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Abstract
Modern micro-CT and multi-detector helical CT scanners can produce high-resolution 3D digital
images of various anatomical trees. The large size and complexity of these trees make it essentially
impossible to define them interactively. Automatic approaches have been proposed for a few specific
problems, but none of these approaches guarantee extracting geometrically accurate multi-
generational tree structures. This paper proposes an interactive system for defining and visualizing
large anatomical trees and for subsequent quantitative data mining. The system consists of a large
number of tools for automatic image analysis, semi-automatic and interactive tree editing, and an
assortment of visualization tools. Results are presented for a variety of 3D high-resolution images.
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1 INTRODUCTION
Modern micro-CT [1–5] and multi-detector CT scanners [6,7] can produce high-resolution 3D
digital images of various anatomical tree structures, such as the coronary or hepatic vasculature
[4,8–10] and the airway tree [11]. For example, a typical 3D micro-CT image of the coronary
arterial tree can consist of several hundred megabytes of image data, with a voxel resolution
on the order of ten microns, and depict many generations of connected branches. The
quantitative analysis and subsequent visualization of such images poses a considerable
challenge. The sheer size and complexity of such images makes interactive manual tree
definition out of the question. We propose a system for the complete definition and quantitative
analysis of anatomical trees contained in high-resolution 3D digital images.

Rudimentary automated techniques for the definition of the vascular and hepatic trees have
been previously suggested [4,8–10,12–15]. Also, partly in recognition of the great complexity
of vascular trees depicted in large 3D images, some automated analysis work has only focused
on a principal pathway, where a principal pathway is designated as one selected path from the
beginning of the tree (the “root”) to the end of one terminating branch [16–18]. A few recent
efforts have proposed rudimentary interactive “point and click” editing for deleting unwanted
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branches in vascular trees [10] and deleting unwanted subtrees in cerebral vascular networks
[19].

While existing techniques can give a high percentage of apparently correct branches, no
technique guarantees geometrically accurate multi-generational tree structures, even to
generation N, where integer N is less than the total number of branch generations depicted in
an input image. Tree errors occur because of insufficient data resolution, artifacts from
improper image reconstruction, flaws in specimen preparation, and imperfections arising in
acquiring the image data during scanning [4]. Figure 1 illustrates the basic problem. Various
defects can occur in the defined result, such as: (a) missed branches; (b) broken branches; (c)
spurious branches, resulting in extra bifurcation points and errors in branch generation indices;
(d) anatomically implausible loops; (e) imprecise axes definition within a branch-point region,
producing incorrect local branch geometry; and (f) improperly centered branch axes, resulting
in incorrect branch measurements. These problems result in a tree that has an incorrect
geometrical structure. Further, errors arising in the first few generations cause errors to
propagate to all other generations.

These observations lead to the basic philosophy we used in designing our proposed system:
(1) it is unrealistic and counterproductive to rely strictly on improved scanning technology and
improved automated image-processing algorithms for defining an accurate tree; (2) automated
techniques, despite their imperfections, are essential in providing a complete description of a
tree, as they can provide a high percentage of the correct tree structure; (3) judicious human
interaction is essential for arriving at accurate useful analysis of a tree.

This paper describes our system, dubbed the Tree Analyzer. Section II gives an overview of
the system, Section III describes the system architecture, Section IV discusses how the system
is used to process a given 3D image, and Section V provides quantitative and pictorial results
for various 3D micro-CT and multi-detector CT images. Finally, Section VI offers concluding
comments.

2 SYSTEM OVERVIEW
The qualitative design criteria that drove the Tree Analyzer’s construction are as follows: (1)
be computationally efficient; (2) require only a reasonable amount of human interaction; (3)
function over a wide range of anatomical and data variations. The system consists of three
components:

1. A top-level graphical user interface (GUI) for performing all interactions.

2. A 3D image-processing toolbox for automatic image analysis.

3. A set of interactive tools for visualization, tree editing, and data mining.

Section 3 provides more detail on these components. The user applies the system to a given
3D image following a four-stage approach (Figure 2):

1. Apply automated image analysis to extract an initial raw tree and generate tree surface
data suitable for follow-up visualization and tree editing.

2. Automatically define the initial raw central axes, or centerlines, for the extracted tree.

3. Automatically “diagnose” the tree for possible tree defects, such as broken branches,
loops, etc., per Figure 1. Next, invoke various semi-automatic and interactive tools
to examine and correct the identified tree defects.

4. Perform interactive data mining to extract and examine quantitative tree data.
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At the end of this process, the user has a quantitative description of the desired anatomical tree.
Section 4 gives detail on this process. As the Tree Analyzer has considerable breadth and
capability, we cannot give complete detail on all of its functionality in this paper. References
[20–24] provide supplemental details on various aspects of the system.

The Tree Analyzer was built on a PC platform and greatly expands upon the earlier system of
Wan [10]. The software was developed using Visual Studio.Net 2003 and Visual C++. The
code for managing windows and dialogue boxes, for performing basic input-output, for storing
data objects, and for accomplishing other functions, draws upon the standard Microsoft
Foundation Class (MFC) library. Supplemental user interface components draw upon those in
the Business Component Gallery (BCG), an extension library for MFC. Some of the Tree
Analyzer’s visualization features are derived from functions in the Visualization Toolkit (VTK)
and OpenGL [25,26].

For a given input 3D image, all data components for a completely processed tree are stored in
a central data structure referred to as the case study [27]. All system inputs, interactions, and
outputs occur through the case study. The case study contains the following data elements:

1. Original 3D gray-scale image

2. 3D image of the segmented tree

3. Central axes of the tree

4. Surface data for rendering the tree

5. A script containing the sequence of automated image-processing operations used for
performing all Stage-1 and Stage-2 (raw tree extraction and centerline analysis)
analyses.

6. Text notes for documenting observations on the case

7. Quantitative data describing the axial structure of the tree

8. Viewing parameters saved for visualizing a tree during an interactive data-mining
session.

The construction of the case study occurs through user interactions and command invocations
with the Tree Analyzer’s GUI following the four-stage processing flow of Figure 2. The case
study serves as a repository for all data elements during the analysis of a 3D image, and it also
enables a user to save work during different interactive sessions.

3 SYSTEM ARCHITECTURE
This section overviews the Tree Analyzer’s three major components: the GUI, the 3D image-
processing toolbox, and the interactive tools.

3.1 Graphical User Interface (GUI)
Figure 3 gives a sample composite view of the Tree Analyzer’s graphical user interface. The
default system toolbar at the top of the GUI follows the standard Microsoft software lay-out.
The “File” options provide standard means for performing load and write operations on data
inputs and outputs. The “Edit” options enable various tree editing functions, such as invoking
automated analysis to extract the raw tree and for performing various tree modifications. The
“Global” options refer to the mode of operation when multiple visualization tools are
simultaneously running. The “Tools” options give a list of the various visualization tools
available to the user. Finally, the “View,” “Window,” and “Help,” options offer a number of
standard aids found in Windows-based software packages. The second row of the GUI in Figure
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3 provides toolbar commands that the user can pick to begin and build a case study and to
invoke various tree editing functions.

The bottom portion of the GUI in Figure 3 depicts, from left to right, the data elements of the
currently loaded case study, the current position of the picker, and two panels for a Tree
Diagnostician, which is used for automatically identifying defects in the currently loaded tree
(see Section 4). The picker represents a specific 3D site of interest focused on by the system.
All invoked visualization tools tend to depict views relative to the picker’s location.

The remainder of the screen space is dedicated to various selected visualization tools. Figure
3 shows two rendering views; many others are possible as discussed below. Notably, Figure 3
only occupies one computer monitor. Yet, the images we have been studying in our research
tend to be very large and rich in detail. Hence, to gain a fuller appreciation of the contents of
the 3D image data, we have tended to use the Tree Analyzer with a display extending over two
monitors. Figure 4 gives an example display for the second monitor.

3.2 3D Image-Processing Toolbox
The 3D Image-Processing Toolbox is integrated as part of the kernel in the Tree Analyzer’s
software structure. Invoked either from the Edit option or toolbar, it enables the construction
and invocation of a script used for performing Stage-1 and Stage-2 automated analysis. A script
consist of a sequence of selected operations to perform a specified image-processing task
[28]. Over 100 operations are available in the following general categories: (a) image
enhancement; (b) mathematical morphology operations for shape-based image analysis; (c)
topological operations for defining connected components, deleting interior cavities, extracting
and manipulating central-axes structures, etc.; (d) image segmentation; (e) image manipulation
operations, such as adding two images and performing simple logical combinations of images;
and (f) other miscellaneous system operations, for manipulating intermediate results, input-
output, and computing region surface representations.

The user interacts with the Tree Analyzer’s GUI to construct a sequence of desired operations.
In general a specialized script must be constructed for anatomical trees of a particular type
(e.g., coronary arterial tree or airway tree) and derived from a particular scanner type (e.g.,
micro-CT scanner or a multi-detector CT scanner). In our research, we have constructed scripts
for extracting the coronary vasculature, hepatic vasculature, and airway tree. We have used
essentially the same script for all three of these problems, with the significant change being in
the image segmentation method chosen. The Stage-2 centerline analysis is independent of the
problem considered, provided the input is for a branching anatomical tree.

3.3 Interactive Tools
A large set of interactive tools are available for visualization, tree editing, and data mining
[29,30]. Below is a list of the basic tools:

1. Global and local surface renderings of the segmented tree (3D Render tool). The
global rendering shows the entire tree, while a local rendering zooms in on a particular
site of interest. These views also depict the defined central axes of the tree.

In addition, stereo glasses can be used to perceive the tree’s branch structure in “true”
3D. Stereo viewing enables the user to gain a greater appreciation of a given tree’s
topology. We have used inexpensive stereo glasses by ProView ($6.95 per set) for
stereo viewing.

2. Transverse, sagittal, and coronal slice views. These are standard 2D sections of the
gray-scale data oriented in the x-y, y-z, and x-z planes, respectively [7].
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3. Transverse, sagittal, and coronal projections, which give 2D orthographic projections
of selected subsets of the gray-scale data along either the z, x, or y viewing directions,
respectively.

4. Transverse, sagittal, and coronal thin-slab renderings, which enable more
sophisticated views of subsets of the gray-scale data.

5. A bounding box feature that enables the user to view either a 3D rendering, slice,
projection, or slab view focusing on a localized 3D bounding box about a selected 3D
site of interest.

6. A tree map that depicts the defined axial structure of the tree in a graphical form,
enables some basic tree editing, and provides local quantitative tree data.

7. A quantitative summary of an extracted tree [10].

The Tree Analyzer uses a series of VTK functions to compute 3D renderings and to perform
stereo viewing [25]. Figure 3 gives examples of the 3D Render tool, while Figure 4 illustrates
examples of the slice, projection, and slab tools. Thin slabs incorporating data depth and various
gray-scale window settings can be computed to reveal more structural data inside a 3D
volumetric image than possible with basic orthographic projections [31]. Figure 4 also gives
an example of the bounding box feature. Anatomical trees can have an extremely dense 3D
structure, as shown by a few examples later in this paper. The bounding-box feature can be
particularly useful for focusing attention on complex interior 3D regions of interest. This
feature enables the detailed study of a particular local tree region and is also useful for
interactively fixing local tree defects. Figure 14, discussed later, gives an example of a
quantitative summary. References [20,21,23,24] give other examples and discuss other
capabilities of the Tree Analyzer’s tools. Most of the tools above can be found in various forms
in other software packages; e.g., [7,25,32–34]. The Tree Analyzer, however, has an extensive
number of unique capabilities for editing and performing data mining on 3D anatomical trees.

3.3.1 Interaction Modes—All tools “obey the system,” per the user’s movement of the
computer mouse. The current system status while working with a 3D image is captured in the
view state. The view state graphically exists as the picker and appears either as a ball or a set
of cross hairs in the visualization tools. It is numerically given in the Global Status window
(bottom of Figure 3, second from the left). In general, to interact with an extracted tree, the
user points to either a tree rendering or some other active view. All other active views then
follow the current view state. Thus, for a selected 3D site, the user gets a composite view of
image data about the site through the use of the multiple tools. During interaction, the
visualization tools can present data via four viewing modes:

1. Fixed — The current 3D site of the mouse appears on the view, with no other view
change.

2. Move — The view becomes centered about the 3D site with no view-magnification
change.

3. Detail — The view zooms in and becomes centered about the 3D site.

4. Navigation — The view shows an interior (virtual endoscopic) view of the tree branch
at the selected 3D site (3D Render tool only) [35].

A major and novel capability is the Tree Analyzer’s extensive facility for editing 3D trees. To
facilitate this capability, four modes of operation exist for interacting with the central axes and
3D renderings through the picker. These modes all act within the camera space observable
through a 3D Render tool and enable selection of points in 3D space:
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1. Tree mode — When the picker (mouse cursor) is moved over a 3D rendering and a
point is selected by clicking the mouse, the nearest currently defined central-axis point
is selected.

2. 3D Site Locator — The picker acts as a “shooter” through 3D space and can be used
to select any 3D point in a 3D rendering. This is done in two steps. First, a point of
interest is selected on a 3D rendering from an initial view of a tree; this defines a 2D
line of possible points in 3D space along the shooter’s point of view. Next, the user
rotates the view appropriately and selects a point on the line to complete the definition
of the desired 3D point. See Figure 5.

3. Intersection Locator — The user situates the picker over a portion of a 3D rendered
tree surface; this defines a line segment through which the shooter’s point of view
passes through the existing surface. The midpoint of this line segment is selected as
the point of interest.

4. 3D Cursor — The user can move about in 3D space and confine attention to a focal
plane or parallel planes in x, y, and z, as determined by the location of the picker; one
axis is locked and the other two free axes can be varied as the user moves the cursor
about a 3D Render view. This can bring up various slice and thin-slab views relative
to the selected focal plane, as shown in Figure 6.

While considerable flexibility exists for moving about the 3D data, this is often a difficult way
to glean the topological structure and connectivity of a tree. This is because the branches of a
tree can twist and meander in essentially any direction in 3D. The Bounding Box feature and
the Move and Detail viewing modes can help the user focus on local portions of a tree.

3.3.2 2D Tree Map—While the Bounding Box feature and the Move and Detail modes are
helpful, they still cannot overcome the difficulties of perceiving the hierarchical complexities
of a large tree. The 2D Tree Map is a particularly effective tool for overcoming these difficulties
in the 3D perception and editing of an extracted 3D tree. It has considerable functionality for
tree visualization, quantitative data mining, and tree editing, and it greatly expands upon a
similar rudimentary tool integrated in the Analyze/AVW™ package [36]. This section discusses
the 2D Tree Map’s visualization capabilities, while subsequent sections illustrate the tool’s use
for tree editing and data mining.

The 2D Tree Map is based around a 2D symbolic representation of a tree. It essentially
“flattens” out the 3D tree into a 2D symbolic data structure, and, hence, is often much easier
to manipulate than the 3D x-y-z spatial-domain representation of the tree. Technically, the 2D
Tree Map presents the extracted axial structure of the anatomical tree as a hierarchical directed
graph [37]. Graphs have shown much utility for data mining and for information navigation
and visualization [38]. The graph representation in the form of a tree is ideal for presenting
anatomical tree structure. Figure 7 gives an example of the 2D Tree Map.

For the 2D Tree Map, nodes represent either branch points or branch terminations, while edges
represent tree branches. In general the first branch of the tree represents the root branch, which
subsequently bifurcates at a node, representing the tree’s first branch point, to form child
branches. Child branches in turn spawn more generations of branches. The 2D Tree Map goes
well beyond display of mere branch hierarchy. Considerable quantitative data is also accessible
numerically and visually from the 2D Tree Map. Branch number and generation index, branch
length, average branch cross-sectional area (CSA), average branch diameter, and CSA and
diameter along distinct local sites of a branch are also available, as discussed below.

The example of Figure 7a only shows generations 0 through 4, whereas the complete tree
actually has 15 generations. A red node enclosing a “−” sign signifies a branch point. All other
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nodes terminate branches or portions of the tree and give access to other information. A solid
green node denotes a terminated branch. A blue node with a “+” inside means that branch
generations >4 exist at the node. The user can click on such a node to reveal generation-5
information. By further clicking on the “+” nodes, the tree expands further. In addition, the
user can click with the middle mouse button on an interior tree node and spawn a separate local
2D tree map (Figure 7b). These facilities for expanding and contracting portions of a tree and
for spawning separate local 2D Tree Maps are extremely useful for examining the structure of
large complex trees.

In a given view, the branches are ordered from left to right, with the leftmost branch spawned
by a particular branch point having the largest average diameter and the second child branch
appearing to the right. Thus, the node ordering in the tree map depends on the quantitative
shape attributes of tree branches. This convention gives rise to a standard branch labeling
scheme, independent of the anatomy [39], that can be shown on the Tree Map if desired. The
root branch is designated by the ordered pair (0,1) (generation 0, branch 1). The child branches
of the root branch are labeled as follows. The largest-diameter branch at generation 1 is
designated (1,1), while the remaining generation-1 branch is designated (1,2). Child branches
spawned by (1,1) are labeled (2,1) and (2,2), while child branches spawned by (1,2) are labeled
(2,3) and (2,4). Continuing on to generation 3, children of branch (2,1) are labeled (3,1) and
(3,2), etc. If, for example, branch (2,2) has no children (i.e., it is a terminating branch), then
labels (3,3) and (3,4) are skipped and labeling continues for the children of (2,3), which get
labels (3,5) and (3,6), etc. Trifurcations and higher can be easily handled in this scheme.

Further, the user can click on a node to reveal a quantitative summary of the tree at that location,
giving branch and generation index, branch length, and average branch cross-sectional area
(CSA). Figure 7 illustrates these capabilities. Quantitative information can also be displayed
visually with the tree map itself. For example, Figure 7a actually displays branches in average-
diameter mode: the width of each branch in the tree map is proportional to its actual average
width, as derived from the segmented tree. In Figure 7b, the 2D Tree Map is in diameter mode:
the diameters of all 2D cross-sections constituting a particular branch are graphically depicted
along a branch’s extent in the 2D Tree Map. Finally, the local 2D Tree Map in Figure 7b is
also in length mode: the length of each depicted branch is proportional to the actual branch
length, with actual accumulated length given along the right-hard side of the view. Cross-
sectional area can also be presented visually on a 2D Tree Map.

As with the other visualization tools, the user can point to a branch or node in the 2D Tree
Map, which in turn highlights the corresponding 3D sites in the other active 2D graphical
viewing tools. This often tends to be much easier and far more intuitive with the 2D Tree Map
than with other tools. Several useful interactive functions of the 2D Tree Map exploit this
feature.

Subsets of extracted branches that connect together to form a loop generally indicate an
anomaly in the automatic segmentation of the raw tree, as such loops are seldom anatomically
plausible. Loops have a special display form in the 2D Tree Map. The involved branches are
displayed in yellow and the involved branch-point nodes are colored red and outlined in yellow
(illustrated later in Figure 11). The user can then point to a node within the loop and examine
the 3D image data about this region in other visualization tools.

4 SYSTEM USAGE
This section describes how to produce a complete tree and its associated quantitative
description, per the procedure summarized in Figure 2. For Stages 1 and 2, the user loads an
image to begin a case study and then runs a script to generate the raw segmented tree, surface
data, and central axes. Next, in Stage 3, the Tree Diagnostician provides a list of possible tree
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defects, and the user applies various graphical tools to correct the defects. Finally, a quantitative
summary is produced for the final tree in Stage 4. More detail appears below on these steps.

4.1 Stages 1 and 2: Automated Processing Operations
The first two stages involve automated processing operations for defining the initial raw tree
and its centerline structure. These operations, all part of the 3D Image Processing Toolbox, are
defined in a script and run automatically. The basic operations applied to input 3D image I are
as follows:

1. Apply a 3×3×3 sigma filter to reduce noise, while preserving thin line-like structures
[40].

2. Produce a raw segmented tree Is by applying a region-growing approach.

3. Perform 3D cavity deletion to fill interior cavities in the raw segmented image. This
gives image Is consisting of solid cavity-free regions.

4. Using input image I and segmented image Is, produce a surface representation of the
tree.

5. Compute the raw central-axis structure of the segmented image, using the tree’s
surface representation as input. This step also produces diameter and curvature
information for the tree at discrete sites along the computed central axes.

6. Compute an initial profile of quantitative information for the raw tree.

First, we have applied this basic procedure to cardiac, liver, and lung images. The one difference
in the scripts for these different applications has been the choice of image segmentation
algorithm for lung-image analysis.

For image segmentation, we have employed either symmetric region growing (SymRG) or a
refined adaptive full-width half-maximum (FWHM) SymRG method for micro-CT image
segmentation. SymRG is a form of seeded region growing that is insensitive to the locations
of the initial region-growing points and that admits a memory- and computation-efficient
implementation [4,41]. Key to region growing’s effectiveness are the inclusion criteria used
for adding new region points during the growing process. Previously proposed work using the
SymRG paradigm for segmenting anatomical trees depended on ad hoc selection of a global
threshold range [4]. This resulted in trial-and-error repeated runs of region growing and,
ultimately, in conservative tree segmentations missing many valid branches. The adaptive
FWHM SymRG method overcomes these difficulties, giving a method that does not require
user trial-and-error to find adequate parameters and that is able to extract many missed
branches. We briefly highlight the method below; complete detail appears in [23]. First, a
locally adaptive half-maximum image IHM is computed:

(1)

where median(I(x, y, z), σ) represents a σ × σ × σ median-filtered version of input image I. The
far right-side of (1) gives a quantity that is far easier to compute than the median and represents
I filtered by a σ × σ × σ Gaussian Gσ (.,.,.,) (“*” represents convolution). For each image point
(x, y, z), (1) gives the local half-maximum value IHM (x, y, z) within a σ ×σ ×σ neighborhood
about (x, y, z). In our work, we have assumed σ denotes the nominal standard deviation of the
imaging scanner’s point-spread function (PSF), where the PSF is approximated by a Gaussian
distribution. The half-maximum value in a local neighborhood has commonly been used by
others for detecting boundaries between bright and dark regions. Using the adaptive half-
maximum function IHM, the next step is to create a threshold image:
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(2)

In (2), Imin is either a global threshold value above which all branches are assumed to lie or it
is a locally varying quantity that can be found, for example, by applying a gray-scale
morphological opening Imin = ((I ⊝ B) ⊕ B), where ⊝ is morphological erosion, ⊕ is
morphological dilation, and structuring element B has a size sufficiently large to encompass
any expected valid branches. Imax in (2) is selected to avoid segmenting out spurious extreme
bright artifacts (such as metal clips) in the background. The threshold image ITH then serves
as the 3D image input to standard SymRG. Relative to the original 3D gray-scale I for the
anatomical tree, ITH has four attributes making it much better suited for segmenting a tree: (1)
it greatly accentuates the local differences between true tree branches and background; (2) it
is relatively insensitive to the absolute brightness of a branch; (3) it better separates potentially
merging weaker branches: and, most importantly, (4) it removes the need for trial-and-error
parameter selection in segmenting the desired branches. Figure 8 illustrates the effectiveness
of adaptive FWHM SymRG over standard SymRG.

Note that the raw segmented tree in Is after step 2 may have interior cavities. This is
topologically incorrect and greatly affects the resulting central-axes analysis. Hence, well-
known 3D cavity deletion is applied to fill cavities in Is [33,41]. A cavity manifests itself in
segmented image Is as a set of 0 voxels completely surrounded in 3D by 1 voxels (voxels that
belong to a segmented tree). A cavity is easily identified by locating 3D connected components
of 0 voxels that do not touch the outer border of the image.

Given I and cavity-filled Is, a surface representation of the segmented tree is next generated.
The surface representation is a series of triangles covering the exterior surface of the tree and
is used for later surface rendering. It is produced from a gray-scale mask image IM using the
standard Marching-Cubes algorithm implemented in VTK [25] (threshold value 0). The gray-
scale mask IM is formed via

where B is a 3×3×3 structuring element, and ITH is the threshold image (2) derived during
image segmentation.

Stage-2 centerline analysis is next performed. Given the importance of this stage — it is the
stage that actually produces the first quantitative description of a tree, we designate a separate
stage for it. Before proceeding, we first introduce some notation. Define a tree T as consisting
of a set of 3D sites V and a set of branches B:

The two sets constituting T are given by V = {v1, v2, …, vK} and B = {b1, b2, …, bJ}, where
K and J are integers ≥ 1, each vk ∈ V is a 3D site along one of tree T’s central axes, and each
bj ∈ B is one of the central-axis branches of T. A particular branch b ∈ B is defined by a set
of contiguous 3D sites vb(k) ∈ V:

where vb(Eb) is the terminating, or end, site of branch b, integer Eb ≥ 2 (a branch must consist
of ≥ 2 3D sites), vb(k) ∈ V(b), and V(b) ⊂ V denotes a subset of 3D sites constituting branch
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b. All viewing sites v ∈ V belong to one and only one branch, except possibly those sites that
begin and terminate branches. For example, if branch b2 is a child branch of b1, then

(3)

3D sites that do not begin or terminate a branch will be referred to as interior sites. 3D sites
such as vb1(Eb1) in (3) will be referred to as branch, or bifurcation, points. In general a given
3D image of interest might contain one or more trees, T1, T2, etc. These multiple trees might
be valid trees — e.g., a venous and arterial tree — or they might correspond to broken trees or
artifacts, produced because of difficulties in processing a given image.

In this work, we have previously used the centerline methods of Wan et al. and Kiraly et al.
[10,42]. Wan’s method is based on 3D thinning and provides branches based on integer
coordinates; it unfortunately gives many false branches and poorly centered branches. The
method of Kiraly partially alleviates these issues by eliminating many false branches and
defining 3D sites on smooth B-spline curves. Both of these approaches base their calculation
of the centerlines off of the segmented image Is. However, our current work now uses the
superior approach of Yu, which bases its centerline analysis off of the more precise surface
representation [21,23]. This method, built on a differential geometry analysis of a tree’s
surface’s curvature, gives a more robust, better-centered set of branches, with fewer false
branches, better defined bifurcation regions, and the facility to separate branches that appear
merged in Is.

Figure 9 compares the raw centerlines produced by four methods at a complex junction: the
three methods mentioned above and Analyze/AVW™, a well-known system for 3D medical
image analysis and visualization. The central axes generated by Analyze/AVW™ are not
smooth, because this system represents 3D points in integer format. The Analyze/AVW tool
also produces many spurious small branches [43]. While the method of Kiraly et al. generates
substantially smoother results and fewer false branches than Wan et al., it does not define
central-axes structure near branch junctions plausibly. Further, it often does not center the
extracted axes properly and is not able to separate branches if they touch in the input segmented
image [23].

After centerline analysis, a preliminary quantitative profile of the extracted raw tree structure
is produced. More detail appears on these calculations in Section 4.3. To conclude, the final
outputs after Stage 1 and 2 automated analysis are the surface data for all extracted trees, and
central-axes sturctures T1 = {V1, B1}, T2 = {V2, B2}, T3 = {V3, B3}, … Our work to date has
focused on defining one complete tree. As later results will show, however, certain trees
appearing in Is may in fact be “broken” trees that need to be reconnected to form a complete
main tree.

4.2 Stage 3: Identify and Correct Tree Errors
The goal now is to convert a given imperfect tree structure, as shown in Fig. 1b, into a “correct”
tree as shown in Fig. 1a. This is done by editing the tree structure. The basic process for editing
a given set of raw tree data involves two phases:

1. Run the Tree Diagnostician to identify a set of possible tree defects.

2. Use various visualization tools in conjunction with a set of semi-automated and
manual tree-editing functions to correct the tree.

4.2.1 Tree Diagnostician—After the raw tree is extracted and displayed using any of the
tools mentioned in Section 3.3, the Tree Diagnostician identifies candidate tree defects,
including broken branches, breaks between separate (but possible false) trees, overly short end
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branches, and others from the raw extracted central axes. An example of the Tree Diagnostician
and its associated Defect List dialogue box is shown in the lower right portion of Fig. 3.

The Tree Diagnostician identifies possible defects in a set of raw trees T1, T2, …, extracted
from input image I by performing simple distance and connectivity calculations on the 3D sites
and branches constituting the trees. We give the criteria for possible defects below (all bold-
faced defect names are adapted from the Tree Diagnostician example given in Figure 3):

Break: Two branches, b1 and b2, from any extracted tree are said to have a “break” between
them – i.e., the two branches actually might constitute a single connected branch — if any pair
of 3D sites belonging to the branches are within a preset minimum distance d1 from each other:

(4)

where vb1 (l) ∈ V(b1) and vb2 (m) ∈ V(b2). The 3D sites considered in this calculation can be
restricted to beginning and terminating (“end”) branch sites (End2EndPt option in Figure 3)
or to combinations of end sites in one branch and/or interior sites in the other (End2Interior
or Int2Interior options in Figure 3).

Break2trees: Two trees, T1 = {V1, B1} and T2 = {V2, B2}, are said to have a break between
them — i.e., they actually might constitute one tree — if any pair of 3D sites belonging to the
trees are within a preset minimum distance d2 from each other:

(5)

where v1(l) ∈ V1, v2(m) ∈ V2, l = 1, 2, …, K1, and m = 1, 2, …, K2. As above, restrictions can
be placed on which 3D sites are considered in this analysis.

EndBranch: A terminating branch b, which has no child branches, is deemed to be too short
and possibly an artifact if

(6)

where

denotes the length of branch b and d3 signifies a minimum branch length.

Tree Size: A tree T = {V, B} contains branches having an insufficient total branch length:

(7)

where d4 is a parameter specifying the minimum acceptable total length.

Close Bifurcation: If branch b2 is a child branch of b1 and b2 also spawns child branches, then
it is possible that the bifurcation points produced by branches b1 and b2 may be overly close.
This implies that a close — and possibly false — bifurcation exists. Close bifurcations can be
identified via the criterion:

(8)
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where d5 is a parameter. Such bifurcations occur, because image noise results in false branches
being formed. They also sometimes occur at junctions where trifurcations, or even higher x-
furcations, actually exist, but the necessary image-sampling process produces false
bifurcations. A false branch that produces a false bifurcation will cause all further generational
labels below the offending branch to be falsely labeled. Thus, it is vital to identify such
locations.

For this paper as shown in Figure 3, we used the following parameter values for criteria (4-8):
d1 = 2, d2 = 5, d3 = 1, d4 = 1, d5 = 1.5. These values essentially correspond to the minimum
values that can define valid breaks, valid disconnected trees, etc. Using larger values would
result in the Tree Diagnostician flagging fewer potential defects.

In addition two additional possible defects related to the topology of the tree are identified
automatically by the Tree Diagnostician:

Loop: If any subset of 3D sites in a tree form a closed loop, then a constituent loop branch is
flagged. (The 2D Tree Map also flags all branches constituting a loop.)

x-furcation: A branch b ∈ T is flagged as creating a possibly false x-furcation if its terminating
site vb(Eb) spawns three or more child branches; i.e., for branches b1, b2, …, bm ∈ T, m ≥ 3,

Generally, a branching anatomical tree is defined by a bifurcating structure; i.e., all parent
branches have only two child branches. Sometimes, trifurcations and higher-order x-furcations
can be valid. But image artifacts and undersampling can produce false higher-order branch
points. Hence, x-furcations are flagged.

4.2.2 Tree Editing—After identifying potential tree defects using the Tree Diagnostician,
the user then considers each candidate defect. When the user points to a defect on the defect
list using the mouse, the system’s global status (view state) changes to this location and all
visualization tools are updated to reflect this selection. The user can then apply various manual
and semi-automatic tree-editing functions to fix the defect. As defects are fixed, they are
removed from the Tree Diagnostician’s Defect List (see Figure 3). In addition, the quantitative
representation can be updated as the defects are fixed. At any time during a session, the user
can save the case study and resume editing at another time.

The tree-editing functions include several means for breaking and deleted unwanted branches
and for creating new tree branches. For all functions, the user can employ any of the interaction
modes discussed in Section 3.3.1. The user can manually place 3D sites at location of interest
and then the sites are joined via B-spline analysis to form a new curved line segment. Figure
10 illustrates this capability. As another approach, the repair of a broken branch can be done
by using this manual method in conjunction with the 3D Bounding Box [20]. As a third option,
a semi-automatic function exists for creating new branches. Similar to Figure 10, the user first
interactively selects two endpoints for joining. Then, automatic Hermite interpolation is applied
to form a curved segment between the two points. Unlike B-spline analysis, a curve interpolated
via Hermite interpolation only depends on the two endpoints [44]. All of these functions are
useful for fixing broken branches and for joining separated trees.

Another manual tree-editing function involves the facility for breaking and then subsequently
deleting existing branches. Again using either the shooter or 3D cursor, the user selects 3D
sites on a branch, which are then deleted — this breaks the branch. The system can then delete
the remnants of the branch to complete the operation. This function is also useful for deleting
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unwanted portions of a tree and for breaking loops. As shown in an example in the next section,
it sometimes becomes necessary to redefine the root of a tree. A facility exists for doing this
interactively. The user selects a desired branch to serve as the new root branch, and the currently
active quantitative description of the tree is recomputed to reflect this choice.

Doing purely interactive defect correction, however, can be tedious. Thus, various semi-
automatic tools are also available as invocable functions to speed up the refinement of a raw
tree. These functions include the following:

Branch deletion: Individual branches are selected and automatically deleted.

Prune selected branch and below: The user selects a tree branch. Then, the branch and all
of its connected ancestor branches are automatically pruned from the tree. For example, if
branch (3,2) is selected, then branches (4,3), (4,4), (5,5), (5,6), (5,7), (5,8), etc., are deleted.

Delete tree(s): A disconnected small artifact tree is selected and automatically deleted. Or all
trees except a selected tree are deleted.

Generation-based deletion: All branches below a prescribed generation number are deleted.

Prune short branches: All terminating branches shorter than a specified length L(b) are
deleted.

Line-based and sphere-based elimination: Based on geometric criteria defined fully in the
central-axes analysis method of Kiraly et al. [42]: (1) line-based elimination — branch b1
connected to branch b2 is pruned if its length straddles the extent of b2 too closely; and (2)
sphere-based elimination — branch b1 is pruned if it intersects a maximally inscribable sphere
centered about the terminating site of another branch.

These functions are invoked by interacting with a global or local 3D Render tool.

The 2D Tree Map enables the pruning of undesired branches or subtrees by pointing to them.
Also, Figure 11 gives an example of correcting a tree loop using the 2D Tree Map and other
tools. In addition, a tree’s root branch can be redefined by pointing to a desired branch. After
redefining the root branch, all branch labels are recomputed to reflect the new order.
Redefinition of the root becomes necessary when two anatomically separate trees initially
appear connected when they should be considered separately (e.g., venous and arterial trees
appear connected); after the two trees are separated, at least one of them will need to have their
true root branch defined.

As edits are made, the Tree Analyzer gives an updated tree structure and associated quantitative
data. The user can decide to undo changes or keep changes. When changes are kept, the stored
tree structure is updated to reflect the corrections.

4.3 Stage 4: Compute Quantitative Tree Measurements
A quantitative profile can be computed at anytime after a tree description is generated (after
Stage 2). Quantitative summaries at the generation, branch, and 3D site level are available.
They can be popped up as dialog boxes in the main Tree Analyzer GUI or saved as ASCII text
files. The Results section gives examples.

The quantitative measurements computed by the Tree Analyzer are the same as those proposed
by Wan et al. [10]. A few major differences are pointed out below. Paralleling Wan et al., the
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following definitions illustrate some of the quantitative data that can be derived from a tree
representation T:

cj,k kth cross-section of branch bj (one at each 3D site vbj(k))
L(bj) length of branch bj
μA(bj) average cross-sectional area (CSA) of branch bj
gi ith tree generation
Nb(gi) number of branches in generation gi
μL(gi) average length of branches at generation gi
μA(gi) average CSA of of branches at generation gi

Other measurements, not discussed here, can also be computed related to surface area,
diameter, and volume [10,23]. Wan based all measurements off of the segmentation Is. This
tends to give a conservative and less-precise structure for basing quantitative measurements.
In our current work, all values are derived from the more precise surface representation of a
tree. Further, Wan approximated branches as a sequence of connected line segments, each of
length 1 voxel. Our current effort imposes no such restriction on the spacing of 3D sites v. In
addition 3D sites are situated at sub-voxel spacing along curves defined by either a B-spline
of Hermite polynomial.

5 RESULTS
This section presents a variety of results illustrating the effectiveness of various aspects of the
Tree Analyzer. Other results using the Tree Analyzer appear in [20,21,23,24].

Fig. 12 shows output for micro-CT image h61. The image depicts a cast of a mouse coronary
arterial tree, where the cast was attached to the lid of a jar using clay (the rendered mass at the
top of a rendering is the clay). Figure 12a displays the result using the previously proposed
axial-extraction method by Kiraly [42], while Figure 12b presents the corresponding result
using Yu’s centerline method. The clay situated at the top of the scan originally produced a
mass of invalid branches around the tree root after Stage 2 for both centerline methods. Thus,
Figures 12a-b actually depict the two trees after simple tree editing was performed in the
vicinity of the root to delete the mass of distracting branches. This editing required (1) breaking
each valid tree from the mass and (2) deleting the disconnected mass of branches. These simple
operations required approximately one minute of interaction to produce the results of Figures
12a-b. In both cases, two valid disconnected trees were produced.

Using the Tree Diagnostician, no loops were found using Kiraly’s method, since the method
automatically breaks loops. But three loops existing in the segmentation were improperly
broken by the method, and an obvious branch was missing (Figure 12a). Tree editing on this
result required 20 minutes of interaction, as the improperly broken loops greatly affected the
raw tree. The Stage-2 result of Yu, on the other hand, resulted in a much better starting point
for tree editing (Figures 12b and 13a). Three loops were detected in this result. The tree editing
time, which involved breaking the loops and joining the two separate trees, required only 5
minutes. Note that no quantitative information is available for the root-node region created for
the final edited global tree, because of the clay. This resulted in an ill-defined root region that
produced many defects identified by the Tree Diagnostician. We cut the tree in this region, as
stated above, and then connected the two “valid” sub-trees; this then gave a new root and
generation-1 set of branches.

Quantitative measurements were computed for h61, before and after tree editing, as shown in
Figure 14. The tables show that the generational description for h61’s tree is far more sensible
(and correct!) after tree editing than before. To verify the correctness of these numbers, Figure
15 gives a comparison of the measured branch lengths for h61 between ground-truth manual
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measurements made by a skilled human operator (done using a microscope) [20] and by
Kiraly’s method and Yu’s centerline method (both after tree editing). Figure 15 shows that the
Yu results have a better linear regressive slope (0.9848 versus 0.9724) and a better R-squared
value (0.9855 versus 0.9718). The R-squared value, an indicator ranging from 0 to 1, reveals
how closely the estimated results for the linear regressive line correspond to the actual data.
Even after we manually fixed the defects in Kiraly’s raw result, the output is still more scattered
due to the improper position of branch points, as shown in Fig. 15. All h61 results indicate the
importance of an effective Stage-2 automated centerline analysis method. The remainder of
the presented results use Yu’s centerline method.

Figures 16-17 present results for a 3D image of a rat’s left circumflex arterial tree (lca_146),
first used in [10]. The figures present a comparison of the results produced by Wan’s 2002
system to the current Tree Analyzer. The current system introduces three major improvements
over the earlier system: (1) the more robust adaptive FWHM SymRG is used for image
segmentation, which extracts more branches; (2) the improved centerline method of Yu is
employed, which gives smooth, better-centered branches; and (3) the new extensive Stage-3
tree-editing capabilities are used. Interactive tree editing required 17 minutes to resolve 8
branch breaks, 7 short branches, 9 close x-furcations, and 6 loops. A comparison of the final
quantitative results produced by the Tree Analyzer and Wan’s system (Figure 17) reveals that
the current system gives a more extensive analysis that is plausible to a higher-generation index.

Figure 18a presents an example of applying the Tree Analyzer to a human 3D MDCT chest
image. All Stage-1 and Stage-2 automated processing operations discussed in Section 4.1 were
used for this example, with the exception that a segmentation method tailored for airway trees
was used [45]. After Stage-1 and Stage-2 analysis, two minutes of tree editing corrected 1 short
branch, 1 loop, and 2 close bifurcations. The final tree contained one plausible trifurcation.

Figure 18b depicts results, free of defects, for a micro-CT image of the rat-liver vasculature.
This example depicts a tree that nominally consists of 75 generations. Unlike the standard
bifurcating patterns of the airway tree and coronary vasculature, the liver’s vascular tree
exhibits a mode-3 branching pattern, as discussed by Zamir, in that a main trunk extends down
the length of the organ, and smaller branch generations are spawned off the trunk [46]. Thus,
branches at high-generation levels have more in common in terms of their quantitative and
mechanical properties than certain branches at their corresponding generation level. While the
Tree Analyzer has considerable capability for processing, visualizing, and editing such trees,
further work is necessary to arrive at a more proper and useful quantitative description for such
an anatomical tree.

6 DISCUSSION
The Tree Analyzer is a complex system containing a large variety of tools for general 3D
automated analysis, 3D visualization, data mining, and quantitative analysis. It is particularly
suited to analyzing images containing large branching anatomical trees. Our main focus has
been aimed at analyzing the vascular structure of organs imaged by a micro-CT scanner, but
we have also applied the Tree Analyzer to 3D MDCT images of the chest and airway tree. In
the interactive part of the system, we have introduced many functions that allow the user to
efficiently diagnose and repair various problems in raw extracted trees. The system also
provides a series of interactive editing tools that not only help solve problems, but also provide
a more reliable tree structure. Semi-automatic tools have also been devised to support the
inadequacies of purely interactive methods. This makes it possible to generate more
trustworthy trees and associated quantitative measurements.
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The capabilities of the system are extremely extensive and cannot all be described here. We
refer the reader to the references for further information [20–24]. Note that the Tree Analyzer
has considerable general capability that makes it potentially useful for other 3D medical
imaging problems. Further work can be done to apply the system to the separation of venous
and arterial trees [5]. In addition, effort can be made to propose more suitable representations
for trees, such as the liver’s vasculature, that do not abide by a standard bifurcating structure.

SUMMARY
Modern micro-CT and multi-detector helical CT scanners can produce high-resolution 3D
digital images of various anatomical trees, such as the coronary or hepatic vasculature and the
airway tree. The sheer size and complexity of these trees make it essentially impossible to
define them interactively, and the analysis and subsequent visualization of such images poses
a considerable challenge. For example, a typical 3D micro-CT image can consist of several
hundred megabytes of image data, with a voxel resolution on the order of twenty microns
containing a tree having ten or more generations. Automatic approaches have been proposed
for a few specific problems, but none of these approaches can guarantee extracting
geometrically accurate multi-generational tree structures. This paper proposes a system for
defining and visualizing large anatomical trees and then performing subsequent quantitative
data mining of the extracted tree.

The system, dubbed the Tree Analyzer, processes an image in four major stages. In the first
two stages, a series of automated 3D image-processing operations are applied to an input 3D
digital image to produce a raw anatomical tree and several supplemental data structures
describing the tree (central-axis structure, surface rendering polygonal data, quantitative
description of all tree branches). Next, the human interacts with the system to visualize and
correct potential defects in the extracted raw tree. A series of sophisticated 3D editing tools
and automated operations are available for this step. Finally, the corrected tree can be visualized
and manipulated for data mining, using a large number of graphics-based rendering tools, such
as 3D global and local surface rendering, stereo viewing, sliding-thin slabs, multiplanar
reformatted views, projection images, and a novel interactive tree map. The tree map, based a
2D directed graph representation, particularly offers many novel capabilities for interacting
with and editing a complex 3D tree. Quantitative data can also be perused for the tree.

Results are presented for 3D micro-CT and human MDCT images. A quantitative comparison
to human ground truth reveals the efficacy of the system. The total processing time for both
the automated operations and subsequent interactive editing operations typically are done in
less than 15 minutes for a typical 3D image.
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Figure 1.
2D Schematic figure illustrating the difficulties that can arise in defining the central axes of a
vascular tree depicted in a 3D image: (a) Ideal surface and central axes of tree; (b) typical
output of purely automated 3D image analysis, depicting a tree with various imperfections. In
both figures, the outer outline represents the tree’s surface, and the interior lines represent the
tree’s axial structure.
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Figure 2.
Four-stage approach for defining the quantitative structure of a 3D anatomical tree.
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Figure 3.
Example composite view of the Tree Analyzer. The depicted surface renderings are for a tree
extracted from micro-CT image h61, a 450×445×465 image of a rat coronary arterial tree with
spatial resolution Δx = Δy = Δz = 20.13 μm (9.06mm × 8.96 mm × 9.36mm real volume extent),
reconstructed without applying deconvolution [47]. The small box in the lower right corner of
each 3D Render tool enables viewpoint control (rotation, translation, scaling). The lower
portion of this composite view depicts the case study, picker status, and the Tree Diagnostician.
(Used by courtesy of SPIE.)
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Figure 4.
Examples of visualization tools depicted on a second monitor for the same situation as Figure
3. The top left view shows a 2D transverse slice, and the top right view is a coronal maximum-
intensity projection. The lower two views illustrate the bounding box feature. The lower left
view depicts a localized 3D surface rendering about a site and bounding box of interest; the
bounding box is the inscribed parallelepiped shown in the figure. Bounding box dimensions:
top center point = [204,81,296] and bottom center point = [197,99,339] determine the height;
length and width = 20 (all dimensions in terms of voxels). The picker is at location [209,90,309].
The lower right view shows a corresponding depth-weighted maximum sagittal slab for data
within the bounding box (WL=217, WW = 752, slab thickness = 40, vision = 60, view at 7.5X
magnification).
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Figure 5.
Example of the 3D shooter feature for selecting points in 3D space. The user points to a location
on a 3D Render view (a) — this defines a 2D line in 3D Space (b). The user then rotates the
rendering and points to a location on the previously defined 2D line — this specifies a 3D site,
as shown by the ball (c). The two lines (and mock cameras) on the view of part (c) indicate the
points of view taken during the two-step selection process.
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Figure 6.
Example of using the 3D cursor to select a 2D slice. Human MDCT chest image h006_512_85
is considered (512×512×574 3D image, sampling intervals: Δx = Δy =0.724mm, Δz =0.60mm):
(a) 3D Render view with the three axes of the 3D cursor depicted (z axis is locked); (b) 2D
transverse (x-y plane) slice for indicated 3D cursor location (gray-scale window width [WW]
= -350 and window level [WL] =1600 for the depicted slice [lung window]).
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Figure 7.
Examples of the 2D Tree Map for the tree extracted from h61: (a) Global 2D Tree Map in
average-diameter mode for the first four generations; (b) local 2D Tree Map in diameter and
length modes spawned from selected fourth-generation branch #53 in (a).
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Figure 8.
Sample segmentation results comparing SymRG [4,41] and adaptive FWHM SymRG for
image control2 (originally used in [4]; image of a single hepatic lobe of a rat liver,
400×400×375 image, voxel size = (21μm)3). (a) Coronal weighted-sum projection of original
gray-scale data. (b) Segmentation result using SymRG. (c) Segmentation result using adaptive
FWHM SymRG.
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Figure 9.
Stage-2 centerline analysis results for a complex junction in 3D image r216_psf020826 ([rat
liver micro-CT image] dimensions 620 × 500 × 1000 [real volume dimensions: 12.57mm ×
10.13mm × 20.27mm], Δx = Δy = Δz = 20.27μm): (a) result produced by the tree tool in
Analyze/AVW™[43];(b) Wan 3D-thinning-based approach [4,10]; (c) method of Kiraly et
al. [42]; (d) 3D centerline method of Yu and Higgins [21,23].
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Figure 10.
Connecting a broken branch using manually defined 3D points: (a) a broken branch showing
a gap between two separated parts; (b) points placed manually by the user with the picker in
Intersection-Locator mode — thus, the selected points are situated along the center of the
segmented tree; (c) resulting connected axis after B-spline interpolation.
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Figure 11.
Fixing a 2D Tree Map section indicating a loop (h61): (a) local 2D Tree Map of a loop involving
branch generations 3-7, with involved branches depicted in yellow; (b) local 3D rendering of
(a), with loop indicated in green; (c) local 3D rendering after repairing the loop; (d)
corresponding new local 2D Tree Map about repaired region (only generations 3-6 now exist
about the region).
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Figure 12.
Tree analysis results for micro-CT scan h61. (a) Results after using Stage-2 centerline method
of Kiraly et al.; lower left black arrow indicates a missing branch, while the other three black
arrows point to incorrect branch regions resulting from improperly broken loops. (b) Results
after Stage-2 centerline method of Yu. (c) Results after Stage-3 tree editing on part (b); one
correct tree now exists. The extra mass rendered at the top of these figures represents the clay
used to mount the arterial tree cast on a jar lid.
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Figure 13.
2D Tree Maps of h61. (a) Tree Map of Stage-2 centerline results for the major tree depicted in
the 3D rendering of Figure 12b before tree editing; arrows indicate loops (yellow labeled
branches). (b) Final tree map, showing one correct tree after joining the two main trees and
correcting other defects; this tree map corresponds to the rendering shown in Figure 12c; the
yellow rectangle area is the major tree of part (a) after editing and the arrow points to the tree
section that had two loops previously; the added portion to the right of the box arises from the
smaller tree joined during tree editing.
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Figure 14.
Quantitative measurements for h61. (a) Results for the major tree before tree editing,
corresponding to the major tree in Figure 12b and the tree map in Figure 13a. (b) Results for
the complete tree after tree editing (two trees joined), per Figures 12c and 13b. “-” means a
measurement can’t be made; e.g., the final tree’s root branch is not a real branch. Units for
μL(gi): voxels; for μA(gi): (voxels)2.
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Figure 15.
Comparison of h61 measured branch lengths for Kiraly versus Yu. Y axis represents Kiraly’s
and Yu’s measurements in mm. The X axis represents the ground-truth branch lengths in mm.
Diamonds are Yu’s measurements and ground-truth correspondences. Squares indicate
Kiraly’s measurements and corresponding ground-truth measurements. The solid line is the
linear regression line of Yu’s measurements (y = 0.9848x + 0.0821), while the dotted line is
the regression line of Kiraly’s meausrements (y = 0.9724x + 0.0923). The matching branches
between two techniques were found via a tree-matching algorithm [48].
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Figure 16.
3D renderings of trees produced for 3D micro-CT image lca_146 (401×267×490 image; voxel
size = 20.8μm3): (a) Via methods of Wan [10]; many missing branches are apparent from
comparing the rendering and centerlines. (b) Tree Analyzer results using Yu’s centerline
method; a false attachment is edited out in this case.
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Figure 17.
Quantitative results for lca_146, based on final trees depicted in Figure 16. The table depicts
the number of generations and branches per generation extracted by the two approaches. A “-”
means that no branches were extracted at generation gi.
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Figure 18.
Final Tree Analyzer results for two other cases: (a) human MDCT image h006_512_85 used
in Figure 6; (b) r216 psf020826 considered in Figure 9.
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