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One of the hallmarks of Parkinson’s disease (PD), a long-term neurodegenerative syndrome, is the 

accumulation of alpha-synuclein (α-syn) fibrils. Despite numerous studies and efforts, inhibition of α-

syn protein aggregation is still a challenge. To overcome this issue, we propose an in silico 

pharmacophore-based repositioning strategy, to find a pharmaceutical drug that, in addition to their defined 

role, can be used to prevent aggregation of the α-syn protein.  Ligand-based pharmacophore modeling 

was developed and the best model was selected with validation parameters including 72% sensitivity, 

98% specificity and goodness score about 0.7. The optimal model has three groups of hydrogen bond 

donor (HBD), three groups of hydrogen bond acceptor (HBA), and two aromatic rings (AR). The FDA-

Approved reports in the ZINC15 database were screened with the pharmacophore model taken from 

inhibitor compounds. The model identified 22 hits, as promising candidate drugs for Parkinson's 

therapy. It is noteworthy that among these, 10 drugs have been reported to inhibition of α-syn 

aggregation or treat/reduce Parkinson's pathogenesis. This model was used to virtual screen ZINC, NCI 

databases, and natural products from the pomegranate. The results of this screen were filtered for their 

inability to cross the blood-brain barrier, poor oral bioavailability, etc. Finally, the selected compounds 

of two ZINC and NCI databases were combined and structurally clustered. Remained compounds were 

clustered in 28 different clusters, and the 17 compounds were introduced as final candidates. 
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Introduction 

Parkinson's disease (PD) is a neurodegenerative disease, which has a direct relationship with 
aging.  PD can be seen in patients with delayed voluntary movement. Studies showed that 
neurodegenerative diseases will become the second disease-related causes of human mortality 
after cardiovascular disease by 2040 (Valera and Masliah, 2016). Researchers have been trying 
to develop drugs for complementary treatment or at least for control of this disease (Kalia et 
al., 2013) (Naeem et al, 2018). A characteristic of PD is the accumulation of spherical insoluble 
bodies called the Lewy bodies around nerve cells, which filled with the aggregation of α-
Synuclein (α-syn) proteins. α-syn is an abundant presynaptic brain protein, which belongs to 
the family of Intrinsically disordered proteins or intrinsically disordered regions 
(IDPs or IDRs),  (Breydo et al., 2012), that lack a rigid 3D structure under physiological 
conditions. These proteins adopt a variety of structural conformations upon interaction with 
different partners and play crucial biological roles in cellular processes (Daughdrill et al., 
2005)(Uversky et al., 2008). 

There is no doubt that strategy, which can inhibit or disrupt aggregation, can be effective 
routes for treatment or prevention of PD and thereby contributing to increased longevity of 
life. Thus the discovery of compounds that can serve as strong inhibitors and delay α-
syn aggregation remains an important challenge. For this purpose, significant research has been 
done to identify  α-syn fibrillation inhibitor compounds. To the best of our knowledge, more 
than 60 small molecule inhibitors against α-syn aggregation have been reported (Ardah et 
al., 2014a)(Caruana et al., 2011a)(Masuda et al., 2006b). Nevertheless, experimental studies to 
find successful candidate compounds are limited while conducting tests for all existing 
compounds is time-consuming and not cost-effective. Also, each of the reported compounds 
has substructures that further limit their application for therapeutic purposes.  

Nowadays, virtual screening has become an essential part of the drug discovery 
process that endeavors to reduce time, costs, and removal of drug candidates with poor 
absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties at the early 
stage before their synthesis. In general, this method tries to lead optimization by reducing 
laboratory tests. In rational drug design, the pharmacokinetic properties of compounds 
will be used to describe their inhibitory characteristics. The recent concept of 
‘polypharmacology’, which proposes that drugs work mostly by acting on multiple targets, is 
being increasingly accepted (Macdonald et al., 2006)(Xie et al., 2012). 
Furthermore, polypharmacological features could help to find new uses of existing drugs via 
drug repositioning (Ashburn and Thor, 2004). Eventually, these approaches can help to find 
drugs for new targets, in addition to their well-established role. 
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In this manuscript, we report a pharmacophore-based drug-repositioning method for drug 
discovery. To achieve this goal we built a pharmacophore model of α-syn fibrillation 
inhibitors. This pharmacophore model used as a template to screen various databases such 
as NCI (290000 molecules), ZINC (Irwin and Shoichet, 2005) (270000 compounds), natural 
product compounds from pomegranate, a fruit that has remarkable antioxidant effects and FDA 
approved drugs (“Pomegranate and its Many Functional Components as Related to Human 
Health : A Review,” 2010). 
 

Materials and methods  

Data collection 

To create a ligand-based pharmacophore model, we collected all α-syn aggregation inhibitors that are 

publicly available. A dataset was obtained containing 60 reported inhibitor combinations belonging to 

various chemical structures, 8 clusters, using the Pharmacophore RDF-Code similarity implemented in 

ligand Scout and the cluster distance was set to 0.4 with average calculation method. This set has diverse 

activities from 61 nm-< 80 µm. The structure of the molecules was taken from the PubChem. 

Compounds were divided into two groups: strong and weak, with an IC50 value of about 10 μM and 

those between 40-80 μM, respectively (Masuda et al., 2006a) (S1, S2 ad S3).  

 

Pharmacophore model generation 

Pharmacophore can be modeled based on two methods i.e. structure-based or ligand-based (Angelbello 

et al., 2016). To create a structure-based model, the three-dimensional structure of α-syn is required. 

The conformational space of IDPs is extremely challenging. This is because they lack a unique structure 

and in turn can adapt to different complexes in interaction with partners. In solution-state NMR, signals 

of the IDR in the interacting region becomes unrecognizable, while X-ray crystallography gives 

structural information on entirely ordered regions (Charlier et al., 2017). For this reason, we ignored 

the structure-based pharmacophore-model and explored the ligand-based method instead. Ligand-based 

pharmacophore model carried out using default settings of Ligand Scout 4.2 software available from 

InteLigand, GmbH, Vienna, Austria (http://www.inteligand.com/ligandscout)(Wolber and Langer, 

2005a).  

 

Pharmacophore model validation 
The predictive performance of the models was evaluated by validation filters. The validation process 

usually helps to optimize or refine the model. A good model displays significant sensitivity and 

specificity. High sensitivity makes it possible to detect active compounds among the many inactive ones 

that are present in the group. The specificity reduces the error in distinguishing active compounds from 
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the inactive. These two parameters are complementary and work in tandem. An ideal model has an 

optimal balance between these two parameters. The scoring function or the ‘Fit scores’ is also indicative 

of how functional groups of the compounds are matched with the pharmacophore model. The external 

validation approaches are test set/ decoy set and receiver operating characteristics (ROC) analysis is 

also considered as a signal-noise ratio. 

 In the test set method, 58 molecules with reported experimental activity values from 61 nm to >80 µm 

used to detect the predictive ability of the pharmacophore model (the results shown in Table 1). In the 

decoy set validation, a decoy database including 352 compounds generated by the virtual decoy set 

method (Wallach and Lilien, 2011). Physicochemical characteristics (molecular weight, hydrogen bond 

donor and acceptor count, number of rotatable bonds, the octanol/water partition coefficient) of the 

decoy were similar to the 18 reported active compounds, but spatial arrangements were different and 

calculated according to the Tanimoto coefficient (Wallach and Lilien, 2011).  

 

Database screening 
The model with the best scores in validation was used as a template for searching against various 

databases to find molecules that can potentially have an inhibitory effect. The screening was done using 

Ligand- Scout's default parameters: the scoring function, the retrieval mode, and the screening mode 

were set to "pharmacophore-fit”, “Stop after first matching conformation” and “match all query 

features” respectively. The maximum number of omitted features was set to zero and check exclusion 

volume turned off. (Wolber and Langer, 2005b)(Temml et al., 2017).  
 

Drug-likeness selection and clustering of candidates 
At this stage, selected hits from NCI and ZINC (Irwin and Shoichet, 2005) databases were screened and 

covalent inhibitors, duplicate compounds, CNS (molecular mass ≤ 582 Da; the number of hydrogen 

bonding donors ≤ 3, number of hydrogen bond acceptors ≤ 5 and octanol-water partition coefficient 

(log P) ≤ 6 )  and “Pan Assay Interference Compounds” (PAINS) (false positive molecules) were 

identified and removed. The FAFdrug3 (Lagorce et al., 2015) online server (http://fafdrugs3.mti.univ-

paris-diderot.fr) was engaged to check the described properties of candidate ligands.  
 

Dataset for drug repositioning 

The optimal pharmacophore model is used as a template for screening 1448 Food and Drug 

Administration approved (FDA-approved) drugs from the ZINC15 database 

(http://ZINC15.docking.org) (Sterling and Irwin, 2015). 

 

Molecular docking 
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A molecular docking study was performed to investigate the binding affinity of the alpha-synuclein 

with the screened molecule. The 3D NMR structure of alpha-synuclein of Homo sapiens, 1XQ8, was 

taken from the protein data bank. We used to MTiAutoDock 1.0, a free online (http://bioserv.rpbs.univ-

paris-diderot.fr/services/MTiOpenScreen/) and open-source protein-ligand docking tool that it is based 

on the AutoDock 4.2 and MGLTools. All HETATMs of the PDB structure were removed, hydrogen 

atoms were added and grid center and dimensions of binding sites were identified (Labbé et al., 2015). 

 The top 10 ranked poses are given as output and the pose with minimum energy was detected. 

 
Results and discussion 
Pharmacophore model generation 

The structures of 60 α-syn aggregation inhibitors were gathered from the literature (Caruana et al., 

2011b)(Ardah et al., 2014b)(Masuda et al., 2006b). Ligands set conformers were produced using the 

default settings of OMEGA, while the RMSD threshold was set to 0.7. Ligand Scout was used to 

generating conformations, which built a maximum of 500 conformers per molecule. Pharmacophore 

models were created with different training set groups. Ligand Scout inserted common pharmacophore 

properties for the best-aligned solutions. 10 pharmacophore hypotheses were built with a tolerance scale 

of 1.0 and ranked following the Pharmacophore-Fit score  (Gidaro et al., 2016). The applied scoring 

function was the ‘‘Pharmacophore-Fit score and Atom Overlap” and the chosen pharmacophore type 

was the ''shared” pharmacophore features. The pharmacophore model was optimized by changing the 

size and number of features. Finally, the model with the training group including Gallic acid and 

Exifone (belong to two different structural clusters) was introduced as an optimal model and is 

illustrated in Fig. 1. Gallic acid is a known potent inhibitor of α-syn aggregation, with inhibitory activity 

of about 90% (Ardah et al., 2014b).  

 

 

Figure 1. Chemical structures and Pharmacophore model of compounds Exifone(left) and gallic acid()  
(training set). 

 

The features and the tolerance radii (Å) of the optimum model are shown in Fig. 2 and consist of two 

HBA, three HBD, and two AR.  
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Figure2. Generated a ligand-based Pharmacophore model against alpha-synuclein aggregation that consists of 
three HBA (red), three HBD (green), two AR (blue) features.	

Evaluating the performance of the pharmacophore model  

This model has been validated by using test sets and decoy set methods, which display an extremely 

improved hit rate. Statistical parameters were calculated using the decoy set. These parameters include 

Total Hits (Ht), false negatives (FN), false positive (FP), goodness-of-hit score (GH), and enrichment 

factor (E-value) (Vuorinen et al., 2014). The statistical parameters obtained from the decoy test are 

listed in Table 1. The main parameters, which play a significant role in recognizing the ability of the 

pharmacophore models, are E-value and GH score. 

 
Table 1. Statistical parameters obtained from decoy test 

No Parameters Value 

1 Total Molecules in Database (D) 370 

2 Total Number of Actives in Database (A) 18 

3 Total Hits (Ht) 19 

4 True positives (TP) 13 

5 % Yield of actives[ = {(TP/Ht)100} 68.4% 

6 True negative (TN) 346 

7 False negatives (FN) = [A-TP] 5 

8 False positives (FP)= [Ht-TP] 6 

9 Sensitivity = TP/A 0.72 

10 Specificity = TN/D-A 0.98 

11 Enrichment factor ((E-value))={(TPₓD)/(HtₓA)} 14.06 

12 Accuracy = (TP+TN)/(TP+TN+FP+FN) 0.97 

13 Goodness of Hit Score (GHScore): [(TP/4HtA)(3A + Ht)(1 _ (Ht _ TP)/(D _ A))] 0.68 

 

 

 The model with a GH score of  ~0.7 is very good (Niu et al., 2014). The efficiency of each 

pharmacophore model was evaluated by a ROC curve, which compares sensitivity versus the specificity 

(Fig. 3). This efficiency is based on their ability to selectively obtain various active compounds from a 

large list of decoys or inactive against the selected targets.  
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Figure 2. ROC Validation Curve for the Pharmacophore model 

 

Pharmacophore-based drug repositioning  

The ligand-based pharmacophore model identified 22 drugs that can be potential drug repositioning 

candidates (Table 2). The inhibitory effect of the drugs 2,3,4,15 and 20, which include Entacapone, 

Tolcapone, (Giovanni et al., 2010), Pyridoxine, Levodopa and Rifampicin (Török et al., 2016)(Li et al., 

2004) respectively, have been previously used to study fibrillation of α-syn. These drugs are used today 

to control the fibrillation of α-syn and prevent the progression of Parkinson's disease. Drugs 8, 9, 10, 

14, and 16 (Epinephrine, Isoproterenol, Dopamine, Dobutamine, Nordefrin) are derivatives of 

dopamine that have shown inhibitory effect against α-syn fibrillation (Conway et al., 2016). 

Interestingly, among these drug candidates, Carbidopa and Fenoldopam were suggested in previous 

studies to control the side effects of Parkinson's disease (Martino et al., 2016)(Twery, 1994). However, 

the effect of these drugs, as an inhibitor of fibrillation of α-syn has not been reported. Also, it has 

recently been shown that asthma drugs can be considered for regulating and influencing the SNCA gene 

to control Parkinson's disease (Ridler, 2017). Interestingly, drugs No. 5, 6 (Salbutamol, and Formoterol) 

that were identified are two asthma drugs. Of the 22 candidates identified for drug repurposing, the 

inhibitory activity of 10 drugs has been previously reported. Therefore, the remaining candidate 

compounds, which include drugs 1, 5, 6, 7, 11, 12, 13, 17, 18, 19, 21, and 22, can be potential inhibitors 

of α-syn and also for the treatment of Parkinson's disease. 
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Table 2.virtual screening of ZINC15 database with the pharmacophore model 

No. Name Fit Score ZINC15_id Energy 
(Kcal/mol)* 

or 
Docking 
score* 

Class 
 

Water 
solubility 
(mg/L) 

1  
 
 
 
 

FENOLDOPAM 
 
  

 
 
 
 
 
74.94 

 
 
 
 
 

ZINC 
000022116612 

  

 
 

 

-8.49 

 
 
 
 
 

Benzazepines 
 

 

 

4000 

2  
 
 
 
 

ENTACAPONE 
(comtan) 

 
  

 
 
 
 
 
66.6 

 
 
 
 
 

ZINC 
000035342787 

  

 
 

 

-8.63 

 
 
 
 
 

Cinnamic 
acids and 

derivatives 
 

 
 
 
 
 
_ 

3  
 
 
 

TOLCAPONE 
(tasmar) 

 
 
 
 
  

 
 
 
 
 
66.6 

 
 
 
 
 

ZINC 
000035342789 

  

 
 

 

-8.71 

 
 
 
 

Benzene and 
substituted 
derivatives 

 

 
 
 
 
 
_ 
 
 
 
 
 

4  
 
 
 
 

PYRIDOXINE 
  

 
 
 
 
 
65.67 

 
 
 
 

ZINC 
000000049154 

  

 
 

 

-8.74 

 
 
 
 

Pyridines and 
derivatives 

 

 

 

2.2E+ 

005 

5  
 
 
 

Salbutamol 
(ALBUTEROL) 

 
 
  

 
 
 
 
 
65.39 

 
 
 
 
 

ZINC 
000000007601 

  

 
 

 

-8.54 

 
 
 
 

Benzene and 
substitued 
derivaties 

 

 

 

1.41E+ 

004 

6  
 
 
 
 
 

FORMOTEROL 
  

 
 
 
 
 
 
65.08 

 
 
 
 
 

ZINC 
000000000856 

  

 
 

 

-8.67 

 
 
 
 
 

Benzene and 
substituted 
derivatives 

 
 
 
 

Slightly 
 

7       
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NORADRENALI
NE 

(Adrenor) 
  

 
 
 
64.97 

 
 
 

ZINC 
000000057624 

  

 

-8.68 

 
 
 
 

Phenols 
 

 
 
 
 
_ 

8  
 
 
 
 

EPINEPHRINE 
  

 
 
 
 
 

64.89 

 
 
 
 

ZINC 
000000039089 

  

 
 

 

-8.68 

 
 
 
 
 

Phenols 
 

 

 

less than 
100 

(at 64° F) 

9  
 
 
 
 

ISOPROTERENO
L 
  

 
 
 
 
 
64.89 

 
 
 
 

ZINC 
000000056652 

  

 
 

 

-8.69 

 
 
 
 
 

Phenols 
 

 
 
 
 
 
_ 

10  
 
 
 
 

DOPAMINE 
 
  

 
 
 
 
 
64.82 

 
 
 
 
 

ZINC 
000000033882 

  

 
 

 

           -8.71 

 
 
 
 
 
 

Phenols 
 

 
 
 

0.6 
 

11  
 
 
 
 

METHYLDOPA 
(RACEMIC) 

 
  

 
 
 
 
 
64.81 

 
 
 
 

ZINC 
000000020255  

 
 

 

-8.73 

 
 
 
 

Phenylpropano
ic acids 

 

 

 

 

1E+004 

12  
 
 
 
 

TIPIRACIL 
 
 
  

 
 
 
 
 
64.8 

 
 
 
 
 

ZINC 
000100032379 

  

 
 

 

-8.71 

 
 
 
 
 
 

Diazines 
 

 
 

 

5000 
(warmed) 

13  
 
 
 
 

CARBIDOPA 
 
 
 
  

 
 
 
 
 
64.56 

 
 
 
 
 

ZINC 
000019168887 

  

 
 

 

-8.45 

 
 
 
 
 

Phenylpropano
ic acids 

 

 
 

 

3.8 
 

14  
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DOBUTAMINE  

 
 
 
64.56 

 
 
 

ZINC 
000000003911  

 
 
 

-8.69 

 
 
 

Phenols 
 

 
 
 
_ 

15  
 
 
 
 

LEVODOPA  

 
 
 
 
 
64.56 

 
 
 
 
 

ZINC 
000000895199 

  

 
 

 

-8.64 

 
 
 
 
 

Carboxylic 
acids and 

derivatives 
 

 
 
 

5000 
(at 20 °C) 

 

16  
 
 
 
 

NORDEFRIN 
 
  

 
 
 
 
 
64.56 

 
 
 
 
 

ZINC 
000000034157 

  

 
 

 

-8.64 

 
 
 
 

Benzene and 
substitued 
derivaties 

 

 
 
 
 
 
_ 

 
17 

 
 
 
 
 

L-Dops 
 
 

 
 
 
 
 
64.51 

 
 
 
 
 

ZINC 
000002015035 

 

 
 

 

-8.67 

 
 
 
 
 

Carboxylic 
acids and 

derivatives 
 

 
 
 
 
 
_ 

18  
 
 
 

CEFDINIR 
  

 
 
 
 
64.44 

 
 
 
 

ZINC 
000003927198  

 
 

 

-8.48 

 
 
 
 
 

Lactams 
 

 
 
 
 
 
_ 

19  
 
 
 
 

RIFAXIMIN 

 
 
 
 
 
64.33 

 
 
 
  

 
 

 

-8.72 

 
 
 
 
 

Macrolactams 
 

 
 
 
 
 
_ 
 

20  
 
 
 
 
 
 

RIFAMPICIN 

 
 
 
 
 
 
 
64.32 

 
 
 
 
 
 

ZINC 
000169621223 

 
 

 
 

 

 

-8.59 

 

 
 
 
 
 
 
 

Macrolactams 
 

 

 

 

1400 
(at 25 °C) 

21  
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METAPROTERE
NOL 

(orciprenaline) 

64 ZINC 
000000002273 

  

-8.62 Phenols 
 

9.7 

22  
 
 
 
 

TERBUTALINE 

 
 
 
 
 
63.88 

 
 
 
 
 

ZINC 
000000002281 

  

 
 
 
 
 

-8.73 

 
 
 
 
 

Phenols 
 

 

 

 

213000 

* : binding affinity (docking) values of the hit compounds 

 

Database screening 

The results obtained from the mentioned analyses (model validation and pharmacophore-based drug 

repositioning) show that the validation of the model is sufficient enough for using it to screen other 

databases. Therefore, three databases were used for screening to identify new potential active 

compounds against α-syn fibrillation. Hence, the validated pharmacophore model was applied as a 

template to search the NCI (https://www.cancer.gov/), ZINC (ZINC.docking.org/) databases (Table 3)  

and natural products from the Pomegranate fruit because of its unique characteristics (“Pomegranate 

and its Many Functional Components as Related to Human Health : A Review,” 2010) (which contains 

290981, 271910, and 22 molecules, respectively). Results of screening natural products from 

pomegranate fruit are shown in Table 4. 11 hits were identified from the pomegranate fruit compounds. 

Compounds No. 7, 8, and 11, have a fit score between 67-72. This can be considered a good fit score 

with the optimal pharmacophore model, have low conformers (Günther et al., 2006) and are therefore 

expected to be plausible inhibitors.  

 
Table 3. Selected virtual hits from the ZINC and NCI subset databases 

                  

                                

NSC3563
7 

NSC9983
0 

ZINC15906893 

ZINC3382834
3 

NSC81179 

NSC11293
4 
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9                       

                                                                      
 

 

 
Table 4.  Screening results of natural products from pomegranate 

No compounds Energy 
(Kcal/mol)* 

or 
Docking 
score* 

 

Number of 
conformers 

Pharmacophore 
Fit Score 

1 Quercetin -8.68 
 

2 63.80 

2 Epicatechin -8.7 
 

6 63.91 

3 5-O-Caffeoylquinic acid -8.72 
 

100 64.51 

4 Galloyl-HHDP-hexoside 
(Corilagin) 

-8.71 
 

89 71.60 

5 Brevifolin carboxylic acid -8.7 2 67.65 

NSC154600 

NSC157879 NSC329254 

NSC103256 

ZINC01686243 

NSC289915 

NSC3542
74 

ZINC9212616
9 NSC163158 

ZINC9212619
0 

NSC675973 
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6 Valoneic acid bilactone -8.64 

 
10 67.62 

7 Delphinidin-3-O-glucoside -8.71 
 

25 72.18 

8 Cyanidin-3-O-glucoside -8.68 
 

31 63.77 

9 Cyanidin-3-O-rutinoside -8.63 
 

98 63.76 

10 Punicalagin -8.71 15 72.23 
*:	binding	affinity	(docking)	values	of	the	hit	compounds 

 

 

Compound No. 10 (Punicalagin; Fig. 4) has been shown to possess strong antioxidant properties of 

pomegranate (Kulkarni and Aradhya, 2004)(Llorach and Tomás-barberán, 2003)(Rosenblat et al., 

2013)(Ulkarni et al., 2007)(Seeram et al., 2005).  

 

 

 
Figure4. Structure of Punigalagin fitted into the pharmacophore model 

Additionally, the candidate compounds from ZINC and NCI were pre-filtered by the FAFdrug3 server 

(Yang et al., 2016). From the screening of ZINC and NCI databases, 44 and 53 compounds were 

selected respectively. Candidate compounds from these two databases were clustered into 28 different 

structural groups (Vuorinen et al., 2014). From each cluster, a member that has the best-fit score and 

compatibility with our pharmacophore model was selected. Finally, out of 28 candidate compounds, 18 

compounds with up to 100 conformers were introduced as the final candidates (Günther et al., 2006). 

The results are shown in Table. 3. It is hoped that an experimental test will be done for these compounds 

in the future. 

 

Molecular docking 
 
To investigate the binding modes of the candidate compounds to the alpha-synuclein protein, molecular 

docking experiments were performed, which can evaluate the regional influence on biological activity. 

To find minimized affinity values, molecular docking of Exifone and Gallic acid, which was the 
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compounds of the training set, was performed. The minimum free energy binding for these two 

compounds was -8.69 and -8.68 Kcal/mol, respectively. By performing molecular docking for the hit 

compounds of the ZINC15 and Pomegranate databases, the minimum free energy binding of these 

compounds was investigated (the results are shown in Tables 1 and 2). As it turns out, these minimum 

energies are close to the values obtained from the training set, and therefore confirm the model results. 

 

Conclusions 

In this study, we build a 3D ligand-based pharmacophore model that consists of three hydrogen bond 

donor (HBD), two hydrogen bond acceptor (HBA), and two aromatic rings (AR), with significant 

statistical parameters such as Sensitivity = 0.72, Specificity =0.98 and  GH-score ~0.7, which indicates 

the powerful ability of the model to pick out active molecules from the database. To perform drug 

repositioning, this model was used as a 3D query to screen the ZINC15 database. The inhibitory effect 

of a significant number of candidate drugs, such as Entacapone, Tolcapone, Pyridoxine, Levodopa, and 

Rifampicin was demonstrated in previous experimental studies. We then screened NCI, ZINC 

databases, and natural compounds from the pomegranate. Some compounds were proposed from each 

of these databases that could be potential inhibitors of α-syn aggregation. Once again, the strength of 

the model was demonstrated by comparing the docking score of the selected ZINC and Pomegranate 

compounds with the training set. To best of our knowledge, this is the first report where a ligand-based 

pharmacophore model has been built and used to identify drugs for repositioning against α-syn 

aggregation inhibition. Ultimately, we believe that this research will shed new light on better 

understanding pharmacophore features of potentially active compounds against the α-syn aggregation. 

This study also certifies that there is a need to further in vitro and in vivo studies soon to develop potent 

drug inhibitors of the fibrillation of α-syn for the treatment of synucleinopathy disorders like Parkinson's 

disease. 
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