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Abstract 

How cooperation evolves in the presence of selfishness is a core problem in evolutionary biology. Selfish 

individuals tend to benefit themselves, which makes it harder to maintain cooperation between unrelated 

individuals and for living systems to evolve towards complex organizations. The general evolutionary model 

presented here identifies that non-kin selection is the root cause for cooperation between unrelated 

individuals and can enable and maintain higher complexity of biological organizations (the coexistence of 

more individuals of different types). The maintained number of genotypes within a cooperation organization 

is shown to follow a universal exponential law as a quantitative function of the population size and non-kin 

selection strength, showing a gene-pool-size invariance. Our results highlight that non-kin selection may be 

a hallmark of biological evolution, and play an important role in shaping life’s potentials.   
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1. Introduction 

Every level of biological organization involves cooperation among its components. Atoms cooperate (interact) 

in a DNA structure, genes cooperate (interact) in a cell and animals cooperate (mutually benefit) in a society. 

The major evolutionary transitions in biology [1] reveal an increasing complexity in cooperation. Many 

explanations for cooperation [1-29] have been proposed, such as kin selection [4,8,9], group selection [10-

13], ‘tit-for-tat’ strategy [14-16], reciprocity [17-19], policing and punishment [4,20], and biological range 

expansion [21-23]. However, how higher complexity can be maintained within a cooperating structure has 

not been explained directly.  

Kin selection theory, which is encapsulated in Hamilton’s rule [9]: rb – c > 0 (r is the genetic relatedness 

between actor and recipient, b and c are benefits and costs of cooperation, respectively) dominates thinking 

in current evolutionary biology. The theory argues that cooperation will evolve if the benefits produced by an 

individual’s cooperative behavior lead to individuals with genes that increase their inclusive fitness [9,30]. Such 

an explanation can only account for the maintenance of cooperation among genetic relatives, especially in 

animal societies [31-33].  

Although many theories and models have also been proposed for cooperation between non-kin [34-36], 

there are few unified evolutionary models and explanations for the continued cooperation between kin and 

that between non-kin. Especially, cooperation between non-kin has universally occurred in cooperation 

between genomes, organelles and even humans [29,34,37]. A unified evolutionary theory is important as it 

can help to reveal the evolutionary rules for all organisms. Furthermore, how and which factors influence 

biological complexity is unclear. There is an obvious lack of a quantitative theory to determine the functional 
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relationship.  

We develop a general evolutionary model here, based on a quantitative individual-based approach 

(stepping stone model) [38-41], to explain the maintenance of cooperation between both related and 

unrelated individuals. We find non-kin selection can enable and maintain higher complexity in cooperation. 

We also identify a scale-invariant exponential function that characterizes the complexity in cooperation.   

2. Models and methods 

The evolutionary model is based on the stepping stone model (SSM) for well-mixed finite populations (i.e. we 

do not consider the spatial structure of the population), which is based on stochastic processes. The SSM is 

characterized by the branching process, which is based on fate decisions of individuals.  

The design of the evolutionary model is established in the context of social games between a cooperator 

group and a defector group (Fig. 1). Gene pools in our model continually supply new members for 

corresponding groups (e.g. through the reproduction of other individuals). The evolutionary dynamics of the 

model is designed as the following: in each round of the game (time step), the winning side has a chance to 

add one new member from the gene pool into its group, and the losing side will remove one old member 

from its group (the total number of individuals within the whole population is thus conserved, i.e. finite 

populations). After one side completely takes over the whole population, the updating continues. During this 

process, in each round of updating, one new member is selected from the gene pool into the population, and 

at the same time one old member in the population is removed. 

 

 
Figure 1. Illustration of the evolutionary model for social games (illustrated with humans): the gene pool acts as the external 

environmental resources that can supply sufficient new members for the cooperation organization, corresponding to the fact 

that all elements composing organisms growing on the earth are selected from external environmental resources. 

 

During games between cooperator and defector groups, the chance to add one new member for both 

sides is proportional to the current fitness of these two competition groups. The fitness of each side is 

calculated as: wC = ∑ wgety,i

Ngety

i = 1
, wD = ρ(1 - f). Here, wgety,i is the fitness of cooperators with the genotype i, 

Ngety is the total number of cooperator genotypes in the gene pool, ρ is the resultant fitness of defectors 

and f is the frequency of all cooperators in the whole population.  

Throughout the whole evolutionary process, the removed member is randomly selected from the group 

with the probability proportional to its abundance in that group, while the newly added member is chosen 

randomly from the gene pool with the relative reproduction probability (fitness). In the model, the 

reproduction probability of the cooperator genotype i is expressed as:  

-1 +1 
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where ∆ is the cost of cooperation [42], and fgety,i is the frequency of cooperator genotype i in the whole 

population. b is the additional benefits that a cooperator obtains from kin selection or non-kin selection. 

When only kin selection acts, cooperators can get the additional benefits only from those with the same 

genotypes (i.e. relatives). When non-kin selection acts, the additional benefits can be got from those 

cooperators with different genotypes (non-kin). Cnon-kin∈[0, 1] is the coefficient which can be used to tune 

the non-kin selection strength.  

Accordingly, the selection probability (relative fitness) of the genotype i from the gene pool is:  

Pgety,i =
 wgety,i

wC

    (2) 

∑ Pgety,i

Ngety

i = 1

 = 1    (3) 

From Eqs. (1) and (2), we can see that when Cnon-kin = 1, the newly added member can be selected with a 

probability that is genetically independent of old members in the group, i.e. non-kin selection. When Cnon-kin 

= 0, the addition of new members will completely depend on corresponding old genetically related members, 

i.e. kin selection. The main model parameters are listed in Table 1.  

 

Table 1: Parameters defined in the model.  

Parameter Description Value/Range 

Cnon-kin Non-kin selection strength 0 ~ 1 

N Population size of cooperator group 1 ~ 1500 [41] 

Ngety Number of genotypes in gene pool 1 ~ 100 

 

  The whole evolutionary process is implemented as follows. Initially, there are N/2 defector members and 

N/2 cooperator members with Ngety genotypes in the population, and the number of each cooperator 

genotype is equal (we do not consider defector genotypes). At time step t̃, the number and frequency of 

genotype i in the whole population are ngety,i(t)̃ and fgety,i(t)̃, and the total number of cooperators is nC. We 

label these genotypes with integers 1, 2, 3, ···, Ngety.  

During social games, we first use the following binomial distribution function to generate an integer 1 or -

1 denoting the winning side: 

 

Winning side 1 (cooperators) -1 (defectors) 

Probability 
wC

wC + wD

 
wD

wC + wD

 

 

If the result is -1, defectors win this round of game, which means cooperators will remove one old member 

from its group. This process is finished by generating an integer i between 1 and Ngety with a N distribution 

function as:  

 

wgety,i = ሺ1 - ∆ሻρ f
gety,i

 + b ቎ ሺ1 - Cnon-kinሻ∙f
gety,i

 +  Cnon-kin

 ቀf - f
gety,i

ቁ

Ngety

቏    (1) 

Kin selection Non-kin selection 
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Genotype 1 2 ··· Ngety 

Probability fgety,1(t̃) fgety,2(t̃) ··· fgety,n(t̃) 

 

Then the number of this genotype at next time step will become ngety,i(t ̃+1) = ngety,i(t ̃) - 1, and the total number 

of cooperators will become nC (t ̃+1) = nC (t ̃) - 1.  

If the output of games between cooperators and defectors is 1, cooperators win this round of game and 

have a chance to add one new member from the external gene pool. We then use a N distribution function 

to generate an integer j∈[1, Ngety] to denote the new member to be added into the group. The selection 

probability of the integer j is Pgety,j expressed as Eq. (2). So the number of this genotype at next time step will 

become ngety,j(t ̃+1) = ngety,j(t ̃) + 1, and the total number of cooperators will become nC (t ̃+1) = nC (t ̃) + 1.  

After one side takes over the population, we use the same way to generate two integers i and j∈[1, Ngety] 

to respectively indicate the old member to be removed and the new member to be added. So the number of 

genotypes i and j at next time step will become ngety,i(t ̃+1) = ngety,i(t ̃) - 1 and ngety,j(t ̃+1) = ngety,j(t ̃) + 1.  

The processes above produce the whole evolutionary dynamics of the model, and are presented in Fig. 2.  

 

 

Figure 2. Illustration of evolutionary dynamics of the model.  

 

3. Results  

We first test our evolutionary model for social games between cooperators and defectors. Fig. 3a shows a 

common knowledge that the presence of defectors who profit from cooperators but pay no costs leads to 

the evolutionary extinction of cooperation. However, if the cost of cooperation is relatively small, there is a 

probability for cooperation to evolve due to the chance effect (Fig. 3b). Fig. 3c shows that kin selection only 

is able to facilitate the evolution of cooperation through providing a group of cooperators with additional 

benefits, and this facilitation effect is particularly obvious in the presence of smaller cooperation cost and 

higher benefits resulting from kin selection (Fig. 3d). Simulations and Eq. (1) suggest that cooperation 
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f < 1 

No 
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f = 1 
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generally evolves when b/ρ > Δ, which is approximatively in correspondence to Hamilton’s rule.  

 

 

Figure 3. Evolutionary games between cooperators and defectors. (a) Evolution of the number of all cooperators and 

cooperator genotypes in the presence of cooperation cost. (b) Evolutionary probability of cooperation under different cost of 

cooperation. (c) Evolution of the number of all cooperators and cooperator genotypes in the presence of cooperation cost and 

kin selection as well. (d) Evolutionary probability of cooperation under different benefits of kin selection. The population size N 

= 30, and the initial frequency of cooperators within the population is f0 = 0.5. Initial number of each cooperator genotype is 

equal, and the total number of cooperator genotypes in the gene pool Ngety = 15. Each data point is tested for 20 rounds. 

 

The complexity of a cooperator group is directly characterized by the number of cooperator genotypes 

within the group. Therefore, we are mainly concerned by how the number of genotypes within the 

cooperation organization is influenced by model parameters. In our initial simulations, the total number of 

genotypes in the gene pool Ngety is limited to 15. We find that cooperation can be maintained to a large 

degree among unrelated individuals only if the cooperator group can be continuously supplemented with 

new cooperator members of genotypes that have little genetic dependence on old cooperator members.  

When cooperators within the group can get benefits only from their relatives (Cnon-kin = 0 in Fig. 4a, i.e. kin 

selection), new cooperator members will be selected from the gene pool with a strong genetic dependence 

on the old members within the group (the extreme example is that the new members are reproduced by old 

members), and the total number of cooperator genotypes within the cooperator group decreases over time. 

After a long period of evolution, only one of the original fifteen cooperator genotypes survived and took over 

the whole cooperator population (r = 1), with the others all removed during this process (Fig. 4b). With the 

emergence and increasing impact of natural non-kin selection (higher non-kin selection strength Cnon-kin, see 

Eq. 1), more cooperator genotypes can be maintained in the cooperator group as equilibrium points, 

enhancing the biological complexity (diversity) (Fig. 4a).  

If cooperators within the group can get benefits from all cooperators with different genotypes (Cnon-kin = 1, 

i.e. non-kin selection acts), new cooperator members can be supplemented with no genetic dependence on 

the cooperator group (e.g. new members are selected from the gene pool with the equal probability of the 

Δ = 0.2 

b = 0 
b = 0 

Δ = 0.7 
b = 0.3ρ 

Cnon-kin = 0 

a b 

c d 
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15 genotypes), and the cooperator group can still preserve those original 15 genotypes and maintain the low 

genetic relatedness among members over a long period of evolution (Fig. 4c). Of course, for animal societies 

including humans, reproduction of organisms (absolute kin selection) still needs to be involved in all cases 

(from Cnon-kin = 0 to Cnon-kin = 1) to supply new members as the life span of organisms is limited. 

 

 
Figure 4. The evolution of social cooperation in well-mixed finite populations. (a) Effect of non-kin selection strength Cnon-

kin on the evolution of the total number of cooperator genotypes in the cooperator group: each value of Cnon-kin can output a 

specific number of genotypes as an equilibrium point. (b), (c) Evolution of the frequency distribution of cooperator genotypes 

within the cooperator group when (b) Cnon-kin = 0 and (c) Cnon-kin = 1: one colored line represents a specific genotype. Initial 

frequency of each cooperator genotype within the group is equal, and the total number of cooperator genotypes in the gene 

pool Ngety = 15. The population size N = 30.  

 

 

Figure 5. Heat map of the number of maintained cooperator genotypes ngt(∞) for varying population size N and non-kin 

selection strength Cnon-kin. Each data point is tested for 10 rounds. Initial frequency of each cooperator genotype within the 
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group is equal, and the total number of cooperator genotypes in the gene pool Ngety = 15. 

 

The landscape of the maintained number of cooperator genotypes within the population ngt in the space 

(Cnon-kin, N) further demonstrates that the non-kin selection effect is weaker at the smaller population size N 

(below the dashed line), with fewer genotypes to be maintained (Fig. 5). This is owing to the strong sampling 

effect arising from the small number of individuals at the low population size [43,44].  

To check how the total number of genotypes in gene pool affects our results, we tried varying values of 

Ngety. Fig. 6 shows that for a given population size, the maintained number of genotypes within the group ngt 

generally increases with Ngety, but there is a saturation effect (i.e. ngt has an upper limit) when Ngety is beyond a 

specific value, due to the sampling effect. The emergence of the sampling effect leads to more and more 

larger deviation of ngt from Ngety (see the shadow region in Fig. 6). This result holds for different non-kin 

selection strength.  

 

  
Figure 6. Evolution of ngt as a function of Ngety and Cnon-kin: the shadow region indicates the strength of sampling effect. The 

population size N = 100. Each data point is tested for 10 rounds.  

 

 

Figure 7. (a) Variation of ngt with population size N at different Ngety. (b) Variation of ngt̃ with Ñ. (c) Variation of the slope of the 

distribution curve in (b) with 1 - ngt̃. 1 - ngt̃ is observed to exponentially decay as Ñ. τ = 0.9354. Non-kin selection strength 

Cnon-kin = 1. Each data point is tested for 10 rounds.  

 

Fig. 6 demonstrates that strong sampling effect exists because the number of individuals within the group 

is small, which makes a specific genotype hard to persist. To make a population maintain as many genotypes 

as possible, the population size should be large enough, compared with the number of genotypes to be 

maintained, as shown in Fig. 7a. Different Ngety has distinct ngt-N relations. When both ngt and N are normalized, 
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however, these relations are observed to collapse to a universal distribution (Fig. 7b). Simulations show that 

the slope of the distribution curve is proportional to 1- ngt/ Ngety (Fig. 7c). That is,   

dngt̃

dÑ
 = 

1 - ngt̃

τ
     (4) 

where ngt̃ = ngt /Ngety and Ñ = N/Ngety are normalized parameters. ngt̃ can be regarded as the degree of 

complexity. τ is the characteristic normalized population size, which is related to Cnon-kin.  

  From Eq. (4), we can derive that the number of genotypes maintained within a cooperation organization 

follows a universal exponential function of the form:  

ngt̃ = 1 - e 
- 

Ñ
τ      (5) 

Eq. (5) suggests that the maintained number of genotypes within the population has a Ngety-invariant 

dependence. That is, the normalized number of preserved genotypes within the population is independent 

of the abundance of the external gene pool. In our study, we observe that both the Ngety-invariant dependence 

and also the function (i.e. Eq. 5) hold for varying Cnon-kin (Fig. 8a), suggesting Eq. (5) is a universal function. 

However, smaller Cnon-kin will dramatically increase the characteristic constant τ, as presented in Fig. 8b. 

Surprisingly, the parameter τ is observed to strictly vary with Cnon-kin in a power law, with a power exponent of 

-5/8. From the universal Eq. (5) and also Fig. 8a, we can also derive that to maintain a specific number of 

genotypes within the population, the population size needs to be at least 3 times larger than the characteristic 

constant τ.  

 

 

Figure 8. (a) Variation of ngt̃ as a function of Ñ and varying non-kin selection strength Cnon-kin. (b) Variation of the characteristic 

constant τ in Eq. (5) as a function of Cnon-kin: τ varies with Cnon-kin in a power law. a = 0.9539 and b = 5/8. Each data point is tested 

for 10 rounds.  

 

Taking the power law identified in Eq. (5), we can obtain the following function:  

ngt̃ ≈ 1 - e - ÑCnon-kin
5/8

     (6) 

i.e.  

ngt
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     (7) 

From Eq. (6), we can see that ngt̃ increases with both Ñ and Cnon-kin. If Cnon-kin = 0, ngt̃ will become zero 

despite the very large population size, which means the genetic diversity within the population will disappear. 
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Therefore, our theory identifies that the essence of biological complexity or diversity is non-kin selection. If 

Cnon-kin = 1, ngt̃ will vary with Ñ in a simple exponential law:  

ngt̃ = 1 - e - Ñ    (8).  

Fig. 9 shows the distribution of ngt̃ for varying Ñ and Cnon-kin, which is plotted by the Eq. (6). Fig. 9 exhibits 

a much similarity with Fig. 5. This suggests that the quantitative law identified here is reasonable.  

 

 
Figure 9. Distribution of ngt̃ in space (Cnon-kin, Ñ). Plotted using Eq. (6).  

 

Our research results demonstrate that the root cause for the low genetic relatedness between individuals 

in the biological evolution model we have studied is the non-kin selection effect within various cooperator 

groups. Therefore, all mechanisms should play a part in cooperation between non-kin through taking non-

kin selection. However, we stress that both reciprocity and group selection are not fully equal to non-kin 

selection. For example, reciprocity may easily lead to cooperation between only kin when kin selection 

dominates, and it cannot explain well the human altruism where individuals do not benefit themselves at all 

but show an evident self-sacrifice [34]. The non-kin selection we proposed here is a universal concept, as it 

can provide a good explanation for any cooperation between unrelated individuals including human altruism 

and even cooperation between different molecules.  

Our evolutionary model can output different genetic relatedness as equilibrium points for each non-kin 

selection strength. This provides a mechanism to have a hierarchy of stable biological systems with different 

genetic relatedness.  

4. Summary and discussion 

Explaining cooperation is the basis to understand the emergence and evolution of complex biological 

organizations. At present, a prevalent explanation for the evolution of cooperation is kin selection as 

presented in Hamilton’s rule. However, the basic biological evolution towards higher levels has not been 

explained directly. In this article, using a stochastic individual-based approach, we develop a simple but 

relatively general evolutionary model to show that when and only when non-kin selection is included, the 

cooperation between unrelated individuals can be maintained for long periods, suggesting that non-kin 

selection is the origin of biological complexity (diversity). Our model identifies a unified quantitative law to 

characterize the complexity in cooperation: the number of genotypes maintained within a cooperation 

organization follows a universal scale-invariant exponential distribution function, which shows a dependence 

on both the population size and non-kin selection strength and also an independence on the abundance of 

genotypes in the external gene pool.  
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  Different from kin selection, group selection and reciprocity, non-kin selection means that to enable and 

maintain cooperation between unrelated individuals, individuals must actively select the non-self (this can 

lead to the mutation of organisms, the cooperation between animals, and so on). This requires that individuals 

have to get out of the genetic dependence. Besides, our general evolutionary model shows that kin selection 

and non-kin selection are the only two root causes for different degrees of complexity of biological systems. 

This demonstrates that both group selection and reciprocity are not the root cause, but may be effects of the 

causes.  

  Complexity in biological systems can be partly captured by synergetic interactions, which refer to the whole 

being more than the sum of its parts [45]. Synergy is based on interactions between individuals of different 

types. Our research reveals that the cooperation complexity originates from non-kin selection between 

individuals. This may suggest that non-kin selection is the origin of all beings, including the universal synergy 

effects.  

We believe non-kin selection is an important evolutionary force for shaping complex biological 

organizations. Under the power of natural non-kin selection, the biological attribute of organisms may be 

gradually dragged from kin selection to the final non-kin selection. The most significant difference between 

humans and animals may be that we humans have evolved to abandon the absolute kin selection to survive 

throughout the operation of our lives. Non-kin selection might be a natural law of biological evolution and 

should be investigated further.  
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