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Abstract

Automated classification of duodenal texture patches with histological
ground truth in case of pediatric celiac disease is proposed. The classical
focus of classification in this context is a two-class problem: mucosa affected
by celiac disease and unaffected duodenal tissue. We extend this focus and
apply classification according to a modified Marsh scheme into four classes.
In addition to other techniques used previously for classification of endoscopic
imagery, we apply Local Binary Patterns (LBP) operators and propose two
new operator types, one of which adapts to the different properties of Wavelet
transform subbands. The achieved results are promising in that operators
based on LBP turn out to achieve better results compared to many other
texture classification techniques as used in earlier work. Specifically, the
proposed wavelet-based LBP scheme achieved the best overall accuracy of all
feature extraction techniques considered in the two-class case and was among
the best in the four-class scheme. Results also show that a classification into
four classes is feasible in principle, however, when compared to the two-class
case we note that there is still room for improvement due to various reasons
discussed.

Keywords: celiac disease, computer-aided classification, endoscopy, LBP,
Marsh classification, children

1. Introduction

Celiac disease is a complex autoimmune disorder in genetically predis-
posed individuals of all age groups after introduction of gluten containing
food. Commonly known as gluten intolerance, this disease has several other
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names in literature, including cceliac disease, c(o)eliac sprue, non-tropical
sprue, endemic sprue, gluten enteropathy or gluten-sensitive enteropathy.
The gastrointestinal manifestations invariably comprise an inflammatory re-
action within the mucosa of the small intestine caused by a dysregulated im-
mune response triggered by ingested gluten proteins of certain cereals (wheat,
rye, and barley), especially against gliadine. During the course of the disease,
hyperplasia of the enteric crypts occurs and the mucosa eventually looses its
absorptive villi thus leading to a diminished ability to absorb nutrients. The
real prevalence of the disease has not been fully clarified yet. This is due
to the fact that most patients with celiac disease suffer from no or atypical
symptoms and only a minority develops the classical form of the disease.
Since several years, prevalence data have been continuously adjusted up-
wards. Fasano et al. (2003) state that more than 2 million people in the
United States, this is about one in 133, have the disease. People with un-
treated celiac disease, even if asymptomatic, are at risk for developing various
complications like osteoporosis, infertility and other autoimmune diseases in-
cluding type 1 diabetes, autoimmune thyroid disease and autoimmune liver
disease.

Endoscopy with biopsy is currently considered the gold standard for the
diagnosis of celiac disease. Besides standard upper endoscopy, several new en-
doscopic approaches for diagnosing celiac disease have been applied (Chand
and Mihas, 2006). The modified immersion technique described in Cam-
marota et al. (2006) is based on the instillation of water into the duodenal lu-
men for better visualization of the villi. Furthermore, magnifying endoscopy
(standard endoscopy with additional magnification) has been investigated
(Cammarota et al., 2004). For conducting capsule endoscopy (see Petroniene
et al. (2005)) the patient swallows a small capsule equipped with a camera
that takes images of the duodenal mucosa during its passage through the
intestine. All these techniques aim to detect total or partial villous atrophy
and other specific markers that show a high specificity for celiac disease in
patients. These markers include scalloping of the small bowel folds, reduction
in the number or loss of Kerkring’s folds, mosaic patterns and visualization
of the underlying blood vessels (Niveloni et al., 1998). During endoscopy
at least four duodenal biopsies are taken. Microscopic changes within these
specimen are classified by a histological analysis according to a classification
scheme by Oberhuber et al. (1999) which is based on Marsh (1992).

Automated classification as a support tool is an emerging option for endo-
scopic diagnosis and treatments (e.g. Karkanis (2003); Ameling et al. (2009);
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Alexandre et al. (2008); Iakovidis et al. (2006); Liedlgruber and Uhl (2009)).
Systems are being developed that support physicians during surgery or high-
light malignant areas during endoscopy for further inspection. Such systems
could also be used for training purposes. In the context of celiac disease, an
automated system identifying duodenal areas affected by the disease would
offer the following benefits (among other):

e Methods that help indicating specific areas for biopsy might improve
the reliability of celiac disease diagnosis. As biopsying is invasive and
the number of biopsy samples should be kept small, optimal targeting
is desirable. This targeting can be supported by an automated system
for identification of areas affected by celiac disease.

e The whole diagnostic work-up of celiac disease, including duodenoscopy
with biopsies, is time-consuming and cost-intensive. To save costs,
time, and manpower and simultaneously increase the safety of the pro-
cedure it would be desirable to develop a less invasive approach avoiding
biopsies. Recent studies by Cammarota et al. (2006, 2007) investigat-
ing such endoscopic techniques report reliable results. These could be
further improved by analysis of the acquired visual data (digital images
and video sequences) with the assistance of computers.

e The (human) interpretation of the video material captured during cap-
sule endoscopy (Petroniene et al., 2005) is an extremely time consum-
ing process. Automated identification of suspicious areas in the video
would significantly enhance the applicability and reduce the costs of
this technique for the diagnosis of celiac disease.

In a prior study, Vécsei et al. (2008) suggest using histogram-based and
Wavelet-based features for classification. Subsequent work (Vécsei et al.,
2009) optimizes Fourier features used for classification by applying an evo-
lutionary process already delivering competitive classification results. In re-
cent work (Hegenbart et al., 2009), we have systematically compared the
classification performance of two different image capturing techniques (i.e.
conventional imaging vs. the modified immersion technique) and various
pre-processing schemes using a set of different feature extraction and classi-
fication methods.

Ciaccio et al. (2010) measure the mean and standard deviation in bright-
ness over 10 x 10 pixel subimages to identify areas affected by celiac disease



in capsule endoscopy, and also apply spectral analysis over sequential images
to identify abnormal bowel motility.

Contributions In this work, we describe for the first time a system aimed
at performing automated classification of duodenal texture patches according
to a reduced 4-class Marsh-like classification system. Corresponding results
are requested for a staging of the observed mucosa defects with impact on
clinical practice regarding treatment. Local Binary Patterns (LBP) based
feature extraction is applied to the problem of automated celiac disease di-
agnosis for the first time and turns out to outperform techniques previously
applied. In particular, we propose two new operator types, one of which
adapts to the different properties of Wavelet transform subbands and results
in the best overall classification accuracy in the two-class scheme of all fea-
ture extraction schemes considered. In the four-class scheme the proposed
method was still among the best methods. Moreover, we contribute in pro-
viding explicit strategies for threshold selection and quantization in operators
proposed in earlier work.

Structure In section 2, we describe image acquisition and the estab-
lishment of ground truth information according to a modified Marsh clas-
sification. Section 3 covers LBP operators where we also propose two new
operator types, among them a new Wavelet-based operator that combines
two LBP-based operators to adapt to Wavelet subband properties. In sec-
tion 4 we present experimental results where we compare the classification
results of the proposed methods to techniques applied previously to classify
endoscopic image material. Section 5 concludes the paper.

2. Image Acquisition and Marsh Classification

The image test set used, contains images taken during duodenoscopies at
the St.Anna Children’s Hospital using pediatric gastroscopes without mag-
nification (GIF-Q165 and GIF-N180, Olympus, Hamburg). The main in-
dications for endoscopy were the diagnostic evaluation of dyspeptic symp-
toms, positive celiac serology, anemia, malabsorption syndromes, inflamma-
tory bowel disease, and gastrointestinal bleeding. Images were recorded by
using the modified immersion technique, which is based on the instillation
of water into the duodenal lumen for better visibility of the villi. The tip of
the gastroscope is inserted into the water and images of interesting areas are
taken. Gasbarrini et al. (2003) show that the visualization of villi with the
immersion technique has a higher positive predictive value. Previous work by



Hegenbart et al. (2009) also found that the modified immersion technique is
more suitable for automated classification purposes as compared to the clas-
sical image capturing technique. Images from a single patient were recorded
during a single endoscopic session.

Our study population comprised only children suffering from signs and
symptoms making upper endoscopy necessary. Therefore, the prevalence of
celiac disease within this group was definitely higher than in the general pop-
ulation. Furthermore, there was a higher number of girls than boys (1.43:1)
among the study group patients. Both findings, the higher prevalence of
celiac disease and the female preponderance, should not bias the classification
accuracy. Since endoscopy is an invasive procedure, a study like ours cannot
be performed in a randomly selected sample from the general population due
to ethical reasons since the medical indications for such an intervention are
lacking. However, we consider our study group to be representative for the
children needing endoscopic evaluation.

A fully automated system (as it is the final target of our project) would
apply segmentation to decide which parts of an image are subject to feature
extraction. However, as a first stage towards full automation we need to
establish a database of image data, for which reliable texture classification
can be developed and systematically optimized. For this purpose we have
manually created a set of textured image patches with optimal quality to
assess if the required classification is feasible under “idealistic” conditions and
to establish reliable data. Thus, the captured data was inspected and filtered
by several qualitative factors (sharpness, lack of distortions like specular
reflections, visibility of features, etc.). To ensure the quality of extracted
regions in terms of visibility of features the extraction was performed in
accordance with a physician involved in this project.

There are two duodenal regions considered for extracting biopsy speci-
men. Those two regions (the duodenal Bulb and the Pars Descendens) have
different geometrical properties (Hegenbart et al., 2009). There are no dif-
ferences in the visual markers we use for classification among both regions
however. In order to built an image database comprising enough images to
be able to construct disjoint sets for training and evaluation of the specific
classification methods, texture patches from both regions were combined.
By restricting the images from the Pars Descendens to a frontal camera per-
spective (which make up the majority of images), inhomogeneities among the
visual celiac markers are avoided.



Characteristic Mucosal Changes
Marsh 0-2 No visible changes of villi structure
Marsh 3A  Mild villous atrophy
Marsh 3B Marked villous atrophy
Marsh 3C  Absent villi

Table 1: Characteristic Changes of Mucosal Tissue caused by Celiac Disease.

In order to generate the ground truth for the texture patches used in ex-
perimentation, the condition of the mucosal areas covered by the images was
determined by histological examination of biopsies from the corresponding
regions. Severity of villous atrophy was classified according to the modified
Marsh classification in Oberhuber et al. (1999). Two pathology residents and
one senior pediatric pathologist examined the slides prepared from the sub-
mitted duodenal tissue samples. A final assessment of the grade of alteration
of the mucosal architecture was performed by the supervising pathologist in
every case. In cases of disagreement among the pathologists, only occurring
in terms of subclassification of Marsh class 3 lesions, a final diagnosis was
obtained from a consensual review of the slides on a multiheaded microscope.

This histological classification scheme identifies six classes of severity of
celiac disease, ranging from class Marsh-0 (no visible change of villi structure)
up to class Marsh 3C (absent villi). A visible change of the villous structure
can be observed at Marsh 3A to Marsh 3C only.

We distinguish between Marsh classes Marsh-0 to Marsh-2 (not possible
to diagnose mucosal damage via image analysis) and Marsh classes Marsh-
3A to Marsh-3C. Therefore, images exhibiting underlying histological Marsh
class Marsh-1 and Marsh-2 are not targeted by our system and were excluded
from the analysis. In the following, we aim at two different classification
problems: a four-class problem with classes Marsh-0, Marsh-3A, Marsh-3B,
and Marsh-3C, and a two-class problem with the classes Marsh-0 and Marsh-3
(consisting of images of the latter three classes). Note that previous work has
been entirely restricted to the two-class problem. Table 2 shows the number
of texture patches and patients available per considered Marsh-class. As can
be seen, for the two-class problem the number of images is well balanced,
while for the four-class problem the Marsh-3 classes contain less images as
compared with Marsh-0. Figures 1 shows examples for each considered class.



Please note that we manually enhanced the image contrast to improve the
visibility of celiac markers for the reader.

(a) Marsh 0 (b) Marsh 3A (¢) Marsh 3B (d) Marsh 3C

Figure 1: Celiac Images showing Examples of the considered Marsh Classes.

As can be seen, the visible differences between the specific Marsh-classes
are rather small and can often be masked by either a bad image quality (blur
or distortions) or a suboptimal perspective towards the mucosal plane. This
could make accurate classification in the four-class case hard to achieve.

2.1. Image Database Construction

The constructed image database originates from 171 patients (131 control
patients and 40 patients with diagnosed celiac disease). Texture patches with
a fixed size of 128 x 128 pixels were extracted from the full sized frames (which
are of size 768 x 576 pixels in case of the GIF-Q165 and 528 x 522 pixels in
case of the GIF-N180 endoscope). In some cases multiple non-overlapping
texture patches were extracted from a single full sized frame in order to build
an image set of reasonable size. The patch size of 128 x 128 pixels turned out
to be optimally suited in previous experiments (Hegenbart et al., 2009). The
applied algorithms were not dependant on the specific endoscopic camera
used.

In total 753 texture patches met the required qualitative properties. Based
on this set of texture patches two distinct sets for training and evaluation
were created. The construction was done in an automated way such that the
number of images is balanced between the non-celiac class Marsh-0 and the
celiac classes Marsh-3A to Marsh-3C. While creating the two distinct sets,
care was taken that the number of patches per patient is as evenly balanced
as possible. Also, no images from a single patient are within both image
sets. The actual construction was done using a pseudo random number gen-



erator based on a Gaussian distribution to avoid any bias within the data
sets. Table 2 shows the distribution of images and patients per class.

0 3A 3B 3C Total
Texture Patches
Training Set 155 50 56 51 312
Evaluation Set 151 45 58 46 300
Patients
Training Set 66 6 7 8 87
Evaluation Set 65 5 6 8 84

Table 2: Distribution of the Texture Patches and Patients in the Image Database.

3. Feature Extraction based on Local Binary Pattern Operators

The basic Local Binary Pattern (LBP) operator was introduced to the
community by Ojala et al. (1996). This method belongs to the class of
geometric parametrization algorithms. Sajn and Kononenko (2008) use mul-
tiresolution image parametrization for improving texture classification using
association rules to extract a set of features. Malik et al. (1999) extended
the Texton model to gray scale textures. Their method includes Gabor fil-
tering and hence includes calculating the weighted mean of pixel values in a
small neighborhood. The LBP operator considers each pixel in a neighbor-
hood separately. Hence the LBP could be considered as a micro-texton. The
operator is used to model a pixel neighborhood in terms of pixel intensity
differences. This means that several common structures within a texture are
represented by a binary label. The joint distributions of these binary labels
are then used to characterize a texture. The operator is parametrized by a
corresponding value for the used radius from the center (r) and the number
of considered neighbors (p). The LBP operator is then defined as

p—1
LBP,,(z,y) =Y 2" s(Iy — L), (1)
k=0

with I, being the value of neighbor number k& and I. being the value
of the corresponding center pixel. The neighbor pixels are positioned at
equidistant positions on a circle around the center pixel with radius r using
bilinear interpolation. The actual ordering of neighbor pixels is not relevant
to the extracted information. The s function acts as sign function, mapping



to 1 if the difference is smaller or equal to 0 and mapping to 0 else. The LBP
histogram with ¢ intervals computed for an image I using p LBP neighbors
is formally defined as

Hy(i) =Y (LBPy(x,y) =1i)  i=0,---,2"— 1. (2)
@,y

The basic operator uses an eight-neighborhood with a 1-pixel radius. To
overcome this limitation, the notion of scale is used as discussed by Ojala
et al. (2002) by applying averaging filters to the image data before the op-
erators are applied. Thus, information about neighboring pixels is implicitly
encoded by the operator. The appropriate filter sizes for a certain scale is
calculated as described by Méenpaa (2003).

To compute the distance (or similarity) of two different histograms we
apply the histogram intersection metric. This metric is later interpreted
as distance by a k-nearest neighbors (k-nn) classifier. For two histograms
(Hy, Hy) with N intervals and interval number i being referenced to as H (i),
the similarity measure is defined as

H(H,, Hy) = Z min(H, (i), Hy(i)). (3)

3.1. Extended Local Ternary Patterns with adaptive Threshold

As the LBP operator is sensitive to noise, the Local Ternary Pattern op-
erator (LTP) was introduced by Tan and Triggs (2007). The modification
is based on a thresholding mechanism which implicitly improves the robust-
ness against noise. In our scenario endoscopic images are used which usually
are noisy as a result of the endoscopic procedure. The bowel is illuminated
by a point source located at the tip of the endoscope. The camera has a
fixed focus, hence some areas that are either too close or too far away from
the position of the camera are blurred. Additionally, the three dimensional
nature of the bowel leads to uneven illumination leading to noisy regions
within the captured images. The LTP operator is used to ensure that pixel
regions that are influenced by these kind of distortions do not contribute to
the computed histograms. The LTP approach is similar to the Peripheral
Ternary Sign Correlation (PTESC) as used in Yokoi (2007). The PTESC
operator however, was not used in the context of texture classification. The
basic idea of LTP is to introduce a threshold for calculating the patterns:



1, if x Z Th
s(z) = 0, if |z| < T (4)
—1, if x S —Th.

The ternary decision leads to two separate histograms, one representing
the distribution of the patterns resulting in a —1, the other representing the
distribution of the patterns resulting in a 1.

HI,lower(i) - Z(LBPrm(ZL',y) = —’L) 1 = O’ e ’217 —1
T,y
(5)
Hl,upper(i) = Z(LBPnp(ZL‘,y) = Z) 7 = 0’ R ’217 —1.

x?y

The neighbor information of pixels that lie within the threshold is encoded
implicitly by this splitting. A problem is that not the joint distribution of
lower and upper patterns is considered but the marginal distributions. An
alternative is to encode the patterns as trinary numbers. Nevertheless this
approach creates rather huge and therefore sparse histograms (3%-intervals
instead of 2%). This can result in instable results of the histogram similarity
measures. All tests show inferior results of this trinary encoding, therefore
the experiments were conducted using the concatenation of both histograms.
The two computed histograms are concatenated and then treated like a single
histogram.

The actual optimal values to use for thresholding are unknown a priori.
Tan and Triggs (2007) use a fixed threshold that was found empirically and
is beneficial for their input data. In case of endoscopic images however it is
not safe to make assumptions about the average image quality. By applying
an adaptive threshold based on the spatial image statistics we make sure that
noisy regions do not contribute to the computed histograms while information
present within high quality regions are not lost due to a threshold that was
chosen too high. When calculating an adaptive threshold care has to be taken
to avoid that visible texture-distortions (such as visible duodenal folds) affect
the calculation of the threshold too heavily. The calculation is therefore based
on an expected value for the standard deviation of the image (/). This value
was found based on the specific training data used during experimentation
and represents the average standard deviation of pixel intensity values within
all texture patches in the training set. The value « is used as a weighting
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factor combined with the actual pixel standard deviation of the considered
image (o) and is used to adapt the threshold to match the considered image
characteristics. The value for a was found empirically in the context of this
work and was set to 0.1.

(6)

Information extracted by the LBP-based operators from the intensity
function of a digital image can only reflect first derivative information. This
might not be optimal, therefore Huang et al. (2004) suggest using a gradient
filtering before feature extraction. By doing this the velocity of local variation
is described by the pixel neighborhoods. The naming conventions of this
extension are not consistent within literature. We will therefore stick to the
naming of Huang et al. (2004) (extended LBP, or ELBP). The extended LTP
(ELTP) operator is consequently introduced in perfect analogy to the ELBP
operator. ELTP is based on the LTP operator instead of the LBP operator to
suppress unwanted noise in the gradient filtered data. Of course, the actual
manner how to compute the gradient information has to be defined for a
specific operator.

T - B2 +ao, ifo>p2
"T85 — a0, ifo <.

3.2. Local Binary Patterns with Contrast Measure and its Quantization

As the LBP operator is invariant in terms of monotonic grayscale changes,
the strength of a pattern can not be represented. Texture however, can be
seen as a combination of the spatial structures (patterns) and the strength
of these structures (contrast). Therefore Ojala et al. (1996) introduce the
LBP/C operator to combine both properties. The contrast and the local bi-
nary patterns supplement each other in a very useful way. The LBP are sen-
sitive to rotational changes but invariant to monotonic grayscale variations
where the contrast measure is rotation invariant but sensitive to grayscale
changes. The rotation invariant local contrast measure for a pattern calcu-
lated at center (x,y) with a radius r considering p neighbors is calculated

Crp(®,y) = % (Z(Tk - ur,p(%y))z) : (7)

k=1
with

sl ) = (Z fk) . (®)
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C.p is the variance within the support area of the operator (among all
neighbors of a specific center pixel) and is interpreted as the strength of a
pattern. The histogram is extended to two dimensions using the contrast
measure as index in one dimension, modeling the joint distribution of both
random variables. Usually the contrast values (c¢) are quantized to reduce
the numbers of indices into the histogram. The best number of quantization
intervals is unclear a priori. A small number leads to bad discrimination
where a too large number leads to sparse histograms.

Hy(i,c) =Y (LBP,y(,y) =i A Cpplz,y) =¢)  i=0,---,2" =1 (9)

'T7y

The set of possible contrast values ranges from 0 to 16265.25 (the highest
value results from a set of the neighboring pixels with half of the pixels hav-
ing the minimum value (0) and half of the pixels with the maximum value
(255)). Obviously it is highly unlikely to find a pixel neighborhood with these
properties in a natural image. The distribution of contrast values is far from
being uniform. Therefore a linear mapping of the contrast value to the cor-
responding interval index is inadequate as it would result in unevenly filled
histograms. In this case a high percentage of patterns would be associated
with only a few quantized contrast values and the discriminative power could
not be improved. Ojala et al. do not suggest an explicit way how to quantize
the contrast values however. Considering that the discriminative power in
case of combined features is not determined by the number of patterns asso-
ciated with a certain contrast range but determined by the actual patterns
associated with a contrast value, we try to find a mapping that results in
equally dense histograms. The mapping was found by estimating the empiri-
cal distribution function using the training data during each experiment. As
the multiscale LBP-extension is used, the effects of low-pass filtering have to
be considered. Obviously the distribution of the contrast values is affected
by this filtering as shown in Figure 2 which displays the empirical cumulative
distribution function that was found using the image data. The y-axis shows
the percentage of patterns with a contrast value less or equal to the corre-
sponding value on the x-axis. We therefore normalize the values by division,
using the standard deviation of the contrast values. This is done for each im-
age during feature extraction. The optimal number of contrast intervals was
found empirically during the experiments by considering all values within a
range from 2 to 22. The right side of the figure demonstrates the results
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of the normalization of the contrast distribution and compares them with a
linear distribution function.
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Figure 2: Cumulative Distributions of the Contrast Measures

3.3. The Wavelet based LBP Operator (WT-LBP)

All LBP-based operators can be categorized into two families by consid-
ering the underlying intensity function. Operators that reflect first derivative
information (such as LBP, LBP/C and LTP) as well as operators that reflect
second derivative information (ELBP and ELTP). The operators reflecting
first derivative information are based on the unmodified intensity function
of a digital image. The other operators are based on the first derivative of
the underlying intensity function. This derivative describes the velocity of
local variation. Therefore the extracted information reflects second deriva-
tive information. Taking into consideration that all LBP-based operators
that were used successfully in the field of texture classification belong to one
of the before mentioned categories, a combination of operators from either
type seems promising. By using the Wavelet representation of the images a
natural connection between both categories can be established.

In Wang et al. (2008) Haar Wavelets are used in combination with uni-
form LBP to improve the texture retrieval rate as compared to “pure” LBP.
Liu and Ding (2009) use non-separable Wavelets with LBP to describe tex-
tures while Su et al. (2009) use Gabor-Wavelets in combination with LBP to
represent texture in an active appearance model. The approaches of Su et al.
and Liu et al. are based on the high frequency subbands while Wang et al.
also use the approximation subbands for feature extraction. The subbands
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however have varying characteristics, therefore using a single operator (all
referenced techniques use LBP) for extracting features from all subbands is
not optimal. When considering the properties of the Wavelet transform, one
can see that there is a natural relation to extensions suggested to the basic
LBP operator:

e Multiscale
The scaling function used within the Wavelet transform leads to a suc-
cessive downscaling of the transformed signal. This corresponds to a
decrease in resolution. When considering the LBP multiscale extension,
pixel intensities are described as a weighted sum of the pixels within
a neighborhood. As averaging filter are used for different scales, this
corresponds to a decrease in resolution as well.

e High Frequency Information

In Mallat’s vertical and horizontal analysis (Mallat, 1989), the decom-
position algorithm is based on two variables x and y leading to a prior-
ization of each direction. The detail subbands contain high frequency
information of the input signal. High frequency components in an im-
age correspond to edge information. As the magnitude of each coef-
ficient represents the strength of an edge we can interpret the detail
subband coefficients as the speed of variation of pixel intensity differ-
ences. This is used within the operator based on using gradient filtering
(ELBP and ELTP).

e Supplemental Features

The coefficients of the detail subbands represent the information that is
lost due to the downscaling of the approximation subband. Therefore
the information present in the detail subbands complements the in-
formation present within the approximation subband in a natural way.
Since both, high-frequency and low-frequency texture information have
been promising in the context of classifying celiac disease in endoscopic
images, we combine these features to improve the discriminative power.
This in parallel to the LBP/C operator where supplemental features
(the binary labels and the contrast values) are combined to improve
the discriminative power.

As a consequence we propose a new Wavelet-based operator which is
constructed by combining suitable variants of the basic LBP operator. The
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(a) Approximation  (b) Horizontal Details  (c) Vertical Details

Figure 3: Coefficients of Wavelet Subbands.

properties of the specific operators and the Wavelet decomposition is taken
into account when constructing this new WT-LBP operator. Both the ap-
proximation and detail subbands are used for feature extraction. By using
all subbands, different components of textures can be described optimally.

e Detail Subbands

The detail subbands contain high frequency components and are in a
way similar to the information that is represented by gradient images.
The set of Wavelet functions spans the differences between the spaces
spanned by the various scales of the scaling function. In contrast to the
ELBP and ELTP operators the detail subband coefficients contain the
information that is lost due to the downscaling process of the Wavelet
transform. By combining features from all subbands no important in-
formation is lost overall. This is in contrast to the Sobel filtering. Even
more, the high frequency components can be used at different scales
without losing information (although in our case only in a dyadic step-
ping). We are interested in the energy distribution of the coefficients,
therefore the absolute values of the coefficients are used.

Figure 3 shows the approximation subband as well as the absolute
values of the coefficients of the horizontal and vertical detail subbands
of a wavelet decomposed mucosa texture image. As can be seen, due
to using a discrete signal, the detail coefficients contain some amount
of noise. To avoid introducing this noise to the computed histograms
the LTP operator is used to extract features from the detail subbands.
Applying the LTP operator is similar to the quantization of coefficients.
The LTP operator that is applied to the detail coefficients does not use
the multiscale extension in order to avoid the low pass filtering of the
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high frequency information since different scales are represented by the
Wavelet transform coefficients anyway. The radius of the LTP that is
used within the WT-LBP is set to 1.5 pixels. This is similar to a 3 x 3
pixel window, however since we use interpolation the actual values of
the diagonal neighbors might be slightly different.

e Approximation Subbands

The approximation subband represents the low frequency components
of the image. By using dyadic sampling the bandwidth of the image is
halved during each iteration. This is a problem, as we can not guaran-
tee that the size of texture elements corresponds to this sampling. It
is possible to miss texture components by applying the basic LBP op-
erator to the approximation subband coefficients. Therefore the LBP
multiscale extension is used to extract features from the approximation
subband. As the LTP and LBP operator can not describe the strength
of the patterns and the LBP/C operator proved to be very effective,
the LBP/C operator is used to extract features from the approximation
subbands. We use a maximum LBP-scale of 3 and a minimum LBP-
scale of 1 since higher scales are obtained by the Wavelet decomposition
anyway.

Figure 4 demonstrates the process of extracting features using two scales
of the WT-LBP operator. The filter bank that is used in the experiments is
the biorthogonal Cohen-Daubechies-Feauveau (CDF) 9/7 analysis filter also
used within JPEG2000.

3.4. Operator Parameters

The performance of the LBP-based operators is determined by a signifi-
cant set of parameters. The used neighborhood size of the operator controls
how many neighboring samples are involved in building the pattern. A neigh-
borhood size too small leads to poor discrimination while a neighborhood
too large generates sparse histograms. Most authors suggest using an eight-
neighborhood resulting in 256 patterns for the LBP operator. Maenpaa et al.
(2000) suggest using only a subset of all possible patterns called the uniform
patterns. This subset is characterized by the property that at maximum
two transitions from 0 to 1 or vice versa are allowed within each pattern (58
patterns satisfy this condition). This constraint leads to a robust subset for
classification. Additionally the dimensionality of the histogram is reduced
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Figure 4: Two-Scale Wavelet Based LBP Operator (WT-LBP-Operator).

which is beneficial for our task. In all experiments the subset of uniform
Local Binary Patterns is used for classification. In case of the LTP operator
and those based upon the LTP operator, two histograms are concatenated
to represent the pattern distributions. Therefore the size of the combined
histogram is twice the size of the LBP based operator.

The LBP-scale parameter (with the meaning as in Méenpéaa (2003)) of the
operator describes how many pixels are actually involved for each neighboring
sample. An increasing LBP-scale represents a lower image resolution and is
used to describe large scale structural information that could otherwise not
be represented. It is unclear a priori which LBP-scales are best suited to
represent a given texture. Experiments show however, that features extracted
using LBP-scales greater than 3 do not contribute useful information for
classification. Therefore the extracted features are based on using a set of
LBP-scales ranging from 1 to 3.

Huang et al. (2004) compute the gradient magnitudes to generate the
ELBP histograms. In general however, mucosal images may have a dominant
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orientation (this could be related to the physician’s style however). Hence
a filter orientation might be superior over the other. If one orientation is
dominant within the image, the calculation of the gradient magnitude might
introduce an error. Therefore both gradient images are directly used for
computing the LBP histograms. We additionally use a so called diagonal
orientation which represents the mean of both gradient orientations.

Obviously, not all filter orientations, Wavelet subbands, or LBP-scales are
equally well suited for feature extraction. All combinations of these parame-
ters are used to compute the histograms. During the classification process we
optimize the best combination of histograms for each image set and classifi-
cation problem by using a feature subset selection algorithm (SF'S, Jain and
Zongker (1997)). The absolute overall classification rate was used as crite-
rion function for the optimization. Méenpéa et al. (2000) use feature subset
selection methods to find an optimal subset of patterns for classification. A
single histogram could however be interpreted as a single feature. In this
work, the combination of used histograms was optimized but not the subset
of patterns within histograms.

4. Experiments

To be able to assess the performance of the proposed extensions and the
WT-LBP operator and to gain insight into the possible performance of the
four-class modified Marsh classification scheme, we applied as a comparison
a set of several different feature extraction methods that provided promising
results in classification of endoscopic image data in earlier work. The abbre-
viations of the techniques used throughout this work are shown in bold. We
used the following feature extraction methods (given in alphabetical order):

e DT-CWT Correlation Signatures: We have extended the Wavelet
Correlation Signatures approach of de Wouwer et al. (1997) to work
with the Dual-Tree Complex Wavelet Transform in Héfner et al. (2008).
The correlation between subbands of different (and equal) color chan-
nels is computed based on the mean and standard deviation of coef-
ficient magnitudes. The DT-CWT decomposition depth is set to four
levels and the color space is RGB. The resulting features vectors have
144 elements.

e DT-CWT-Weibull: The Dual-Tree Complex Wavelet Transform is
used to decompose the images into 6 scales and the empirical his-
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togram of the detail subband coefficient magnitudes is modeled by
two-parameter Weibull distributions. The Weibull parameters are then
arranged into a feature vector (Kwitt and Uhl, 2007). In case of color
images (which applies here) a feature vector has 216 elements.

ELBP: Extended Local Binary Patterns (Huang et al., 2004) are used
with an 8-neighborhood and LBP-scales ranging from 1 to 3. The
image is gradient filtered by applying a Sobel filter using a horizontal,
a vertical and a diagonal orientation. The optimal filter directions and
LBP-scales are determined by using the SF'S algorithm. The histogram
dimensionality is 58.

ELTP: The approach is applied as introduced in section 3.1. The
ELTP operator is used with an 8-neighborhood and LBP-scales ranging
from 1 to 3. The used a value was 0.1. In analogy to the ELBP
operator, the filter orientations as well as color channels and LBP-
scales are optimized using the SEF'S approach. The dimensionality of a
each histogram is 116.

FFT-Evolved: By using the FFT an image is transformed into the
respective power spectrum. Multiple ring-shaped filters are then ap-
plied to the spectrum of each color channel of the RGB color model
to concentrate on discriminative frequency subbands only. Since the
number of possible ring filters is quite large, an evolutionary algorithm
is used to find an optimal set of filters for each color channel (Vécsei
et al., 2009) (sets are denoted by Fi, Fy, and Fj). For each of these
ring filters the mean of the coefficient magnitudes within such a ring is
used as a feature. This results in a feature vector for each color channel
having a length equal to the number of rings used. By concatenating
the feature vectors of all color channels of an image, the final feature
vector is obtained having a length of |F}|+ | Fy| + | F5| (restricted to less
then 20 elements).

Gabor, Classic: The Gabor Wavelet Transform is used with 4 scales
and 6 orientations, the mean and standard deviation of the coefficient
magnitudes within a subband are used as features (Manjunath and
Ma, 1996; Héfner et al., 2009¢). The resulting feature vectors have 144
elements in case of color images.
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e LBP: The Local Binary Pattern operator (Ojala et al., 1996) is used in
an 8-neighborhood to compute histograms for each LBP-scale employed
(in the range 1 - 3). The optimal combination of LBP-scales and color
channels is found by the optimization routine (SFS) as described in
section 3.4.

e LBP/C: The Local Binary Pattern operator combined with a contrast
measure (Ojala et al., 1996) is used in an 8-neighborhood to compute
histograms for each LBP-scale employed (in the range 1 - 3). The
optimal combination of LBP-scales and color channels is found by the
SF'S algorithm. The optimal number of quantization intervals used for
the contrast measure is optimized from 2 to 22 by an exhaustive search
during each training. Let ¢, be the number of used contrast values.
The dimensionality of a single histogram is 58 - ¢,,.

e LTP: The Local Ternary Pattern operator (Tan and Triggs, 2007) is
used in an 8-neighborhood to compute histograms for each LBP-scale
employed (in the range 1 - 3). The adaptive thresholds are computed
using an « value of 0.1. The optimal combination of LBP-scales, color
channels and filter orientations is found by using the SFS algorithm.
The dimensionality of a single histogram is 116.

e WT-BBC: The Best Basis Centroids method (Liedlgruber and Uhl,
2007) uses the Best-Basis algorithm to find an optimal basis for each im-
age in a training set and computes a centroid over all resulting Wavelet
packet decomposition structures (maximal decomposition depth 3). Af-
ter transforming all images into this basis, the most informative subset
of the resulting subbands (with respect to a cost function) is used to
compute the energy over all coefficients within a subband. These values
are concatenated to form the feature vector for an image. We use all
color channels of the RGB color model and end up with a final feature
vector length of 3 - .S with S being the number of selected subbands.

e WT-LBP: The approach is used as introduced in section 3.3 by ap-
plying a three stage dyadic Wavelet transform of the image data. The
optimal combination of Wavelet-scales, color channels and LBP-scales
is found by applying the SF'S algorithm. In parallel to the LBP/C op-
erator the quantized contrast values are found by an exhaustive search
within the range of 2 to 22. The used « value was 0.1. For ¢, contrast
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values, the approximation subband based histograms have a dimen-
sionality of 58 - ¢,,, while the detail subband based histograms have a
dimensionality of 116.

WT-GMRF: This method (Héfner et al., 2009a) first transforms an
image to the Wavelet domain using the pyramidal discrete Wavelet
transform (two stages) resulting in 3 - 3 - 2 = 18 detail subbands since
we use each color channel of the RGB color model. For each of these
detail subbands the Markov parameters of a Gaussian Markov Random
Field are estimated. The number of parameters resulting from one de-
tail subband depends on the neighborhood order (neighborhoods used
are of Geman type (Geman and Geman, 1984)). In addition to the
Markov parameters we use the approximation error for each subband
as a feature too. Hence, when assuming a neighborhood consisting of n
neighbors, we have § 41 features per subband (the neighborhoods are
symmetric). Since we estimate these parameters for each subband in
each color channel, the final feature vector length equals to 18(% +1).

WT-LDB: The Local Discriminant Basis algorithm is employed to
find an optimal Wavelet packet decomposition basis (maximal number
of stages is 3) with respect to discrimination between the image classes
into which all images are transformed to. Based on the resulting de-
compositions we use the energy contained within a subband as feature,
where only the S most discriminative subbands are used for feature
extraction. The most discriminative subbands are found by computing
the discriminative information for every respective subband following
Saito and Coifman (1994). Since we use all color channels of the RGB
color model we end up with feature vectors having a length of 3 - S
(Liedlgruber and Uhl, 2007).

In case of the methods FFT-Evolved, WT-BBC, WT-GMRF, and WT-
LDB the images were always pre-processed by applying CLAHE (Zuiderveld,
1994) followed by a Laplace Sharpening with a kernel size of 9 x 9 (Gonzalez
and Woods, 2002). For the other techniques no image pre-processing has
been applied.

For classification we apply a k-nearest neighbors (k-nn) classifier to the

extracted features. In the classifier, all methods except for the LBP-based
ones use the Euclidean distance metric for the k-nn classification. The LBP-
based methods use the histogram intersection as distance metric. While each
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of the employed techniques has been published with a certain specific classi-
fier (often leading to better results compared to k-nn classification), we want
to give more emphasis to the features used by applying a common classifier.
The optimal k-value was determined by an exhaustive search through the
admissible corresponding parameter range. Based on previous experiments
with the different techniques, the parameter range is specified as follows. For
all methods k (the number of neighbors considered) is chosen from 1 to 15
except for the FFT-Evolved Method. The results of the FFT-Evolved meth-
ods are optimized by an evolutionary process, which either assigns k=1 or
k=2 depending on the used chromosomes. On a tied decision among classes
the a priori probability (class frequencies) is used for the final classification
decision.

To evaluate how well the methods and estimated parameters perform on
an independent dataset we constructed two disjoint sets of texture patches
as explained in section 2. Parameter and feature optimization (including the
k-value of the k-nn classifier) was based on using a leave-one-out cross valida-
tion (LOOCV, (Fukunaga, 1990)) on the training set. The evaluation of the
methods accuracy was then performed by applying the trained classifiers to
the evaluation set. No prior knowledge was used concerning the classification
of the evaluation set.

To improve the results obtained by the k-nearest neighbor classifier, we
use an Ensemble classifier as described in Héfner et al. (2009b); Vécsei et al.
(2009). This classifier aims at achieving a higher overall classification ac-
curacy and more stable results across different image classes by combining
different methods. The performance of the Ensemble classifier is dependant
on single methods with high accuracy and a high measure of diversity among
each other. Therefore the selection algorithm starts by selecting the method
with the highest accuracy based on a cross validation on the training data.
Then the best method in terms of classification accuracy with a significant
different outcome to the previously picked method (at a significance level of
5%) is selected. This process is repeated until no more methods are found.
The optimization of the k-value as well as the reliability measure used by the
Ensemble classifier was entirely based on the training set of images (denoted
as Ensemble! and Ensemble?). We additionally combined a set of single clas-
sifiers by using knowledge of how well these methods generalize based on the
performed experiments on the evaluation set. These results however have to
be considered with care as the manual combination of methods prevents a
fair comparison to the other methods and are only used to assess how much
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room for improvement exists for the Ensemble of classifiers. We denote these
Ensembles as Ensemble? and Ensemble? in the corresponding tables.

5. Results

In this section we present the results of the conducted experiments. We
present two result tables for each classification task (i.e. two-class and four-
class). One result table displays the classification results estimated by a leave-
one-out cross validation performed on the training set. The second table
presents the results of classifying the evaluation set based on the previously
optimized parameters and trained classifiers. Authors in a related field might
not be in the position to use distinct datasets to evaluate presented methods
due to a limited amount of available data. We therefore study both evaluation
methods to be able to give a comprehensive view of how well certain methods
generalize on an independent dataset and of how significantly methods tend
to (over)-fit the extracted features and parameters towards the data.

Within the result tables we use the abbreviations “Spec.* for specificity
(the percentage of correctly classified images actually showing a normal mu-
cosal state) and “Sens.” to indicate the methods sensitivity (the percentage
of correctly classified images showing villous atrophy). To improve the read-
ability the results are rounded to one decimal position in the discussion. In
case of the four-class scheme we use the abbreviations 0, 3A, 3B or 3C to
indicate the specific Marsh class.

We display the best overall classification results among all LBP-based
methods as well as the other methods (except for the Ensemble classifiers)
in bold face. In case of one or more methods with the same classification
accuracy we display the method with the highest sensitivity in bold face. The
“k”-column indicates the number of neighbors that was used for the nearest
neighbor classification. The column labeled as “Int.” indicates the number of
intervals used for the contrast values in case of the two dimensional LBP/C
based histograms. We present the two ensembles of single methods with a
corresponding superscript to unambiguously identify the specific ensembles.

In addition to the result tables we also show the results of the statistical
tests for significance we performed. The check sign indicates that a statistical
significant difference between two results according to McNemar’s test (Mec-
Nemar, 1947) was found. The value of a corresponds to the significance level
of the specific test. McNemar’s test considers the classification agreement
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Classification Rates

Spec. Sens. Overall k Int.
LBP 94.19 93.63 93.91 3 -
LTP 94.19 94.90 94.55 5 -
LBP/C 97.42 92.99 95.19 3 6
ELBP 93.55 94.27 93.91 15 -
ELTP 93.55 94.27 93.91 10 -
WT-LBP 98.06 93.63 95.83 5 20
DT-CWT-Corr. 90.97 92.40 91.67 3 -
DT-CWT-Weibull 92.26 88.54 90.38 4 -
FFT-Evolved 95.48 87.90 91.67 2 -
Gabor-Classic 89.03 91.08 90.06 5 -
WT-BBC 90.97 89.81 90.38 5 -
WT-GMRF 87.74 89.81 88.78 5 -
WT-LDB 89.68 89.81 89.74 7 -
Ensemble! 98.70 92.99 95.83 - -
Ensemble? 98.07 94.90 96.47 - -

Table 3: Classification Result of a Leave-One-Out Cross Validation on the Training Set
(Two-Class Case).

between two classification results. The null hypothesis of marginal homo-
geneity states that the marginal outcomes of two considered experiments are
the same. This means, considering two experiments, that the probabilities
of experiment one being correct for an image while experiment two being
incorrect and vice versa (experiment two being correct while experiment one
being incorrect for that same image) are equal. If McNemar’s test statistic is
significant (the significance level used in McNemar’s test is used to evaluate
whether the test statistic is likely in terms of a chi-squared distribution) there
is evidence to reject the null hypothesis. This implies that the difference be-
tween two classification results are considered to be statistically significant.
At a significance level of 2.5 percent (o = 0.025) there is a confidence level of
97.5 percent that the differences between two classification results were not
caused by random variation.

5.1. Results of the Two-Class Scheme for Classification

Tables 3 and 4 present the results of the experiments based on the two-
class scheme for classification. Comparing the results using a leave-one-out
cross validation and the classification of the evaluation set, we see that the
classification accuracy drops by an average of 8.6 percentage points in case
of the LBP-based methods as well as the non-LBP-based methods. This
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Classification Rates

Spec. Sens. Overall k Int.
LBP 79.47 87.25 83.33 3 -
LTP 75.50 93.96 84.66 5 -
LBP/C 82.12 92.62 87.33 3 6
ELBP 80.13 92.62 86.33 15 -
ELTP 79.47 92.62 86.00 10 -
WT-LBP 85.43 90.60 88.00 5 20
DT-CWT-Corr. 83.44 81.21 82.33 3 -
DT-CWT-Weibull 87.42 76.51 82.00 4 -
FFT-Evolved 83.44 81.21 82.33 2 -
Gabor-Classic 80.13 80.54 80.33 5 -
WT-BBC 80.13 85.23 82.67 5 -
WT-GMRF 75.50 84.56 80.00 5 -
WT-LDB 78.81 86.58 82.67 7 -
Ensemble! 85.43 91.95 88.67 - -
Ensemble? 85.43 90.60 88.00 - -

Table 4: Classification Results of the Trained Methods on the Evaluation Set (Two-Class
Case).

is interesting as the LBP-based methods all use feature subset selection as
compared to the other methods were only FFT-Evolved applies an additional
process of feature optimization. This indicates that the selected feature sub-
sets generalize well on an independent dataset. The decrease in classification
rate is assumed to be caused by a bias within the training data caused by
possibly multiple texture patches of a single patient in combination with the
leave-one-out cross validation. In general the LBP-based methods performed
better on the evaluation set (85.9%) as compared to the non-LBP-based
methods (81.8%). The better overall accuracy of the LBP-based methods
is explained by a higher average sensitivity of approximately 9.3 percentage
points. The best result of a single method based on the evaluation set is
achieved by the WT-LBP operator with 88.0 percentage points overall accu-
racy. Compared to the classification accuracy of the LOOCV this method’s
accuracy drops by 7.8 percentage points which is below the average decrease.
By using the Ensemble classifier the result could be slightly improved to 88.7
percentage points. Interestingly the manually combined ensemble could not
further improve the classification rates.

Table 5 displays the outcomes of the conducted statistical significance
tests based on the classification results of the evaluation set. We see that
there is no statistically significant difference between the WT-LBP operator
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and the other LBP-based operators at a significance level of 0.025. Consid-
ering a significance level of 0.05 there is a significant difference between the
results of the WT-LBP and the basic LBP operator.

a = 0.025 a = 0.05
WT-LBP Ens.! Ens.? WT-LBP Ens.! Ens.?
LBP - a - 0 0 a
LTP - - - - - -
LBP/C - - - - - -
ELBP - - - - - -
ELTP - - - - - -
WT-LBP - - - - - -
DT-CWT-Corr. O O O O O O
DT-CWT-Weibull O O O O O O
FFT-Evolved O O O O O a
Gabor-Classic O O O O O a
WT-BBC a a 0 0 0 a
WT-GMRF O O O O O O
WT-LDB O O O O O O
Ensemble! - - - - - -
Ensemble? - - - - - -

Table 5: Results of McNemar’s Test for Significance among the Results of the Trained
Methods on the Evaluation Set for the Two-Class Case.

Compared to the non-LBP-based methods the differences are all statisti-
cally significant. As a consequence of the single methods selected, there are
no statistically significant differences between the Ensemble classifiers' 2 and
the LBP-based methods except for the basic LBP-operator. Statistically
significant differences to the non-LBP-based methods can be seen at both
significance levels. The standard deviation of the LBP/C method among all
evaluated interval numbers (2 to 22) during the training of was 1.2 percentage
points with a mean classification accuracy of 86.6 percent. The mean accu-
racy and standard deviation of the WT-LBP method was 87.3 percentage
points and 1.6 percentage points respectively.

5.2. Results based on the Four-Class Scheme for Classification

Tables 6 and 7 present the results of the classification based on the four-
class scheme for classification. By analogy to the two-class scheme for classi-

'Ensemble! combines DT-CWT-Weibull, FFT, LBP/C, LTP, WT-BBC and WT-LBP
2Ensemble? combines DT-CWT-Weibull, LTP, WT-LBP and WT-LDB
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fication we can see a decrease of classification accuracy when using a distinct
set for evaluation. However, in the four-class case the decrease is significantly
higher with an average of 19.4 percentage points in case of methods based
on LBP and 16.1 percentage points for the non-LBP-based methods.

Classification Rates

0 3A 3B 3C Overall k Int.
LBP 96.77 68.00 62.50 50.98 78.53 8 -
LTP 95.48 72.00 60.71 60.78 79.81 1 -
LBP/C 96.13 74.00 83.93 45.10 82.05 4 15
ELBP 94.84 56.00 71.43 54.90 77.88 7 -
ELTP 96.77 62.00 71.43 50.98 79.16 11 -
WT-LBP 97.42 76.00 78.57 50.98 83.01 4 12
DT-CWT-Corr. 95.48 64.00 67.86 56.86 79.17 4 -
DT-CWT-Weibull 92.26 60.00 66.07 41.00 74.04 7 -
FFT-Evolved 83.23 72.00 73.21 56.86 75.32 1 -
Gabor-Classic 92.26 74.00 67.86 41.18 76.60 8 -
WT-BBC 92.26 48.00 67.86 43.14 72.76 5 -
WT-GMRF 93.55 58.00 66.07 35.29 73.40 5 -
WT-LDB 88.39 64.00 67.86 43.14 73.40 4 -
Ensemble? 98.70 78.00 89.29 25.49 81.77 - -
Ensemble? 98.71 76.00 78.57 78.57 83.01 - -

Table 6: Classification Result of a Leave-One-Out Cross Validation on the Training Set
(Four-Class Case).

This indicates that the features selected by the histogram subset selection
algorithm slightly over-fits the model towards the data. On average, the clas-
sification rates of the LBP-based methods are 60.6 percent compared to 58.9
percent achieved by the non-LBP-based methods. The low classification ac-
curacy is explained by the classification rates of the Marsh type 3 subclasses.
Marsh-3C has the lowest average classification accuracy with a mean below
30 percentage points for all methods. The best result was achieved by the
basic LBP operator with 66.3 percent (a drop in overall accuracy of only 12.2
percentage points). The WT-LBP operator achieves a result of 63.7 percent.
The best non-LBP based method is DT-CWT-Weibull also with 63.7 per-
cent. It is interesting that the automatically selected Ensemble® of classifiers
could not improve the classification accuracy and reaches only 62.3 percent.
This result can be explained by the single methods used for the Ensemble:

3Ensemble? combines Gabor-Classic, LBP/C and WT-LBP
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WT-LBP, LBP/C and Gabor-Classic. The algorithm selected these meth-
ods because they performed well on the training set using LOOCV and had
statistically significant different results. However in case of the classification
using the evaluation set, LBP/C dropped by 24.4 percentage points. Also the
best performing method (LBP) was not selected because the performance in
the leave-one-out cross validation of the training set was below average. In
contrast to this, the manually selected Ensemble* improved the classification
accuracy to an overall of 68.0 percent. Although the manual selection is un-
fair to some degree by using prior information of how well certain methods
generalize, we see that there is still room for improvement. The standard
deviation of the LBP/C method among all evaluated interval numbers (2 to
22) during the training was 1.0 percentage points with a mean classification
accuracy of 80.9 percent. The mean accuracy and standard deviation of the
WT-LBP method was 81.9 percent and 0.8 percentage points respectively.
Considering table 8 we see that only few statistical significantly different
results were produced by the WT-LBP and the Ensemble classifiers. It is
interesting that the WT-LBP was statistical significantly different to two of
the other Wavelet-based methods as well as LTP and LBP/C. This is in-
teresting as these two methods (LTP and LBP/C) are incorporated in the
WT-LBP method.

5.3. Result Discussion and Interpretation

A general remark is that with respect to the absolute values of classifi-
cation accuracy it should be noted that the results shown are obtained with
a k-nn classifier. Previous experiments with the employed feature extrac-
tion techniques have shown that these results can be further improved by
employing SVM or Bayes classifiers (Hegenbart et al., 2009; Vécsei et al.,
2009).

By using a distinct set of texture patches for evaluation of trained methods
we avoid the problem of over-fitting the parameters towards the given data.
We saw that in the four-class case some amount of over-fitting happened
when using leave-one-out cross validation in combination with parameters
and feature optimization. We also saw that care has to be taken when inter-
preting results of a cross validation as the constructed image data might be
biased because of multiple texture patches extracted for a single patient. We

4Ensemble* combines DT-CWT-Weibull, ELTP, LBP, WT-LBP and WT-BBC
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Classification Rates

0 3A 3B 3C Overall k Int.
LBP 90.07 48.88 46.55 30.43 66.33 8 -
LTP 78.15 22.22 22.41 32.61 52.00 1 -
LBP/C 86.09 20.00 31.03 34.78 57.66 4 15
ELBP 85.43 35.55 44.83 17.39 59.66 7 -
ELTP 88.74 46.66 48.28 21.74 64.33 11 -
WT-LBP 87.41 24.44 51.72 39.13 63.66 4 12
DT-CWT-Corr. 86.09 46.67 27.59 17.39 58.33 4 -
DT-CWT-Weibull 88.08 35.56 48.28 30.43 63.66 7 -
FFT-Evolved 70.20 33.33 46.55 30.43 54.00 1 -
Gabor-Classic 87.42 31.11 53.45 26.09 63.00 4 -
WT-BBC 84.77 60.00 32.76 19.57 61.00 8 -
WT-GMRF 82.78 46.67 29.31 17.39 57.00 5 -
WT-LDB 80.79 46.67 17.24 26.09 55.00 4 -
Ensemble? 96.02 20.00 53.45 4.35 62.33 - -
Ensemble? 94.04 51.11 53.45 53.45 68.00 - -

Table 7: Classification Results of the Trained Methods on the Evaluation Set (Four-Class
Case).

a = 0.025 a = 0.05

WT-LBP Ens.? Ens.* WT-LBP Ens.® Ens.*
LBP - -
LTP ad ad
LBP/C - -
ELBP - -
ELTP - - - - -
WT-LBP - -
DT-CWT-Corr. - -
DT-CWT-Weibull - -
FFT-Evolved a a
Gabor-Classic - -
WT-BBC - -
WT-GMRF - -
WT-LDB O O
Ensemble? - -
Ensemble? - O - -
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Table 8: Results of McNemar’s Test for Significance among the Results of the Trained
Methods on the Evaluation Set for the Four-Class Case.

suggest, if possible, to use a modification to the leave-one-out cross valida-
tion known as leave-one-patient out (LOPO) cross validation. It is possible
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that the selected feature subsets and optimized parameters are suboptimal
for classification, caused by a biased texture patch set due the leave-one-out
cross validation. We expect that by using leave-one-patient out cross valida-
tion for feature optimization more stable features for classification could be
found.

We can make the following observations. The proposed ELTP operator
does improve the results of the LTP operator and the ELBP operator in case
of the evaluation set in the four-class scheme. The results of those two meth-
ods are comparable in the two-class scheme. The proposed Wavelet-based
WT-LBP operator delivered the best overall classification results in the two-
class case and was among the best methods in the four-class case. Obviously,
the combination of first derivate- and second derivative based information in
this operator is a successful strategy. We also observe, that LBP-based op-
erators outperform non-LBP-based feature extraction techniques in terms
of obtained top and average results. This indicates that indeed LBP-based
schemes are very well suited for the classification of our datasets.

Considering the results of McNemar’s test we saw that the agreement
among the LBP-based methods was not significantly different in a statistical
meaning. However, as this test only considers the homogeneity of marginal
frequencies of two classification results, a negative test result does not nec-
essarily mean, that a method reaching a higher accuracy is not superior to a
method with a lower accuracy.

6. Conclusion

We have found statistically significant differences in classification accu-
racy among different settings, especially between the two and four-classes
case. The performance of the used methods builds a solid basis for future
work in case of the two-class scheme for classification. In case of the four-
classes case however we saw that the used features fail to discriminate be-
tween the Marsh-3 subtypes. Overall classification rates in the range of
60 to 65 percent requires more effort to justify a clinical deployment. We
saw that using information about how well certain methods generalize an
improved ensemble yielding robust features that improved the classification
rates in the four-class case could be found. Although comparing this result
to the result of the other methods lacks fairness to some degree, it indicates
that there is room for further improvement. Ensari (2010) states that the
Marsh classification, as modified by Oberhuber et al. (1999), might lead to
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increased intraobserver and interobserver variations. Ensari suggests to use
a new classification scheme based on Corazza and Villanacci (2005) using
only 3 classes by combining Marsh type 3A and 3B. By using this scheme,
automated classification might be improved. Also more advanced techniques
using feature subset construction such as suggested by Sajn and Kukar (2010)
in combination with a more realistic leave-one-patient-out cross validation to
increase feature reliability should be considered towards the improvement of
classification accuracy. Considering the discriminative power visible features
among the Marsh type-3 subclasses, advanced techniques used in endoscopy
such as narrow band imaging (NBI, Gross and Wallace (2006)) could possibly
be beneficial to automated classification accuracy. For the two-class prob-
lem (distinguishing areas affected by celiac disease and unaffected areas) the
obtained classification accuracy builds a solid basis for future work towards
employment in a clinical study.

The results show that the LBP-operator family exhibited better result
accuracy compared to a wide range of other feature extraction techniques.
The proposed Wavelet-based operator (WT-LBP), combining the LTP oper-
ator using an adaptive threshold and the LBP/C operator using an empirical
distribution function for quantization of the contrast values, was among the
best operators in all experiments. We saw that combining the first derivative-
and second derivative information based operators using the Wavelet trans-
form is beneficial to the feature discrimination and is able to improve the
classification results.
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