
 1

Retinal Vessel Extraction by Matched Filter with First-Order 

Derivative of Gaussian  
 

Bob Zhang1, Lin Zhang2, Lei Zhang2* and Fakhri Karray1 

1Dept. of Electrical and Computer Engineering, University of Waterloo 
Waterloo, ON, Canada, N2L 3G1 

2Biometrics Research Center, The Hong Kong Polytechnic University, Hong Kong, China 

 
Abstract:  

Accurate extraction of retinal blood vessels is an important task in computer aided 

diagnosis of retinopathy. The Matched Filter (MF) is a simple yet effective method for 

vessel extraction. However, a MF will respond not only to vessels but also to non-vessel 

edges. This will lead to frequent false vessel detection. In this paper we propose a novel 

extension of the MF approach, namely the MF-FDOG, to detect retinal blood vessels. The 

proposed MF-FDOG is composed of the original MF, which is a zero-mean Gaussian 

function, and the first-order derivative of Gaussian (FDOG). The vessels are detected by 

thresholding the retinal image’s response to the MF, while the threshold is adjusted by the 

image’s response to the FDOG. The proposed MF-FDOG method is very simple; however, 

it reduces significantly the false detections produced by the original MF and detects many 

fine vessels that are missed by the MF. It achieves competitive vessel detection results as 

compared with those state-of-the-art schemes but with much lower complexity. In addition, 

it performs well at extracting vessels from pathological retinal images. 
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1. Introduction 

The automated extraction of blood vessels in retinal images is an important step in 

computer aided diagnosis and treatment of diabetic retinopathy [1-8], hypertension [10], 

glaucoma [11], obesity [12], arteriosclerosis and retinal artery occlusion, etc. Vessel 

extraction is basically a kind of line detection problem, and many methods have been 

proposed. A class of popular approaches to vessel segmentation are filtering-based 

methods [5, 9, 18-21] which work by maximizing the response to vessel-like structures. 

Mathematical morphology [7, 13, 22] is another type of approach by applying 

morphological operators. Trace-based methods [14] map-out the global network of blood 

vessels after edge detection by tracing out the center lines of vessels. Such methods rely 

heavily on the result of edge detection. Machine-Learning based methods [1, 3, 14-15] 

have also been proposed and they can be divided into two subgroups: supervised methods 

[1, 3, 15] and unsupervised methods [14, 16]. Supervised methods exploit some prior 

labeling information to decide whether a pixel belongs to a vessel or not, while 

unsupervised methods do the vessel segmentation without any prior labeling knowledge. 

Among the various retinal vessel extraction methods, the classical matched filter (MF) 

[9] method is a representative one and it has advantages of simplicity and effectiveness. 

The MF detects vessels by simply filtering and thresholding the original image. 

Considering the fact that the cross-section of a vessel can be modeled as a Gaussian 

function, a series of Gaussian-shaped filters can be used to “match” the vessels for 

detection. However, the MF will have strong responses to not only vessels but also 

non-vessel edges, for example, the edges of bright blobs and red lesions in retinal images. 

Therefore, after thresholding the response image, many false detections can result.    
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Although the MF employs the prior knowledge that the cross-section of a vessel in a 

retinal image is Gaussian shaped, it does not fully exploit other information of the vessel 

profile, in particular that the Gaussian shaped cross section is symmetric with respect to its 

peak position. If this property can be properly used, it is possible to distinguish the 

symmetric vessel structures from those asymmetrical non-vessel edges (e.g. the step edge) 

in a simple but efficient way, and hence the vessel extraction accuracy can be improved.   

To this end, in this paper we propose a novel method, namely the matched filter with 

first-order derivative of the Gaussian (MF-FDOG), as an extension and generalization of 

the MF. Considering that the cross section of a vessel is a symmetric Gaussian function, we 

use a pair of filters, the zero-mean Gaussian filter (i.e. the MF) and the first-order 

derivative of the Gaussian (FDOG), to detect the vessels. For a true vessel, it will have a 

strong response to the MF around its peak position, while the local mean of its response to 

the FDOG will be close to zero around the peak position. In contrast, for non-vessel 

structures, for example the step edge, it will have high response to the MF but the local 

mean of its response to the FDOG will also be high. Such a difference implies that the 

vessels and non-vessel edges can be better distinguished by using the MF-FDOG than by 

using the MF.  

By applying the MF-FDOG filters to the retinal image, two response maps, H (by the 

MF) and D (by the FDOG) can be obtained. The vessel map is detected by applying a 

threshold T to H, while the threshold T is adjusted by D so as to remove the non-vessel 

edges and extract the fine vessels. As a filtering-based method, the proposed MF-FDOG 

preserves the simplicity of the original MF; however, it could achieve much higher vessel 

detection accuracy than the MF, and even comparable to the results of state-of-the-art 
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methods [1-2, 7, 13, 18], which have much higher complexity than the MF-FDOG..      

The rest of this paper is organized as follows. Section 2 briefly reviews the MF. Section 

3 presents the proposed MF-FDOG scheme. Section 4 presents experimental results, and 

Section 5 concludes the paper. 

 

2. The Matched Filter 

The Matched Filter (MF) was first proposed in [9] to detect vessels in retinal images. It 

makes use of the prior knowledge that the cross-section of the vessels can be approximated 

by a Gaussian function. Therefore, a Gaussian-shaped filter can be used to “match” the 

vessels for detection. The MF is defined as 
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normalize the mean value of the filter to 0 so that the smooth background can be removed 

after filtering, and L is the length of the neighborhood along the y-axis to smooth noise; the 

criterion t is a constant and is usually set to 3 because more than 99% of the area under the 

Gaussian curve lies within the range [-3s, 3s]. The parameter L is also chosen based on s. 

When s is small, L is set relatively small, and vice versa. In the implementation, f(x,y) will 

be rotated to detect the vessels of different orientations.  

The simplicity of the MF makes it popular in vessel detection. However, a well-known 

problem of the approach is that it responds not only to vessels but also to non-vessel edges. 

Figs. 1 (a) ~ (b) illustrate this problem by showing the responses of the MF to a Gaussian 

function (i.e. the cross-section of a vessel) and an ideal step edge. We can see clearly that 
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the MF has strong responses to both the vessel and the step edge. After thresholding, both 

the vessel and the non-vessel edge will be detected. Therefore, the aim of this paper is to 

find a simple filtering technique to distinguish the vessels from non-vessel step edges.  
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Figure 1. Responses of the MF and the FDOG to a Gaussian line cross-section and an ideal step edge. 
(a) A Gaussian line cross-section and an ideal step edge; (b-1) the MF and (b-2) its filter response; (c-1) 
the FDOG and (c-2) its filter response; (d) the local mean of the response to the FDOG.  
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3. The MF-FDOG 

As we can see in Section 2, the MF has strong responses to both vessels and step edges 

because it can “match” the shape of both vessels and step edges to some extent. Thus it is 

hard to distinguish the two types of structures only by the response of MF. Based on the 

fact that the vessel cross-section is a symmetric Gaussian function while the step edge is 

asymmetric, we propose a simple scheme by using a pair of filters, instead of only one 

filter, to distinguish Gaussian vessel structures from non-vessel edges.   

The MF is a zero-mean Gaussian filter and it is defined in (1). It can be readily derived 

that the first-order derivative of the Gaussian (FDOG) is: 
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In this paper, we use the MF and the FDOG as "MF-FDOG" for vessel detection. The idea 

comes from the fact that the Gaussian function (i.e. the cross-section of a vessel) will have 

a strong positive response to the MF but its response to the FDOG is anti-symmetric. In 

contrast, although the non-vessel step edge will have partially strong positive responses to 

MF, its response to the FDOG is positive and symmetric. Fig. 1 shows this by using a 

synthetic signal. Fig. 1 (a) plots a Gaussian function and an ideal step edge; Figs. 1 (b-1) 

and (b-2) show the MF and its response to the synthetic signal; Figs. 1 (c-1) and (c-2) show 

the FDOG and its response. Denote by h the signal’s response to the MF. Suppose that we 

apply a threshold T to h to detect the vessels. Obviously, some of the step edge’s responses 

will be wrongly classified as vessels. However, if we could properly exploit their different 

responses to the FDOG, as shown in Fig. 1 (c-2), the vessels and non-vessel edges can be 

better distinguished by thresholding their responses to MF. Unfortunately, in the original 

FDOG responses, the magnitude around the Gaussian peak (position 100) and the step 
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edge (position 300) change rapidly. Therefore, directly using the FDOG response is not 

robust to tell the two types of structures. 

Denote by d the response of the input signal to the FDOG. Let us calculate the local 

mean of d, denoted by dm. The local mean value of an element in d is defined as the 

average of its neighboring elements. Fig. 1 (d) shows the dm of the response d in Fig. 1 

(c-2). We can see that in the peak area of the Gaussian function there are strong responses 

in h (refer to Fig. 1 (b-2)), while the corresponding responses in dm (refer to Fig. 1 (d)) are 

very low. In contrast, in the neighborhood of the step edge there are also strong responses 

in h but the corresponding responses in dm are very high. Therefore, the local mean signal 

dm can be used to adjust the threshold T to detect the true vessels while removing the 

non-vessel edges. In other words, T should depend on dm. If the magnitude in dm is low, 

this implies that a vessel may appear in the neighborhood, and hence the threshold T 

applied to h can be small to detect the vessels; if the magnitude in dm is high, this implies 

that some non-vessel edges may appear, and hence the threshold T can be high to suppress 

the non-vessel edges.     

To this end, we propose a thresholding scheme by using the MF-FDOG for retinal 

vessel detection. The threshold is applied to the retinal image’s response to MF but the 

threshold level is adjusted by the image’s response to FDOG. After filtering the retinal 

image with the MF-FDOG filters, two response images, H (by the MF) and D (by the 

FDOG) are obtained1. The local mean image of D is calculated by filtering D with a mean 

filter: 

Dm=D*W ,                            (3) 

                                                 
1 In application, multiple MF-FDOGs along different orientations will be used. For the convenience of 

discussion, we only consider one MF-FDOG here.  
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where W is a w×w filter whose elements are all 1/w2. The local mean image Dm is then 

normalized so that each element is within [0, 1]. We denote by mD  the normalized image 

of Dm. 

The threshold T is then set as 

( )1 m cT D T= + ⋅                            (4) 

where Tc is a reference threshold. In this paper, we set Tc as follows: 

c HT c μ= ⋅                               (5) 

where Hμ  is the mean value of the response image H, and c is a constant which can be set 

between 2~3 based on our experiment experience. By applying T to H, the final vessel map 

MH is obtained as: 

     
1 ( , ) ( , )
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                       (6) 

It can be seen from (3) ~ (6) that if there is a vessel in the image, then at the corresponding 

area the magnitude in mD  will be weak, and hence the threshold TH will be lowered. Thus 

this vessel can be easily detected by (6). If there are some non-vessel structures in the 

image, the corresponding magnitude in mD  will be high, and hence the threshold TH is 

raised. Thus these non-vessel edges can be suppressed.  

We use an example to illustrate the proposed MF-FDOG scheme in Fig. 2. Fig. 2(a) 

shows an original image “im0001” from the STARE database and it can be clearly seen 

that there are bright lesions in the middle of the image. Fig. 2(b) shows the response map 

to MF. It can be seen that MF has strong responses to both vessels and the bright lesions. 

Fig. 2(c) shows the local mean map of the response to FDOG, i.e. mD . It can be seen that 
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the FDOG response has a higher magnitude (brighter pixels) in the center area where hard 

exudates are located, while the surrounding vessels produce a lower magnitude (darker 

pixels). Combining this with the MF response which has higher magnitudes for vessels and 

lower magnitudes for non-vessels, we can better separate vessel structures from non-vessel 

structures. Fig. 2(d) is the vessel extraction result of the MF by applying a global threshold 

to Fig. 2(b), while Fig. 2(e) is the result of the proposed approach. It can be clearly seen 

that the false detection caused by the bright lesion is greatly reduced, while many fine 

vessels missed in Fig. 2(d) are detected in Fig. 2(e). The ground truth for this image is 

shown in Fig. 2(f). We see that the proposed MF-FDOG scheme can more effectively 

discriminate between true retinal vessels and non-vessel edges than the conventional MF. 

 

  
(a)                              (b) 

  
(c)                              (d) 
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(e)                              (f) 

 
Figure 2. Illustration of the proposed MF-FDOG retinal vessel extraction scheme. (a) The original 
image im0001 from the STARE database. (b) The response map to MF. (c) The local mean of the 
response to FDOG. (d) The vessel extraction result after applying a global threshold to the MF 
response map. (e) The extraction result of the proposed scheme. (f) The ground truth vessel map. 

 

 
4. Experimental Results 

In order to extract both thick and thin vessels in the retinal image, we apply a multi-scale 

MF-FDOG approach. In other words, we use a large scale to detect thick vessels and a 

small scale to locate thin vessels. The results of both extractions are then simply combined 

using the logical OR operation. The key parameters in our experiments are set as follows: 

s=1.5 and L=9 (used for wide vessels), s=1 and L=5 (used for thin vessels) (refer to Eqs. (1) 

and (2)), W=31×31 (refer to Eq. (3)), and c=2.3 (refer to Eq. (5)) and 8 directions were 

used in MF-FDOG filtering. These parameters were chosen based on our experiment 

experience.  

We tested the proposed MF-FDOG method on two publicly available databases, the 

STARE database [5] and the DRIVE database [1]. The STARE database consists of retinal 

images captured by the TopCon TRV-50 fundus camera at a 35° field of view (FOV), 

which were digitized with 24-bit gray-scale resolution and a spatial resolution of 

700 605×  pixels. There are 20 images, ten of which are from healthy ocular fundus and 

the other ten are from unhealthy ones. The database also provides hand-labeled images as 
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the ground truth for vessel segmentation so that the algorithms can be evaluated for 

comparison. The DRIVE database consists of 40 images captured by the Canon CR5 

camera at 45° FOV, which were digitized at 24 bit with a spatial resolution of 565 584×  

pixels. The 40 images were divided into a training set and a test set by the authors of the 

database. The results of the manual segmentation are available for the two sets. For the 

images in the test set, a second independent manual segmentation is also available.  

To compare different retinal vessel segmentation algorithms, we select (1) detection 

accuracy, (2) the corresponding TPR (true positive rate), and (3) the FPR (false positive 

rate) at that accuracy as our performance measures. These performance measures were 

defined and widely used in literature [1-8, 15]. The detection accuracy is defined as the 

ratio of the total number of correctly classified pixels  to the number of pixels inside the 

FOV. The TPR is defined as the ratio of the number of correctly classified vessel pixels to 

the number of total vessel pixels in the ground truth. The FPR is defined as the ratio of the 

number of non-vessel pixels inside the FOV but classified as vessel pixels, to the number 

of non-vessel pixels inside FOV in the ground truth.  

 
Table I. Vessel extraction results on the STARE database. 

 
Method TPR FPR Accuracy 
2nd Human observer 0.8949 0.0610 0.9354 
Hoover [5] 0.6751 0.0433 0.9267 
Staal [1] 0.6970 0.0190 0.9516 
Soares [2]  0.7165 0.0252 0.9480 
Mendonça [7] 0.6996 0.0270 0.9440 
Matched filter [9] 0.6134 0.0245 0.9384 
Martinez-Perez [8] 0.7506 0.0431 0.9410 
MF-FDOG 0.7177 0.0247 0.9484 

 

 

Table I presents the experimental results on the STARE database by different methods. 

The performance measures of Staal [1], Mendonça [7] and Martinez-Perez [8] were 
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obtained from their original papers. For Soares [2] and Hoover [5], their performance 

measures were calculated using the segmented images from their websites. The FOV used 

for the STARE database was generated by the code provided by Soares. All the 20 images 

in STARE were used in this experiment. (Staal’s method [1] used 19 of the 20 images for 

testing with 10 normal and 9 pathological). The hand-labeled images by the first human 

expert  were used as ground truth. The TPR measure of Martinez-Perez’s method [8] is 

higher than others because it was calculated at a higher FPR level. Overall its accuracy is 

similar to that of others. To facilitate the comparison of our method with Soares’ [2] and 

Mendonça’s [7] methods, we calculated the average TPR corresponding to an FPR of 

around 0.025. The experimental results on the STARE database show that the proposed 

MF-FDOG performs much better than the original MF, also outperforms Hoover’s and 

Mendonça’s methods, and is slightly better than Soares’ method. It has similar 

performances to the other state-of-the-art methods but with much less computational cost. 

As stated before, one important motivation of the proposed MF-FDOG method is to 

suppress the false response of the MF to the lesions and blobs that will often appear in the 

abnormal retinal images. In order to demonstrate the performance of our method in such 

pathological cases, we compare the results by different methods on the normal and 

abnormal images in the STARE database in Table II2. Experimental results clearly show 

that for the abnormal cases, the proposed MF-FDOG method performs significantly better 

than the MF and Hoover’s method, and it achieves better results than Mendonça’s and 

Soares’ methods. Fig. 3 shows an example for visual inspection. 

                                                 
2 Since the result of Staal’s method [1] is not available for this experiment, we did not list it in Table II. 
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Table II. Vessel extraction results on the STARE database (normal versus abnormal cases). 
Method TPR FPR Accuracy 

Normal cases 
2nd Human observer 0.9646 0.0764 0.9283 
Hoover [5] 0.6766 0.0338 0.9324 
Mendonça [7]  0.7258 0.0209 0.9492 
Soares [2] 0.7554 0.0188 0.9542 
Matched filter[9] 0.7335 0.0218 0.9486 
MF-FDOG 0.7526 0.0221 0.9510 

 
Abnormal cases 

2nd Human observer 0.8252 0.0456 0.9425 
Hoover [5] 0.6736 0.0528 0.9211 
Mendonça[7] 0.6733 0.0331 0.9388 
Soares[2] 0.6869 0.0318 0.9416 
Matched filter[9] 0.5881 0.0384 0.9276 
MF-FDOG 0.7166 0.0327 0.9439 

 

Table III. Vessel extraction results for the DRIVE database. 
Method TPR FPR Accuracy 
2nd Human observer 0.7761 0.0275 0.9473 
Staal [1] 0.7194 0.0227 0.9442 
Soares [2] 0.7283 0.0212 0.9466 
Mendonça [7] 0.7344 0.0236 0.9452 
Matched filter [9] 0.6168 0.0259 0.9284 
Jiang [6] – – 0.9212 
Zana [13] – – 0.9377 
Martinez-Perez [8] 0.7246 0.0345 0.9344 
Garg [16] – – 0.9361 
Perfetti [17] – – 0.9261 
Cinsdikici [18] – – 0.9293 
Al-Rawi [19] – – 0.9510 
MF-FDOG 0.7120 0.0276 0.9382 

 

 
Table III presents the results on the DRIVE database. The performance measures of 

Mendonça [7], Martinez-Perez [8], Garg [16], Perfetti [17], Cinsdikici [18], Al-Rawi [19] 

were obtained from their original papers while Staal [1] and Soares [2] were calculated 

using the segmented images from their websites. Jiang’s [6] and Zana’s [13] methods 

happened to be published a few years before DRIVE was established, so their results in 

Table III were implemented by Staal [1] and Niemeijer [3], respectively, with no TPR or 

FPR given. The DRIVE database provides its own FOV. All 20 images in the test set were 
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used in the experiment with the hand-labeled images by the first human expert designated 

as ground truth. The experimental results on the DRIVE database again validate that the 

proposed MF-FDOG performs much better than the MF, while it is slightly inferior to 

some state-of-the-art methods. Fig. 4 illustrates an example of vessel extraction using 

DRIVE.  

To evaluate the proposed MF-FDOG with respect to higher true positives with false 

positives < 0.05, we plot the ROC curves for both the DRIVE (dotted line) and STARE 

(solid line) database in Fig. 5. Each point on the curve represents a different threshold 

value used to segment the vessels. We can see that the proposed MF-FDOG method has 

good performance when FP > 0.02.  

The proposed MF-FDOG is competitive with other state-of-the-art methods when 

using the STARE database (see Table I), and is particularly strong in all three performance 

measures when dealing with abnormal cases (see Table II). It falls behind some 

state-of-the-art methods when the DRIVE database is used (see Table III) because the 

proposed MF-FDOG has advantages in dealing with pathological retinal images but most 

of the images in the DRIVE test set are normal images from healthy subjects. In addition, 

some non-vessel structures in retinal images can be very complex and hard to be modeled 

by step edges. We admit that in such cases our method may fail. 

In Table IV we list the running time of our method in comparison with state-of-the-art 

methods [2, 7]3. We see that the MF-FDOG requires much less computational cost. 

Without optimization of the code, it will take about 10 seconds to process one image in the 

STARE database on a PC with a P-III 1.5 GHz CPU and 512MB RAM.  

 

                                                 
3 We ran the code of [2] to calculate the running time. The running time of [7] was from the original paper. 
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Table IV. Running time per image in the STARE database. 
Method System Environment Running Time 

Soares [2] P-III 1.5GHz, 512 Mb RAM, Matlab 3.5 minutes 
Mendonça [7] P-IV 3.2GHz, 960 Mb RAM, Matlab 3 minutes 
MF-FDOG P-III 1.5GHz, 512 Mb RAM, Matlab 10 seconds 

 

 

  
(a)                              (b) 

  
(c)                              (d) 

  
(e)                              (f) 

 
Figure 3. (a) The original image im0002 from the STARE database; (b) The ground truth vessel map; 
the vessel extraction results by (c) MF; (d) Hoover [5]; (e) Soares [2]; and (f) the proposed MF-FDOG. 
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 (a)         (b)       (c) 
 

Figure 4. (a) The original image 3 from the DRIVE database; (b) The ground truth vessel map; the 
vessel extraction result by (c) the proposed MF-FDOG. 
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Figure 5. The ROC curves for both STARE and DRIVE when FP < 0.05 by the proposed method. The 
solid line represents STARE while the dotted line is DRIVE. 

 

 
5. Conclusion 

We proposed a novel retinal blood-vessel extraction method, namely the MF-FDOG, by 

using both the matched filter (MF) and the first-order-derivative of the Gaussian (FDOG). 

The retinal vessels were detected by simply thresholding the retinal image’s response to the 

MF but the threshold was adjusted by the image’s response to the FDOG. Compared with 
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the MF, the MF-FDOG can better distinguish the true vessel structures from non-vessel 

structures such as blobs and lesions. The experimental results demonstrated that it 

significantly reduces the false detections generated by the MF and detects many fine 

vessels that the MF will miss. In particular, the MF-FDOG can extract effectively the 

vessels in pathological images, leading to competitive results as compared with 

state-of-the-art schemes; at the same time it has much lower complexity and is much easier 

to implement.  

The use of multiple scales to extract both thick and thin vessels followed by a logical 

OR to combine the results is effective in general. However, our logical OR operation is not 

strong enough to remove unwanted structures. Some noisy patterns that exist in either scale 

can be preserved in the resultant vessel map. This is the weakness of the proposed work. 

One way to remove the noisy patterns is to employ some post-processing procedures based 

on their geometric features. Another aspect to be improved for the MF-FDOG is the 

handling of branching points and the connectivity of vessels. If isolated vessels can be 

connected to the correct object(s), sensitivity and accuracy will be further improved. We 

will further investigate these aspects in our future work.  
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