-ligand complexes composed of different 

proteins and non-identical ligands. In contrast to the RMSD, CMS and XCMS are less 

dependent on the ligand size and have a well-defined statistical significance.
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2. Materials and Methods

2.1 Experimental datasets

Three datasets of protein-ligand complexes are used in this study. The first dataset was 

compiled from the eFindSite library (Brylinski and Feinstein, 2013) by clustering template 

proteins at 40% sequence identity using PISCES (Wang and Dunbrack, 2003), and then 

selecting representative chains that non-covalently bind small organic molecules at distinct 

locations. This procedure produced a set of 14 059 non-redundant structures of protein-

ligand complexes, referred to as the eFindSite dataset, which was used to develop a mixed-

resolution model of complex structures. In addition, we used the Astex/CCDC dataset 

(Nissink et al., 2002) comprising the high-quality experimental structures of 201 

pharmacologically relevant proteins co-crystalized with drug molecules. The dependence of 

CMS and RMSD on the number of ligand atoms was examined against the Astex/CCDC 

dataset. Finally, the XCMS was developed and tested on the BioLiP database (Yang et al., 

2013). BioLiP provides a comprehensive collection of protein-ligand complex structures 

curated specifically for studies focusing on biologically relevant interactions and template-

based modeling approaches. From the entire database comprising 94 887 ligands bound to 

71 359 proteins, we randomly selected 2 200 protein-ligand complexes as query structures. 

In XCMS benchmarking, we searched the complete BioLiP database for non-identical 

templates for each query structure. A complex was used as the template if the Pocket 

Similarity score (PS-score) against the query pocket is <0.9, the fingerprint Tanimoto 

coefficient (1D-TC) against the query ligand is >0.5, and the number of ligand heavy atoms 

is greater than 6. Using these criteria produced a dataset of 802 058 query-template pairs to 

benchmark the XCMS. The PS-score measures the structural similarity of two ligand 

binding sites; it ranges from 0 to 1 with higher values indicating higher similarity (Gao and 

Skolnick, 2013a). 1D-TC employs 1024-bit molecular fingerprints to quantify the chemical 

similarity of two small molecules. The calculations of 1D-TC were conducted with 

OpenBabel (O’Boyle et al., 2011), which supports fingerprint indexing to accelerate 

searches against large databases.

2.2 Simulated datasets

In addition to experimental datasets, three sets of computer-generated structures were 

compiled for benchmarking purposes. The first simulated dataset is based on Astex/CCDC 

(Nissink et al., 2002) and it was prepared to assess the dependence of RMSD and CMS on 

the number of ligand heavy atoms. A series of systematic perturbations were applied to co-

crystalized ligands, each comprising random translations and rotations about the x, y and z-

axis of up to 0.02 Å and 5 deg, respectively. After each round of perturbation, RMSD and 

CMS were computed against the native conformation of a ligand. The second simulated 

dataset contains Metropolis Monte Carlo (MMC) trajectories constructed by GeauxDock 

(Ding et al., 2015) for Astex/CCDC complexes. GeauxDock employs a mixed-resolution 

representation of protein-ligand complexes and a hybrid scoring function comprising 

physics-, evolution-based energy terms and statistical potentials. GeauxDock effectively 

finds the near native structures of protein-ligand complexes by exploring low-energy 

configurations according to a dimensionless scoring function. Here, binding ligands were 

initialized at random conformations and GeauxDock simulation engine (Ding et al., 2015) 
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was used to generate docking trajectories through 800 MMC cycles. The CMS was 

calculated for each accepted conformation against the ligand bound in the crystal complex 

structure.

The last simulated dataset was built on BioLiP (Yang et al., 2013) to benchmark RMSD, 

CMS and XCMS using predicted and random ligand conformations. First, query ligands 

were randomized within receptor binding pockets to produce a set of 2 200 random 

conformations of query ligands. Subsequently, each randomized ligand was re-docked to the 

protein with AutoDock Vina (Trott and Olson, 2010). The docking box was set to an optimal 

size based on the radius of gyration of the ligand (Feinstein and Brylinski, 2015) and the 

binding pocket center was set to the geometric center of the compound bound in the 

experimental complex. This procedure produced 2 200 docked conformations of query 

ligands. For each simulated conformation, RMSD and CMS were calculated against the 

experimental structure, whereas the XCMS was calculated using a template. Similar to the 

experimental BioLiP dataset, we included only those templates having more than 6 heavy 

atoms, a PS-score of <0.9, and a 1D-TC of >0.5. For the template-based assessment with 

XCMS, suitable templates were identified for a subset of 695 targets.

2.3 Molecular representation

Fast computation without compromising molecular details is achieved by describing protein-

ligand complex structures at a mixed-resolution. A heavy-atom representation is used for 

ligands with the following chemical types according to SYBYL (Clark et al., 1989): carbon 

sp (C.1), carbon sp2 (C.2), carbon sp3 (C.3), aromatic carbon (C.ar), carbocation in 

guadinium groups (C.cat), nitrogen sp (N.1), nitrogen sp2 (N.2), nitrogen sp3 (N.3), 

positively charged nitrogen sp3 (N.4), amide nitrogen (N.am), aromatic nitrogen (N.ar), 

trigonal planar nitrogen (N.pl3), oxygen sp2 (O.2), oxygen sp3 (O.3), oxygen in carboxylate 

and phosphate groups (O.co2), phosphorous sp3 (P.3), sulfur sp2 (S.2), sulfur sp3 (S.3), 

sulfoxide sulfur (S.O), sulfone sulfur (S.O2), and halogens (Br, Cl, F, IProteins are 

represented at the coarse-grained level. In CMS, two effective backbone points per residue 

are placed at the position of its Cα atom (CA) and the geometrical center of the peptide 

plane (PP). Small side chains of Ala, Asn, Asp, Cys, Ile, Leu, Pro, Ser, Thr and Val are 

reduced to one pseudo atom located at the geometric center, whereas longer side chains of 

Arg, Gln, Glu, His, Lys, Met, Phe, Trp and Tyr are described by twoeffective points 

corresponding to the middle of a virtual Cβ-Cγ bond and the geometric center of the 

remaining side-chain atoms (Zacharias, 2003). It is noteworthy that this model is already 

implemented in a molecular docking program, GeauxDock (Ding et al., 2015). In XCMS, 

two effective points per residue are used at the positions of its Cα and Cβ atoms (CA and 

CB, respectively), except for glycine that has only the CA atom.

2.4 Intermolecular contacts

Contacts between ligand heavy atoms and protein effective points in the mixed-resolution 

model are calculated using type-dependent distance thresholds. These threshold values were 

optimized against the exact interatomic contacts extracted from high-resolution complex 

structures in the eFindSite dataset, defined as pairs of heavy atoms within a distance of 4.5 

Å. This cutoff is commonly used to determine the first hydration shell for proteins; when 
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solvent molecules are present within this shell, proteins atoms have less freedom to interact 

with ligand atoms (Beck et al., 2002). For each unique combination of a ligand atom type l 

and an amino acid effective point type p, we found an optimal distance, , that 

reproduces high-resolution interatomic contacts by maximizing the Matthews correlation 

coefficient (MCC) (Matthews, 1975):

Eq. 2

Here, TP is the number of true positives, i.e. interatomic contacts that are correctly 

reproduced in the mixed-resolution model. TN is the number of true negatives, i.e. heavy 

atom pairs farther away than 4.5 Å from each other in high-resolution structures and also 

above the corresponding type-dependent distance threshold for ligand atoms and protein 

effective points in the mixed-resolution model. FP and FN are the numbers of false positives 

and false negatives, respectively, i.e. those contacts that are over- and underestimated by 

using the mixed-resolution description. Note that ligand atoms in our model are treated 

equally when counting interatomic contacts. Although some methods prioritize certain parts 

of the ligand to better capture important aspects of binding (Kroemer et al., 2004), these 

approaches largely depend on manual inspection and thus cannot be automated.

2.5 Contact Mode Score

Essentially, the CMS quantifies the overlap of interatomic contacts in protein-ligand 

complex structures. Figure 1 illustrates a procedure to calculate the CMS for three 

conformations of a simplified system, in which the ligand has 3 heavy atoms (L1 – L3) and 

the protein has 4 effective points (P1 – P4). The first step is to construct the Global Contact 

Matrix (GCM) encoding the interaction pattern for a particular ligand binding conformation 

(Figures 2A–2C). Here, the distance between each ligand atom L of type l and each protein 

point P of type p is compared with the  threshold to determine whether L and P are in 

contact. The corresponding entry in the GCM matrix is set to 1 if the distance is below , 

otherwise it is set to 0. Next, a confusion matrix is generated for a pair of GCMs, where one 

GCM represents a query (Figures 1A and 1C) and the other is the reference (Figure 1B). 

Confusion matrices consist of the numbers of true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN). TP are interatomic contacts that are present in both 

conformations and TN are pairs of ligand atoms and protein effective points not in contact in 

both conformations. FP and FN are over- and under-predicted contacts in the query 

conformation. Finally, Eq. 2 is used to calculate the CMS whose values range from −1 to 1, 

with greater values indicating a higher similarity between two conformations. Since relative 

distances between interacting points are used in CMS calculations, the resulting similarity 

score is independent of the absolute coordinate frames of query and reference structures. 

Furthermore, CMS correctly handles any degrees of freedom associated with the molecular 

flexibility, therefore, it can be applied to evaluate complex structures generated by ensemble 

docking and flexible receptor docking protocols.
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2.6 eXtended Contact Mode Score

CMS requires a predefined one-to-one atomic correspondence, therefore, it can be used to 

measure the similarity of different conformations of the same protein-ligand pair. In order to 

compare non-identical complexes formed by different proteins and ligands, we developed 

the eXtended Contact Mode Score. In XCMS, equivalent atoms in two different ligand 

molecules are identified with the kcombu program (Kawabata, 2011). Kcombu implements a 

fast and accurate build-up algorithm to perform chemical structure alignments and reports 

the similarity between ligands in terms of the topological Tanimoto coefficient (2D-TC). 

Further, the local structure alignment algorithm APoc (Gao and Skolnick, 2013a) is 

employed to match ligand-binding pockets in a given pair of proteins in order to find 

equivalent residues. APoc uses the geometrical and physicochemical features of binding 

sites and provides a PS-score value, which measures the local similarity of ligand binding 

sites. Since equivalent residues reported by APoc for two proteins may have different types, 

we use a Cα-Cβ coarse-grained model in XCMS. Moreover, XCMS employs Local Contact 

Matrices (LCMs) because alignments generated by APoc are local, covering only ligand 

binding sites.

XCMS calculations are illustrated in Figure 2. Three non-identical complexes are shown in 

Figures 2A–2C. L1–L3 represent ligand heavy atoms matched by kcombu, so that an atom 

L1 in the first complex is equivalent to L1 atoms in the second and third complexes and so 

on. Protein residues are classified as ligand binding if any ligand atom is found within a 

distance of 7 Å from any protein atom. This distance was selected to ensure that a sufficient 

number of binding residues are used for local alignments with APoc. Protein residues 

matched by APoc are stored in the LCM as rows arranged according to the pocket 

alignment. LCM entries are the distances between ligand atoms L and protein effective 

points P corresponding to the CA and CB atoms of binding residues. Next, LCMs are 

unrolled into 1D vectors maintaining the order of P:L pairs (Figures 2D and 2E). The XCMS 

is then calculated as non-parametric Spearman’s rank correlation coefficient between two 

vectors (Fieller et al., 1957).

Similar to the CMS, XCMS ranges from −1 to 1 with higher values indicating a higher 

similarity between two conformations. However, in contrast to the CMS calculated from a 

4×4 confusion matrix, XCMS depends on the length of distance vectors. Therefore, XCMS 

values are assigned a statistical significance under a null hypothesis that XCMS is zero for a 

pair of randomly generated LCMs; the alternative hypothesis is that two LCMs are 

significantly similar. The one-sided p-value is computed using the scipy package (Oliphant, 

2007) based on the Fisher transformation method (Fisher and Fisher, 1915). Given a positive 

XCMS, lower p-values indicate a higher statistical significance of the conformational 

similarity of protein-ligand complexes.

3. Results and Discussion

3.1 Mixed-resolution contacts

Many all-atom models define interatomic contacts using a distance threshold of 4.5 Å 

corresponding to the second solvation shell (Beck et al., 2002). In the mixed-resolution 
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model used to calculate the CMS, type-dependent distance thresholds are optimized against 

the eFindSite dataset of protein-ligand complexes to reproduce all-atom contacts. Figure 3A 

shows the distribution of 720 (24 types of ligand atoms × 30 types of protein effective 

points) contact distances, . The majority of contact distances fall within a range of 4–6 

Å. Those effective points comprising more protein atoms, e.g. the side chains of Trp-2, 

Arg-2 and Tyr-2, typically have larger  thresholds than small amino acids, such as 

Ala-1, Ser-1 and Cys-1, as well as Cβ-Cγ virtual bonds and backbone CA and PP groups. In 

general, optimized distance thresholds in the mixed-resolution model reliably reproduce the 

exact interatomic contacts. As shown in Figure 3B, MCC values for most interacting pairs 

are larger than 0.5 with an average MCC of 0.7. Such accuracy in calculating intermolecular 

contacts in the mixed-resolution model is sufficient to develop a contact-based similarity 

measure. The complete set of  values is provided as Supplementary Material.

3.2 Ligand size dependence of RMSD and CMS

The dependence of RMSD and CMS values on the ligand size was evaluated in a 

perturbation experiment. Table 1 shows the average RMSD and CMS after the first round of 

perturbation for Astex/CCDC complexes grouped based on the number of ligand heavy 

atoms. Both CMS and RMSD show some dependence on the ligand size because small 

ligands yield lower RMSD and higher CMS values compared with larger molecules. In 

Figure 4A, we plot similarity (CMS, light gray circles) and dissimilarity (RMSD, dark gray 

squares) values against the ligand size. The dependence of the (dis)similarity on the ligand 

size is assessed by the Pearson correlation coefficient (PCC) (Pearson, 1895). The PCC is 

0.850 for the RMSD and −0.780 for the CMS. In addition, we estimate the Mutual 

Information (MI) between the RMSD and CMS, and the ligand size. It has been shown that 

the MI can quantify the strength of a statistical association without bias for relationships of a 

specific form with higher MI value indicating a stronger association (Kinney and Atwal, 

2014). The MI against the ligand size is 0.714 for the RMSD and 0.512 for the CMS. 

Overall, the absolute values of PCC and MI are lower for CMS, indicating that it is less 

dependent on the ligand size than RMSD.

Next, we performed five rounds of perturbation of ligands in the Astex/CCDC dataset. Table 

2 reports 25, 50 and 75 percentiles of RMSD and CMS as well as the quartile coefficient of 

dispersion (QCD) (Bonett, 2006) after each perturbation round. The percentile values are 

also plotted in Figure 4B for the CMS and Figure 4C for the RMSD. Higher QCD values 

indicate larger fluctuations of a given measure. Although the QCD for the CMS increases 

with the number of perturbation rounds, it is systematically smaller than that for the RMSD 

demonstrating that the CMS is more stable.

3.3 Examples of CMS calculations

The CMS is a convenient measure not only to assess docking accuracy, but also to analyze 

docking trajectories and the quality of scoring functions. On that account, we generated 

MMC trajectories for the Astex/CCDC dataset using GeauxDock (Ding et al., 2015) and 

calculated CMS values against the experimental structure for the accepted configurations. 

Two examples are shown in Figure 5, aspartyl proteinase penicillopepsin complexed with a 
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pepstatin analogue (PDB-ID: 1apt, chain A, Figures 5A and 5B) (James et al., 1983) and 

urokinase-type plasminogen activator complexed with an inhibitor (PDB-ID: 1c5x, chain B, 

Figures 5C and 5D) (Katz et al., 2000). Figures 5A and 5C show that at the beginning of 

docking simulations, pseudo-energies are high and CMS values are low suggesting that 

initial ligands are far away from experimental binding poses. Blue lines in both plots show 

that MMC simulations in GeauxDock are driven by the pseudo-energy to reach low-energy 

states. Encouragingly, the CMS increases as the pseudo-energy gradually decreases 

indicating that ligands are moving toward native-like conformations. This correlation 

between the pseudo-energy and the native-likeness is a desired characteristic of a scoring 

function, which is shown as scatter plots in Figures 5B and 5D. It is noteworthy that our 

previous benchmarks of GeauxDock demonstrated that the pseudo-energy and CMS are 

correlated for about three-quarters of Astex/CCDC complexes (Ding et al., 2015).

Three representative snapshots selected from each docking trajectory are shown in Figure 6. 

These binding poses shown in blue were generated at the beginning (Figures 6A and 6D), in 

the middle (Figures 6B and 6E), and at the end (Figures 6C and 6F) of GeauxDock 

simulations. The corresponding CMS values calculated against experimental complex 

structures shown in orange are 0.286, 0.366 and 0.601 for penicillopepsin, and 0.424, 0.583 

and 0.771 for plasminogen activator, respectively. It is clear that high CMS values 

correspond to docking conformations that are close to experimental structures, thus the CMS 

is a good indicator of the native-likeness.

3.4 Algorithm complexity of CMS and RMSD

We compare the time to calculate CMS and RMSD using the Astex/CCDC dataset. 

Specifically, for each complex, CMS and RMSD values for 8 variational conformations were 

calculated against the experimental structure, resulting in 1 632 (204×8) individual 

calculations. Using one thread on a 2.6 GHz Sandy Bridge Xeon 64-bit processor, the wall 

time to finish RMSD (CMS) calculations is 17 s (5 389 s), thus computing RMSD is about 

317 times faster than CMS. The reason for a longer wall time required to calculate CMS is 

that it considers a protein environment and iterates over all pairs of ligand atoms and protein 

points, whereas the RMSD iterates only over ligand atoms. From the perspective of 

algorithm complexity, the CMS calculation O(P×L) is and the RMSD calculation is 0(L), 

where P and L are the total number of protein points and ligand atoms, respectively. 

Although both RMSD and CMS calculations are based on Euclidean distances, CMS 

requires a longer computing time due to the relatively large number of 838 effective points 

per protein on average.

3.5 Dependence of XCMS on the ligand and pocket similarity

XCMS was developed as an extension of the CMS to measure the similarity of ligand 

binding conformations among complexes formed by different proteins and ligands. In order 

to establish when a similar ligand binding conformation can be expected, we investigate the 

dependence of XCMS on the pocket and ligand similarity in experimental complex 

structures. Specifically, XCMS, PS-score and 2D-TC values were calculated for all query-

template pairs across the BioLiP database. Heat maps in Figure 7 were constructed by 

dividing query-template pairs into 400 groups based on 2D-TC and PS-score values and then 
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averaging XCMS and p-values within each group. Note that those pairs having a PS-score 

between the query and the template of >0.9 were excluded in order to examine only non-

identical systems. As expected, Figure 7A demonstrates that the conformational similarity of 

protein-ligand complexes captured by XCMS increases as their pockets and binding ligands 

become more similar. Figure 7B shows the statistical significance of query-template XCMS 

as a function of PS-score and 2D-TC. The significance of XCMS increases with the 

increasing similarity of ligands and binding pockets in query and template structures. A 

clear boundary in Figures 7A and 7B at a PS-score of 0.4 corresponds to a threshold 

separating statistically similar and dissimilar binding pockets in proteins (Gao and Skolnick, 

2013a). Overall, these results corroborate previous studies reporting the conservation of 

ligand binding across structurally similar pockets occupied by chemically similar ligands 

(Brylinski and Skolnick, 2009b; Gao and Skolnick, 2013b; J.-I. Ito et al., 2012; Jun-Ichi Ito 

et al., 2012). It is important to note that both pocket similarity and ligand similarity should 

be taken into account when selecting a template to calculate XCMS. In practice, we first 

rank templates by the product of 2D-TC and PS-score and then take the top-ranked structure 

to assess the target conformation using XCMS.

3.6 Large-scale benchmarking of molecular docking

Molecular docking with AutoDock Vina was performed for a subset of 2,200 query 

complexes selected the BioLiP dataset. In Figure 8, we first use this simulated dataset to 

investigate the relationship between RMSD, CMS and XCMS. Here, the strength of 

association is measured with the maximal information coefficient (MIC) (Reshef et al., 

2011). The MIC belongs to the maximal information-based nonparametric exploration class 

of statistics and quantifies linear and non-linear associations by applying mutual information 

to continuous random variables. Figure 8A shows the correlation between CMS and RMSD, 

both of which are calculated against the experimental structures of query complexes; the 

MIC between the CMS and RMSD is as high as 0.91. Figure 8B shows the correlation 

between CMS and XCMS, where the XMCS is calculated using template structures. 

Encouragingly, these two contact-based measures are also highly correlated with a MIC of 

0.88. Both MIC values are statistically significant at p-values of <1.28 × 10−6 (Reshef et al., 

2011) demonstrating a strong association between RMSD, CMS and XCMS.

Next, we use the RMSD, CMS and XCMS to evaluate the accuracy of molecular docking for 

the BioLiP dataset. In Figure 9 and Table 3, docking poses generated by AutoDock Vina are 

compared to random ligand conformations generated within receptor binding pockets. 

Regardless of the evaluation metric, Vina constructed native-like conformations for a 

significant number of complexes, whereas the vast majority of random conformations are far 

away from experimental structures. For instance, the median (50% quartile) RMSD, CMS, 

and XCMS for Vina is 2.89 Å, 0.574, and 0.694, respectively, compared to 7.60 Å, 0.152, 

and 0.198 for random conformations. Overall, these results demonstrate that when suitable 

templates can be identified in the BioLiP database, a retrospective assessment with RMSD 

and CMS against experimental structures can be replaced with a template-based evaluation 

using the XCMS.

Ding et al. Page 10

Comput Biol Chem. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.7 Examples of XCMS calculations

Finally, we discuss two representative examples illustrating how XCMS can be used to 

evaluate docking conformations, mitogen-activated protein kinase 14 (MAPK14, PDB-ID: 

2yiw, ligand: YIW, chain: A) (Millan et al., 2011) and ribose-5-phosphate isomerase (RpiA, 

PDB-ID: 1o8b, ligand: ABF, chain A) (Zhang et al., 2003). Both query ligands (YIW and 

ABF) were docked into their target binding pockets by AutoDock Vina (Trott and Olson, 

2010) starting from random conformations. We first calculated the RMSD and CMS against 

native complexes to evaluate the docking accuracy. Table 4 shows that docking simulations 

were successful in both cases and the predicted conformations are highly similar to 

experimental structures; for instance, the RMSD is 0.42 Å and the CMS is 0.94 for 

MAPK14. Next, we evaluate docking conformations with the XCMS. Proto-oncogene 

tyrosine-protein kinase Src (c-Src, PDB-ID: 3f3u, ligand: 1AW, chain A) (Simard et al., 

2009) was selected from the BioLiP database as a template for MAPK14, whereas central 

glycolytic gene regulator (CggR, PDB-ID: 3bxh, ligand: F6P, chain A) (Řezáčová et al., 

2008) was selected as a template for RpiA. XCMS values calculated against template 

complexes reported in Table 4 demonstrate that the template-based assessment is consistent 

with the direct evaluation using CMS and RMSD; for instance, the XCMS is 0.96 with a 

highly significant p-value of close to 0 for MAPK14.

Table 4 also includes various similarity scores for query-template pairs as well as their 

functional classification. MAPK14 and c-Src belong to the same class of transferase 

enzymes transferring phosphorus-containing groups (Enzyme Commission, EC number 

2.7.-.-) and have globally similar structures with a Template Modeling score (TM-score) of 

0.76. TM-score is a length-independent measure of the structural similarity between proteins 

(Zhang and Skolnick, 2004); it ranges from 0 to 1, with values 0.4 and higher indicating a 

statistically significant similarity. In contrast, RpiA and CggR have unrelated structures with 

a TM-score of 0.27. RpiA is an enzyme, ribose-5-phosphate isomerase (EC# 5.3.1.6), 

whereas non-enzyme CggR belongs to the SorC/DeoR family of prokaryotic transcriptional 

regulators. In both cases, template-bound ligands are similar to query ligands with a 2D-TC 

of 0.41 for MAPK14/c-Src and 0.88 for RpiA/CggR. In order to visually compare ligand 

binding conformations, global and local structure alignments constructed for MAPK14/c-Src 

and RpiA/CggR are shown in Figure 10. Ligands bound to MAPK14 and c-Src adopt a 

similar conformation when protein structures are superposed according to the global 

alignment by Fr-TM-align (Pandit and Skolnick, 2008) (Figure 10A) and the local alignment 

by APoc (Gao and Skolnick, 2013a) (Figure 10B). Since the global structure alignment 

between RpiA and CggR is random, it cannot be used to provide equivalent residues for 

XCMS calculations (Figure 10C). Nonetheless, APoc constructed a statistically significant 

local alignment of binding pockets in RpiA and CggR with a PS-score of 0.46 and the 

corresponding p-value of 4.9 × 10−5. When protein structures are superposed according to 

the local alignment, binding ligands in RpiA and CggR adopt a similar conformation (Figure 

10D). These examples demonstrate that although XCMS calculations do not require globally 

similar templates, the chemical similarity of bound ligands as well as the similarity of 

binding sites in query and template structures should be high enough to ensure a meaningful 

template-based assessment.
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4. Conclusions

The Contact Mode Score, or CMS, was developed in this study to quantify the 

conformational similarity of protein-ligand complexes based on intermolecular contacts. Its 

major advantages over the traditional root-mean-square deviation include less dependency 

on the ligand size and taking into account the protein environment. Consequently, the CMS 

can be used to measure the ligand binding similarity across diverse protein-ligand datasets as 

well as to evaluate flexible docking methods simulating receptor conformational changes 

upon ligand binding. In order to effectively compare binding poses of non-identical ligands 

bound to different proteins, we further developed the eXtended Contact Mode Score, or 

XCMS. The XCMS capitalizes on the conservation of ligand binding across structurally 

similar pockets occupied by chemically similar ligands. For instance, it can be used to 

systematically evaluate complex structures constructed by virtual screening, where a 

retrospective assessment cannot be performed because the experimental structures of the 

majority of complexes are unavailable. CMS and XCMS are freely available at http://

brylinski.cct.lsu.edu/content/contact-mode-score and http://geaux-computational-

bio.github.io/contact-mode-score/.
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Highlights

• A novel method to measure the similarity of ligand binding 

conformations is proposed

• The Contact Mode Score (CMS) is less dependent on the ligand size 

than the RMSD

• The analysis of ligand binding conformations includes the protein 

environment

• The extended CMS (XCMS) can be used to compare non-identical 

protein-ligand complexes
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Figure 1. Calculation of the Contact Mode Score (CMS)
First, intermolecular contacts calculated between ligand atoms L and protein effective points 

P are stored in binary matrices (1 - contact, 0 - no contact). Contact matrices for two 

arbitrary ligand conformations are shown in A and C, whereas B is a contact matrix 

constructed for the reference conformation. Next, a confusion table is computed for a pair of 

contact matrices; tables D and E are calculated for pairs A–B and C–B, respectively. Finally, 

CMS is calculated as the Matthews correlation coefficient for a given confusion table.
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Figure 2. Calculation of the eXtended Contact Mode Score (XCMS)
First, Cartesian distances calculated between ligand atoms L and protein effective points P 
are stored in distance matrices. Matrices for two arbitrary ligand conformations are shown in 

A and C, whereas B is a distance matrix for the reference conformation (distances are given 

in Å). Next, two matrices are converted to distance vectors whose elements correspond to 

pairs of protein effective points and ligand atoms (P:L). Finally, XCMS is computed as 

Spearman’s rank correlation coefficient for a given set of vectors.

Ding et al. Page 17

Comput Biol Chem. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Parameterization of mixed-resolution intermolecular contacts

The distribution of (A) contact distance thresholds  and (B) the Matthews correlation 

coefficient (MCC) values calculated vs. exact interatomic contacts across the eFindSite 

dataset.
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Figure 4. Comparison of RMSD and CMS in the perturbation experiment
(A) Scatter plot of RMSD (dark gray squares) and CMS (light gray circles) vs. the number 

of ligand atoms after a single perturbation round. Boxplots of (B) CMS and (C) RMSD 

calculated for ligand conformations generated through multiple perturbation rounds. Boxes 

end at the 25 and 75 percentiles, a horizontal line in a box is the 50 percentile (median).
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Figure 5. Analysis of docking trajectories with the CMS
Docking simulations were conducted using GeauxDock for (A, B) penicillopepsin/pepstatin 

analogue (PDB-ID: 1apt, chain A) and (C, D) plasminogen activator/inhibitor (PDB-ID: 

1c5x, chain B). (A, C) Metropolis Monte Carlo trajectories for CMS (green) and pseudo-

energy (E, blue). (B, D) Scatter plots of CMS vs. the pseudo-energy; each dot represents an 

accepted protein-ligand conformation.
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Figure 6. Examples of docking poses from GeauxDock simulations
(A–C) penicillopepsin/pepstatin analogue (PDB-ID: 1apt, chain A) and (D–F) plasminogen 

activator/inhibitor (PDB-ID: 1c5x, chain B). Three docking poses are shown in blue for each 

system, (A, D) initial, (B, E) intermediate, and (C, F) final conformations. The 

corresponding experimental complex structures are colored in orange.
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Figure 7. XCMS and its statistical significance for the BioLiP dataset
Query-template pairs are grouped based on the similarity between their ligands (measured 

by the 2D Tanimoto coefficient) and pockets (measured by PS-score). Heat maps of (A) the 

arithmetic mean values of XCMS and (B) the geometric mean of the p-value for positive 

XCMS.
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Figure 8. Correlation between RMSD, CMS, and XCMS
Docking conformations generated for the BioLiP dataset by AutoDock Vina are used to 

calculate RMSD and CMS against experimental binding poses. XCMS was computed 

against a holo template selected from the BioLiP database based on the highest value of the 

product of PS-score and the 2D Tanimoto coefficient. Scatter plots of (A) CMS vs. RMSD 

and (B) CMS vs. XCMS.

Ding et al. Page 23

Comput Biol Chem. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. Assessment of docked and randomized ligand conformations across the BioLiP dataset
The similarity to experimental binding poses is assessed with (A) RMSD, (B) CMS, and (C) 

XCMS. RMSD and CMS were calculated against experimental complex structures. XCMS 

was calculated against a holo template selected from the BioLiP database based on the 

highest value of the product of PS-score and the 2D Tanimoto coefficient. Dark gray violins 

correspond to ligands docked by AutoDock Vina, whereas light gray violins are calculated 

for randomized ligand conformations. Black horizontal lines are median values.
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Figure 10. Examples of the superposition of query and template structures
The query protein is ice blue with its binding residues marked by red dots and the bound 

ligand shown as red sticks. The template protein is cyan with its binding residues marked by 

green dots and the bound ligand shown as green sticks. (A, B) The superposition of 

MAPK14 (PDB-ID: 2yiw, chain A) and c-Src (PDB-ID: 3f3u, chain A). (C, D) The 

superposition of ribose-5-phosphate isomerase (PDB-ID: 1o8b, chain A) and central 

glycolytic gene regulator (PDB-ID: 3bxh, chain A). For each pair, two superpositions are 

shown, (A, C) the global structure alignment by Fr-TM-align and (B, D) the local pocket 

alignment by APoc.
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Table 1
Dependence of RMSD and CMS on the ligand size

Ligand conformations from the Astex/CCDC dataset were subjected to one round of perturbation comprising a 

set of forward translations and clockwise rotations. The mean values of RMSD and CMS are reported for each 

size range.

Ligand sizea RMSD [Å] CMS

6–17 0.527 0.879

18–28 0.851 0.793

29–39 0.961 0.757

40–50 1.334 0.666

51–62 1.541 0.625

a
The number of heavy atoms
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Table 4
Assessment of ligand binding poses docked by AutoDock Vina

Two case studies are presented, MAPK14 complexed with triazolopyridine inhibitor (PDB-ID: 2yiw, ligand 

YIW, chain A) and ribose-5-phosphate isomerase complexed with the inhibitor arabinose-5-phosphate (PDB-

ID: 1o8b, ligand ABF, chain A).

Metric/info
Case study

2YIW_YIW_A 1O8B_ABF_A

Calculated against experimental complex structure

RMSD [Å] 0.42 1.58

CMS 0.94 0.77

Template-based assessment

Template 3F3U_1AW_A 3BXH_F6P_A

TM-scorea 0.76 0.27

PS-scoreb 0.7 0.46

p-value of PS-score 6.28E-09 4.90E-05

2D-TCc 0.41 0.88

Query EC# 2.7.11.24 5.3.1.6

Template EC# 2.7.10.2 Non-enzyme

XCMS 0.96 0.76

p-value of XCMS 0 1.56E-63

a
Calculated for the global structure alignment by Fr-TM-align.

b
Calculated for the local pocket alignment by APoc.

c
2D Tanimoto coefficient calculated for query- and template-bound ligands by kcombu.
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