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Non-parametric classification of protein secondary structures
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Abstract

Proteins were classified into their families using a classification tree method which is based on the coefficient of
variations of physico-chemical and geometrical properties of the secondary structures of proteins. The tree method
uses as splitting criterion the increase in purity when a node is split into two subnodes and the size of the tree is
controlled by a threshold level for the improvement of the apparent misclassification rate (AMR) of the tree after
each splitting step. The classification tree method seems effective in reproducing similar structural groupings as the
method of dynamic programming. For comparison, we also used another two methods: neural networks and support
vector machines. We could show that the presented classification tree method performs better in classifying proteins
into their families. The presented algorithm might be suitable for a rapid preliminary classification of proteins into
their corresponding families.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Proteins are macromolecular products of the cellular biosynthetic machinery and consist of a linear
chain of amino acids, which is encoded by the sequence of nucleotides in the DNA. While currently the
primary structure (amino acid sequence) of tens of thousands of proteins is known, the tertiary structure
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Table 1
The groups and families of the proteins used for the classification tree algorithm

Group Family Abbreviation

�-helix proteins Lysozymes Lys
Calcium binding Cal
Hemerythrins Hem
Globins Glo
Cytochromes Cyt

�-strand proteins Antigen binding Ant
Copper binding Cop
Immunoglobulin heavy chains ImH
Immunoglobulin light chains ImL

Serine proteases Serine proteases Ser
Mixed Trypsin inhibitors Try

Glyceraldehyde phosphate dehydrogenases Gly
Subtilisins Sub
Periplasmic space binding proteins Per
Dinucleotide binding folds Din

(three-dimensional folding) of only a few hundred sequences have been solved. The tertiary structure is
built up of secondary structure elements whose main components are �-helices and �-strands which are
connected via short loops of amino acids. The three-dimensional structure of a protein can be described
by a set of variables which are functions of the angles and distances between the secondary structure
elements [1].

Using data derived from these variables (see method) we used a classification tree method in order
to classify and identify families of a set of 75 proteins with known structures (Table 1). The classi-
fication tree method is a non-parametric discrimination method and therefore it is a distribution-free
method.

The results obtained by applying the classification tree method are compared with the findings of
Orengo et al. [2], who used the dynamic programming method, an elaborate and a time-consuming
method, to study the same set of proteins.

The results of the presented tree classification algorithm are also related to the results obtained after
training a neural network on our data. The surge of interest in neural networks over the last years and their
ability for generalised pattern recognition has also led to their application in predicting protein classes
and secondary structures [3,4]. The comparison shows that under certain conditions the tree method gives
considerably better results than the neural network.

In addition, the protein structures were classified using support vector machines (SVM) [5]. The tree
method may be advantageous in classifying the proteins into their families.

2. Methods

Various physico-chemical and geometrical measures have been suggested to classify proteins [6,2]. In
this study, we use a set of eight variables per protein for the classification process. Seven of these variables
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Fig. 1. Schematic representation of some of the variables used to describe protein structures.A fragment of a protein is represented
by the dashed line running from the N-terminus to the C-terminus connecting some amino acid residues indicated by grey spots.
Two secondary structure elements along this, an �-helix (element 1) and a �-strand (element 2), are abstracted as thick vectors
with centres indicated by white spots. The intercentroid distance (v2), distance between ends of secondary structures (v3),
intervening loop length (v4) and intercentroid angle (v5) are shown by the thin solid lines. For the classification tree algorithm
these variables are summarised by calculating the coefficient of variation for the variables of a given protein.

are derived from measurements between secondary structures as defined by Orengo et al. [2]. We also
added another variable which is a measure of the size of the protein and is defined as the number of possible
interactions between secondary structures of the protein (v1=n(n−1)/2, n being the number of secondary
structures). The following list summarises the variables used for classifying proteins (see also Fig. 1):

v1 = number of possible pairs of secondary structures in a protein.
v2 = distances between the centres of two secondary structures.
v3 = distances between the ends of secondary structures.
v4 = intercentroid tilt angles between each two structures.
v5 = intercentroid angles between each two structures.
v6 = hydrophobic moment vector angles.
v7 = centroid moment vector angles.
v8 = connecting loop lengths given in amino acid residues between secondary structures.

Because each protein consists of several secondary structures, a whole set of measurements corresponds
to each variable. For example, protein 1CC5 consists of 10 secondary structures and therefore each of
the variables v2.v8 has a number of observations equal to the number of secondary structures. In order
to summarise the observations on each variable (v2.v8), it is necessary to use a summary statistic such
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Table 2
The variables v′

1.v
′
8 for a set of typical proteins are shown. Each protein is a representative of its family (see results)

Family Protein v′
1 v′

2 v′
3 v′

4 v′
5 v′

6 v′
7 v′

8

Lys 2LZ2 210 0.301 0.439 0.688 0.385 0.481 0.687 0.412
Cal 3CLN 153 0.454 0.497 0.705 0.490 0.448 0.721 0.538
Hem 2MHR 276 0.192 0.575 0.985 0.483 0.504 0.861 0.592
Glo 1HBS 105 0.323 0.414 0.764 0.390 0.447 0.727 0.397
Cyt 155C 45 0.339 0.661 0.683 0.363 0.423 0.614 0.296
Ant 2HLA 78 0.549 0.587 0.758 0.417 0.456 0.456 0.526
Cop 1PCY 120 0.348 0.677 0.587 0.486 0.471 0.665 0.416
ImH 2HFL 171 0.531 0.563 0.789 0.446 0.433 0.719 0.525
ImL 2MCP 231 0.554 0.575 0.815 0.438 0.442 0.693 0.525
Ser 2KAI 120 0.488 0.427 0.879 0.413 0.492 0.783 0.452
Try 2SEC 325 0.387 0.549 0.804 0.468 0.455 0.723 0.388
Gly 2GDI 36 0.460 0.499 0.783 0.427 0.430 0.708 0.457
Sub 1SBT 78 0.375 0.536 0.778 0.443 0.435 0.700 0.383
Per 2GBP 91 0.423 0.620 1.037 0.489 0.424 0.718 0.432
Din 4MDH 91 0.445 0.538 0.832 0.422 0.436 0.714 0.444

as the coefficient of variation (CV). The CV is defined as the standard deviation divided by the mean and
it is independent of the units of the measurement. It can be used to summarise the distribution of each
measured variable and is commonly used in biological sciences for distribution comparisons [7]. This
statistic has already been used for classifying successfully a small set of proteins by Zintzaras et al. [8]. In
the following analysis, the v1 and the CVs of the variables v2.v8 were used for classifying the 75 protein
structures (Table 2 shows these data for typical proteins of each family).

The classification tree method was applied to these variables as follows: if v′
1.v

′
8 are the derived variables

(the v1 and the CVs of v1.v8, respectively) of each protein, the method first sorts the individual proteins
according to each variable. It then finds for each variable the point that results in the best split, i.e. the
split which results in the purest subsets. After choosing the variable with the overall best possible split
the data set is divided into two subsets. Finally, in a recursive manner, the subsets are split according to
the same procedure as the initial data set.

The partition algorithm is represented as a tree. The node t is split into two subnodes tl and tr in such a
way that the subnodes are purer than the original node. The proportion of individual proteins in t that go
to tl and tr are pl and pr, respectively. A node is pure if it contains only individuals from one class. The
goodness of a split, s, is defined by the increase in purity D(s) and is given by

D(s) = I (t) − [plI (tl) + prI (tr)], (1)

where I (t) = 1 − ∑c
i=1[�(i/t)]2 is the Gini index of diversity. �(i/t) is the proportion of individuals of

class i in node t and c is the number of different classes [1].
The measure of performance of the classification tree is the resubstitution estimate (R) of the true

misclassification rate. This is the estimate of the proportion of misclassified individuals by using the
resubstitution method. Using the resubstitution method, a tree is constructed with the data of the 75
proteins as a training set and we see how the tree classifies each protein [9].
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The tree is growing in the following way: each time after a split classes are assigned to the new nodes
using the majority rule and the AMR of the tree is calculated. If the split improves the AMR by a certain
percentage the split is performed, otherwise the node becomes a terminal node [1,8].

Orengo et al. [2] have developed a method for classifying protein families. The method first recognises
related proteins by sequence similarity and subsequently performs detailed structural comparison to
establish a set of unique fold families. The proteins are structurally compared using dynamic programming
which obtains the optimal alignment between every pair of protein structures [10].

The neural networks were constructed using the Stuttgart neural network simulator (SNNS) [11]. The
nets constructed possess eight input units (corresponding to the eight variables), two hidden layers with
ten and six units and four, respectively, 15 output units. The standard backpropagation algorithm has been
used for learning with a learning parameter, �, of 0.2. The variables v′

1.v
′
8 were used for input. For this

purpose v′
1 was normalised before training. For learning the data set of 75 proteins has been split into

a training set of 50 proteins and a validation set of 25 proteins. Every ten training cycles learning was
interrupted and the error on the validation set was calculated. Learning was stopped in the minimum of
the validation set error. At this point the net generalises best. If learning is continued, overtraining occurs
and the performance of the net on the whole data decreases, despite the fact that the error on the training
set still gets smaller.

For pruning, the method of finding the “non-contributing units” has been used. Again, standard back-
propagation was used as learning function with 1000 cycles for the first training and 100 cycles for each
retraining. Only pruning of input nodes was allowed, no hidden units were pruned.

Another classification technique that has become popular in recent years is support vector machines
(SVMs) [5]. The 75 proteins of our study represent a multi-class problem, since they can either be assigned
to four groups or fifteen families. Originally, SVMs could only be applied to binary clustering problems,
but in recent years variants have been developed, that can also cope with multi-class problems. We used
libSVM 2.6 [12] for this purpose. As a pre-processing step, the eight variables (v′

1.v′
8) were scaled to

the range of −1 to 1 with a libSVM utility program and were then used for classification.

3. Results

The 75 proteins belong to four groups and each group consists of families; in total there are fifteen
families. The groups are predominantly � proteins, predominantly � proteins, serine proteases and mixed
proteins (Table 1).

3.1. Classification trees

We applied the tree method to the data of the 75 and when a 6% improvement in the AMR was used as
threshold a tree with four terminal nodes resulted (Fig. 2). The misclassification rate of the tree is R=48%.
Most proteins from the same groups are segregated in the four terminal nodes. The only discrepancies are
the cytochromes (Cyt), which are mixed with the serine proteases, and the mixed family and the copper
and calcium binding proteins (Cop, Cal) as well as the hemerythrins (Hem), which too are mixed with
proteins from the mixed family group. However, overall the tree method based on the proposed eight
variables was able to identify the four main groups of proteins.
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Datafile: prcv3.dat
No of individuals: 75
Threshold: 0.060000
AMR = 0.480

Fig. 2. The tree obtained for the four major groups of proteins (see Table 1). The threshold for splitting a node was based on a
6% improvement of the AMR. At each terminal node the number of individuals from each protein family is shown. In terminal
node 5 for instance there are three members of the cytochromes (3XCyt) and thirteen members of the family of serine proteases
(13XSer).

When the threshold value for improvement is reduced, the size of the tree increases. The maximum
tree consists of terminal nodes equal to the number of proteins, i.e. 75. By varying this threshold a tree
results with terminal nodes that represents the protein families.

When a 2% improvement for the AMR is used as threshold a tree with 14 terminal nodes is generated
and the misclassification rate of the whole tree is R = 12% (Fig. 3). Two cytochromes are mixed with the
lysozymes (node 8) and the copper binding proteins (node 17). In addition one calcium binding protein is
mixed with the lysozymes (node 8). The method has also problems to separate subtilisins and dinucleotide
binding proteins (nodes 22 and 26). And finally the immunoglobins heavy and light chains are segregated
together in one terminal node (node 15).

In general, the tree method together with the eight proposed variables (v′
1.v

′
8) classified the proteins

into their families. The most used variables for growing the tree are v′
1 and v′

2 with three splits each.
But also v′

3, v′
5 and v′

7 are important with two splits each. However, two variables (v′
6 and v′

8) were not
involved in the construction of the tree at all.

The dynamic programming method of Orengo et al. [2] has classified the 75 proteins to their families
successfully; however, the method has not been applied for classifying the proteins to their groups.

3.2. Neural nets

We also used neural nets for the classification of proteins. In particular, we used the Stuttgart Neural
Network Simulator (SNNS) to construct and train two networks to classify the proteins into their groups
and families, respectively (for detail on how the nets were trained see methods). We used a training and
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Fig. 3. Using a splitting threshold of 2% a much more detailed tree of the protein groups and families can be obtained. Below
each terminal node the family is shown to which the node has been assigned according to the majority rule.

Fig. 4. Development of the mean square error (MSE) for the validation and the trainings set during the learning phase of the net
which was used to classify protein families. The arrow points to the minimum of the MSE of the validation set which it reaches
after 1080 learning cycles. For details on training parameters see methods.

a validation set to decide on the optimal number of learning cycles. Fig. 4 shows the results of a learning
session for the net which was trained to identify individual protein families. The mean square errors
(MSE) of the training set as well as the validation set keep decreasing until cycle 1080, where the error
for the validation set reaches a minimum and begins increasing again. This is the point when overtraining
starts and the training of the net has to be stopped.

After training the two nets (for group and family identification) to this optimum the ability of the nets
to classify the 75 proteins was tested. After presenting a specific input pattern (v′

1.v
′
8) the output unit with

the highest value decided on group or family membership. The results are summarised in Table 3.
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Table 3
Classification results of the 75 proteins for classification trees, neural nets and support vector machines. For group classification
the proteins were assigned to four different groups and for family classification the proteins were assigned to 15 different families
(see Table 1)

Classification tree Neural net SVM

Group misclassification 13/75 2/75 8/75
Family misclassification 9/75 26/75 24/75

For group classification, the neural net method resulted in less misclassifications while the classification
tree method performed much better when the proteins were classified into families.

To find out if the neural network method predominantly uses the same input variables as the tree
method, we used a pruning algorithm provided by SNNS to successively prune the least important input
node. Fig. 5 shows the result after four pruning steps. The order in which the input nodes were pruned is
I5 (v′

5), I6 (v′
6), I7 (v′

7) and I8 (v′
8).

3.3. Support vector machines

For a further comparison we used the SVM package libSVM of Chang and Lin [12]. The protein data
were scaled and then classified using the radial basis function (RBF) kernel and a five-fold cross validation.
The parameters gamma and C fine tune the behaviour of the radial basis function. Gamma influences the
width of the RBF and controls the generalization vs. overfitting behaviour. C is a cost factor associated
with misclassified examples. To find optimal values for both parameters, the 2D parameter space was
sampled at regular intervals (on a logarithmic scale) and a contour map of the resulting cross validation
accuracy is generated. As can be seen in Fig. 6, the highest accuracy for family classification of 68% was
achieved for C = 26.8 = 111.4 and � = 2−3.3 = 0.1. This translates to a misclassification rate of 24/75
(Table 3) for the classification of protein families. For the classification of groups the misclassification
rate was 8/75 with optimal C = 32 and � = 0.5.

4. Discussion

The results indicate that the derived variables (CVs) may be used for classifying proteins into their
families. The classification tree has some advantages over other conventional multivariate methods [9]
like linear discriminant analysis, because it allows to see the structure of the data at each growing stage
of the algorithm. Using a large threshold of 6% (which gives rise to few terminal nodes) the four major
groups of proteins could be identified (Fig. 2). Using a smaller value of 2% the classification process
reproduced most of the individual protein families (Fig. 3).

It is not surprising that the most polluted group in Fig. 2 is the mixed family group. As the name
indicates, this group contains a mixture of families which do not share such clearly defined properties
as the �-helix or �-strand groups. Under these considerations the classification results are surprisingly
good and indicate that other common properties have been used by the tree algorithm. Although the
classification into individual family using a lower threshold is not perfect (Fig. 3), there are only relatively
few exceptions. In most cases families were grouped together, which belong to the same group (nodes
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Fig. 5. Diagram of the neural network which classified protein families after several pruning steps of input nodes. The net consists
of an input layer with 8 units (I1–I8), two hidden layers with ten and six units (H11–H110 and H21–H26) and an output layer
with 15 units (O1–O15). Initially the network is completely connected, but after pruning of the input units from I5 to I8 their
links are no longer shown.

8,15,22,26). Only once, families of different groups were mixed when cytochromes and copper binding
proteins were assigned to the same terminal node (node 17).

The analysis of the variables used for the thirteen splits in Fig. 3 shows that v′
1 and v′

2 are used most
often (three times), but one dominant variable does not exist. Instead it is more interesting that v′

6 and v′
8

have not been used at all. It seems that the hydrophobic moment vector angles (v′
6) and the connecting

loop length (v′
8) are not relevant for the classification process.

The described method cannot only be used for classification, but also to predict the family of a new
protein. For this purpose the variables v′

1.v
′
8 have to be measured for the new protein. The protein can

then be dropped into the tree which has been constructed with well-known proteins. The algorithm
then uses the splitting variables and values calculated for the construction of the tree and assigns the
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Fig. 6. Contour plot of the accuracy achieved by SVMs for the classification of the protein families. The radial basis function,
that was used as kernel, is controlled by the parameters gamma and C. To find optimal values, the parameter space was sampled
with five-fold cross validation and the axes of the contour plot are shown on a logarithmic scale of base 2.

unknown protein to a terminal node. The family assigned to this node is the predicted family of the new
protein.

The dynamic programming method classifies successfully the proteins into their families, as it was
anticipated, since it is a method based on a detailed topological analysis of the protein structures. However,
the method can be used only on powerful machines, it is complicated and time consuming.

Using the Stuttgart Neural Network Simulator we constructed two feedforward nets and compared their
ability to classify the proteins of our data set with the results of the classification tree method. When the
neural nets were used to identify the four major groups (�-helix, �-strands, serine proteases and mixed)
there were only two misclassifications in contrast to 13 for the tree method. However, the situation was
reversed when the aim was to identify the 15 different families. The tree method had only nine false
classifications while there were 26 for the neural network. As can be seen from Fig. 2, the most mistakes
of the tree method were in assigning proteins to the mixed family group (ten out of 30 are assigned
erroneously). As mentioned earlier, the mixed family group is a very heterogeneous group which makes
it difficult for the tree method to identify. The bad performance of the neural net in classifying individual
protein families is probably caused by the small size of our data set. Considering that the data set had to
be split (for creating a training and validation set) and two neural nets had to be constructed and trained,
it seems that especially for small data sets the presented classification tree method is superior and simpler
to use compared to the neural network approach.

In Fig. 5, the results after four successive rounds of input node pruning are shown. The pruning algorithm
provided by SNNS removes the least important node and retrains the net afterwards. The input nodes
were removed in the order I5 (v′

5), I6 (v′
6), I7 (v′

7) and I8 (v′
8). Although difficult to compare it seems

that for both methods the derived variables v′
1.v

′
4 are more relevant than the variables v′

5.v
′
8.

Support vector machines performed very badly in classifying proteins into their families. The fam-
ily results are similar to the high misclassification rate of neural nets. While neural nets performed



E. Zintzaras et al. / Computers in Biology and Medicine 36 (2006) 145–156 155

significantly better than the tree method in classifying proteins into their groups, the results of SVMs
are in between the misclassification rate of classification trees and neural nets. For the classification of
families, the tree method outperformed both, SVMs and neural nets.

The classification tree method may be advantageous to support vector machine analysis and to neural
networks when a small data set (e.g. 75 individuals) is considered. The classification tree method could
provide a fast and preliminary analysis, and a more detailed topological analysis can afterwards be
provided by more elaborate methods such as the dynamic programming method Orengo et al. [2].

5. Summary

In this paper, a classification tree method for classifying proteins into their groups and families, based on
physico-chemical and geometrical measures of their secondary structures is described. The results were
compared with the findings of three other methods: dynamic programming, neural networks and support
vector machines. The tree method produces similar structural groupings with the dynamic programming,
and may perform better than neural networks and support vector machines in classifying proteins into
their families.
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