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Abstract
Estimation of “effective connectivity” can potentially reveal valuable information about
organization of brain networks. It is usually applied to the functional data of a single modality. In
this paper we show why that may be dangerous and lead to incorrect conclusions about “effective
connectivity”. As a tool to estimate the connectivity we use Bayesian networks. We analyze
structures of estimated “effective connectivity” networks using aggregate statistics from the field
of complex networks. Our study is conducted on functional MRI and magnetoencephalography
data collected from the same subjects under identical paradigms.

1. Introduction
The morphology and connectivity of neurons define the functional properties of the brain. A
combination of short-, mid- and long-range interactions among neurons forms multiscale
networks that give rise to high level cognitive functions [1, 2].

Anatomical neuronal connections are extensively studied at all scales of brain’s interaction
network. Initially, in vitro studies provided the most of information. Subsequent advent of
noninvasive imaging methods, such as DTI [3], lead to an explosion of the number of in vivo
connectivity studies [4, 5] and equipped large mapping efforts, such as the human
connectome project [6], with essential tools.

Noninvasive studies of mid- and long-range connections as well as invasive studies of
dendritic connections provide information about structural networks in the brain. These
connections form a “supporting fabric” for dynamically changing processing networks.
Interaction within and among these changing function induced networks also supports high
level cognitive processing. Some of these network-circuits are surprisingly stable under
equivalent conditions in single-subject as well as in group studies [7, 8].

Functional neuroimaging provides a way to look at these networks by tracking different
aspects of dynamical brain behavior [9–11]. Among many currently used functional
modalities we have focused this study on magnetoencephalography (MEG) and functional
magnetic resonance imaging (fMRI). The main advantages of functional neuroimaging in
general and of the two selected modalities is in providing spatiotemporal data. These data
inform us of brain dynamics at different regions and with different spatiotemporal
resolution.
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Among available approaches to extracting neuronal function-induced networks, we are
interested in those that result in a graphical model representing regions of interest (ROI) as
graph vertices and their connections as edges [12]. A widely accepted approach to extracting
such models from functional data involves obtaining a correlation (mutual information,
spectral coherence or others) matrix, thresholding its values and using the result as the
adjacency matrix of the graph representing the data. This approach only extracts the second
order pairwise interactions or “functional connectivity”, whereas causal relationships
involving groups of ROIs acting together (“effective connectivity”) require more involved
approaches [13].

The definition of “effective connectivity” usually involves extraction of causal relationships
among ROIs as well as going beyond second order measures to multiple potentially
nonlinear interactions. Causality in its strong sense is a difficult concept to handle and it
often requires intervention analysis for estimation [14]. However, it is possible to estimate
graphical models having causal interpretations from data and prior knowledge [15] or to
resort to a specific definition of causality (cite Granger causality initial paper and
Roenbroek’s neuroimaging application paper). Multiway interactions with a possible causal
interpretation are also modeled by Bayesian networks (BN) developed specifically for
reasoning about “effective connectivity” in the field of artificial intelligence [16, 17].

The more traditional approaches to “effective connectivity” estimation in neuroimaging such
as dynamic causal modeling [15] have their limitations restricting interactions among
variables to bilinear, and posing difficulties for full brain graphical model structure
estimation. In this paper we use Bayesian networks with multinomial random variables as
our model of “effective connectivity” and a structure learning algorithm to recover the
graphical model from the data. Recent developments in structure learning algorithms [18]
allow us to estimate structures of networks covering all cortical ROIs.

Estimated “effective connectivity” can be used to compare the groups of subjects (such as
patients and controls) or/and to make conclusions about interactions among ROIs [19, 20].
In the latter case we feel that a special care should be taken to attribute the result to the
modality that was used to obtain “effective connectivity”. Although in essence all
neuroimaging modalities with timeseries information measure neuronal activity and
connectivity at their core, the degradation of such signals through e.g. the neurovascular
transformation in fMRI and volume conduction/mixing in EEG/MEG before detection at the
sensors does heavily influence the result. The combination of imaging modalities provides a
way to minimize the loss of neuronal information although it remains unclear in which way
connectivity from multimodal signals should be estimated in an optimal fashion. In order to
test this problem, in this work we have estimated “effective connectivity” from two
modalities (MEG and fMRI) of the same subjects performing the same task in MEG and in
fMRI collected on separate occasions in a Bayesian network approach. Thus, we attempt to
eliminate all differences but functional modality in these datasets. Then we compare the
results for MEG and fMRI.

The rest of the paper is structured as follows. Section 2 describes details of Bayesian
network modeling and the structure search algorithm as an approach to “effective
connectivity” estimation as well as the data collection. Section 3 gives details of our data
processing and application to each modality, and then covers the results of the structure
search obtained in this study. We discuss consequences of our findings together with their
interpretation in relation to the current literature in Section 4.
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2. Methodology
The goal of our work is studying how the choice of a functional modality may affect the
conclusions of an “effective connectivity” study. In the following, we describe the method
of Bayesian network structure search used here to estimate the connectivity, the metrics
originating in the graph community structure research for characterizing graph structure
properties, and the MEG and fMRI modalities we apply our comparison to.

2.1. Bayesian networks
Bayesian networks [14, 17, 21] can be viewed as a way to compactly represent a joint
probability distribution by encoding the conditional independence structure of its random
variables. This is done through two parts: a directed graph G, and parameters θ of
conditional densities. Since all information about a set of random variables and their
interactions is encoded in the joint probability density, being able to estimate and reason
about it provides a way to understand complex structured data. The joint probability density
of a given set of n random variables X = {X1, X2, . . . Xn} in the Bayesian network
representation is expressed as

(1)

where Pa(·) denotes the parent set of the argument in the corresponding graph structure G of
the BN. Compactness is achieved due to the significant decrease in the number of
parameters, θ, required to describe random variable values in conditional densities compared
to every possible combination of values for all random variables of the joint density. This,
however, is a consequence of the graphical representation, G.

The BN graphical representation G is a directed acyclic graph (DAG) with random variables
at nodes and directed edges connecting them according to the independence structure
(Figure 1a). A random variable is called a parent if it has outgoing graph edges pointing to
other nodes of the graph. A random variable with incident edges is called a child. The key
property of a BN that gives it an advantage over the “functional connectivity” approaches is
that, every variable is conditionally independent of its non descendants given its parents.
This property and the factored form of the joint distribution (1) leads to special importance
of a graphical unit called a family: a child node plus its parents (Figure 1b).

While in “functional connectivity” studies, the fundamental unit is a pair of ROIs connected
by an edge, in “effective connectivity” analysis the fundamental unit is an entire family.
Since it may simultaneously involve several parents and a child, the interactions it is
modeling are of higher order than in the pairwise model. Figure 1c shows an example of
modeling higher order nonlinear interactions in the family of 3 ROIs.

The data arriving from functional measurements is, by nature, continuous. Unfortunately,
the approaches to treat it in the context of Bayesian networks are either not well developed
or limited. In this paper we employ the quantized representation. In terms of generality of
relationships a Bayesian network can represent, discrete versions are arguably the best due
to the high expressiveness of multinomial probability densities encoding conditional
distributions of each family.

Because fMRI and MEG provide only indirect measures of the underlying true neural
activity, we could potentially employ a “hidden state” (or latent variable) Bayesian network
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model. However, in functional neuroimaging application of this paper, we do not need this
property because measurements of fMRI and MEG are available at all points to fully cover
the ROI map of the cortex.

What is of essential interest in this paper is the graph structure G that leads to the
factorization in equation (1). Estimating the graph of a Bayesian network from available
data is called structure search. Structure search algorithms can be roughly split in two
categories: constraint-based and score based[22]. We use the score-based approach in this
paper. All parameters of multinomial conditional densities are estimated as an integral part
of the structure search procedure. This paper is solely focused on the resulting graphical
structures and their properties. Most of all we are interested in the aggregate descriptions
that originate from community network literature and provide metrics suitable for graph
comparison and quantify holistic graph characteristics [23].

The superexponential complexity of the score based structure search [24] and inevitable
presence of noise in the imaging data, if not completely rule out the use of approaches that
return a single “best” graph G then clearly make it difficult in our application. We want to
characterize distributions of graph structures that are consistent with the available data and
the Markov chain Monte Carlo (MCMC) is a natural choice that fits this goal [25, 26].
Among several MCMC approaches and implementations of structure search we have found
the approach of Grzegorczyk and Husmeier [18] to work best for our data. This approach
has returned consistent results for MEG and fMRI, whereas we have gotten similar and
stable results for MEG using other MCMC [27] and greedy [28] approaches, fMRI results
were unstable and tended to get trapped in local minima with these approaches.

2.2. Graph structure characterization
An “effective connectivity” graph can provide answers to a number of interesting questions,
such as causal interactions among ROIs, density of interactions, cliques in the brain
network, stable families across the distribution of likely graphs and many others. Our goal is
to be able to look at the graph as a whole and trace changes that occur due to changes in
experimental conditions and modalities.

Characterizing the whole graph by a single interpretable summary statistic is a common
technique in the field of random graphs [29] and the complex network analysis and
community structures research [30–32]. In neuroimaging the approach is gaining popularity
for obtaining neurobiologically meaningful measures and even revealing neurological and
psychological disorders by comparing across populations [23]. Although currently applied
mostly to characterization of structural networks and the networks of “functional
connectivity”, we adopt it for “effective connectivity” graphs. To the best of our knowledge,
this is a novel area of application, and we believe it to be very useful.

In this study we use some of the standard measures [23], which are explained below:

• in-degree – number of parents of node X

(2)

• out-degree – number of children of node X

(3)

Plis et al. Page 4

Comput Biol Med. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



• degree centrality – The degree centrality of a single node, X, is given by (4). The
degree centrality of the entire graph, given in (5), is defined with respect to the
maximal degree node, X*.

(4)

(5)

• maximum degree – the maximum degree of a node in a graph

• diameter – the greatest distance between any pair of vertices in G

• density – the ratio of the number of edges and the number of possible edges

• average path length – the average geodesic length in a graph, or the average of all
shortest paths for all pairs of vertices in a graph

• average local transitivity – the probability that the adjacent nodes of a node are
connected, which is also called the clustering coefficient

2.3. Functional modalities
MEG and fMRI both provide indirect views of the underlying neural activity. Focusing our
attention on cortical regions of the brain, we can assume that the common source of the
signal for both modalities is local and incoming synaptic activity as is currently understood
[33]. Nevertheless, the physical mechanisms of signal generation are quite different and lead
to substantial differences in signal properties [9, 10].

Due to a high effective temporal sampling rate, on the order of milliseconds, MEG can
provide instantaneous measurements of large-scale synchronous electromagnetic phenomena
introduced by neural activity. On the other hand, the neurovascular transformation of neural
activity into the fMRI signal can be measured with full brain coverage with high spatial
resolution without a spatial inverse problem. The two modalities have complementary
strengths and weaknesses. For example, the ill-posed inverse problem accompanying MEG
analysis becomes an issue when the goal is localization of the neural activity [11, 34, 35].
The localized spatial resolution of fMRI allows one to concentrate on the relationship among
brain regions. In this case, the dynamical properties of a modality gain high importance.
However, fMRI is unable to reflect neural activity dynamics with the temporal resolution
and quality found in MEG.

A number of publications on estimating brain’s “functional connectivity” from fMRI data is
available [36, 37]. Multiple studies of “effective connectivity”, albeit with limited number of
ROIs due to the high complexity of the task, are also mostly done on fMRI data [38, 39, 15,
40], although MEG data has also been used [41]. Since these functional modalities are both
representing neural activity, which is more true since we are talking only about cortical
regions, the conclusions that are desired from connectivity studies should be general and
relate to the brain function, or particularly acknowledge the role of the modality in the
obtained result. In our work we look at the cortical representation of MEG (source space)
and fMRI (after appropriate segmentation) data side by side and compare the structures that
we receive using the exact same approach for both of the modalities. Graph community
characterization metrics [23] of Section 2.2 are instrumental here.
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3. Application
3.1. Data collection and processing

All participants completed the multimodal oddball task while undergoing FMRI on a 3.0
Tesla Siemens Trio scanner. Participants rested supine in the scanner with their head secured
by a forehead strap, with additional foam padding to limit head motion within the head coil.
Presentation software (Neurobehavioral Systems) was used for stimulus presentation,
synchronization of stimulus events with the MRI scanner and recording of RTs. Visual
stimuli included a white fixation cross on a black background that was rear-projected onto
an opaque white Plexiglas projection screen using a Sharp XG-C50X LCD projector.
Auditory stimuli were presented via an Avotec Silent Scan 3100 Series system.

Stimulus timing was identical to that used in Clark et al. [42]. Stimuli were a frequent
standard image of a desert scene (82% of stimuli), novel, non-repeated non-threatening
images of middle-eastern scenes including people, houses and other objects (9%), and a
threatening target stimulus of a middle-eastern combatant shooting a rifle at the observer
(9% of stimuli). Along with the images, computer generated sounds were also presented to
the subjects, coincident with the visual images. This included a repeated birdsong for the
repeated standard stimulus, a repeated gunshot sound for the repeated threat target stimulus,
and various non-repeated sounds (whistles and chords) with the non-repeated novel stimuli.
Stimuli were presented sequentially in pseudorandom order for 200 ms each with the
interstimulus interval (ISI) varied randomly from 550 to 2050 ms across trials. Subjects
were instructed to make a speeded button-press response upon each presentation of the
repeated threat stimulus. Subjects were further requested to maintain gaze. Direction of gaze
was not monitored. The non-repeated novel stimuli had the same presentation frequency as
the repeated target threat stimulus, but no response was required. Each run was comprised of
90 stimuli.. Stimulus sequences were selected with a low correlation of predicted blood
oxygen level dependent (BOLD) responses among the three stimulus types (|r| < 0.2), which
allowed the BOLD response evoked by each stimulus type to be tested separately.

High resolution T1-weighted anatomic images were acquired with a 5-echo multi-echo
MPRAGE sequence [TE (echo time) = 1.64, 3.5, 5.36, 7.22 and 9.08 qms, TR (repetition
time) TR = 2.53 s, TI = 1.2 s, 7° flip angle, number of excitations (NEX) = 1, slice thickness
= 1 mm, FOV (field of view) = 256 mm, resolution = 256 ×256] on a 3 Tesla Siemens Trio
scanner. For the FMRI series, 88 echo-planar images were collected using a single-shot,
gradient-echo echoplanar pulse sequence [TR = 2000 ms; TE = 29 ms; flip angle = 75°;
FOV = 240 mm; matrix size = 64 ×64] per run across 12 runs. A total of 1056 images were
used for the final analyses. Thirty-three contiguous sagittal 3.5mm thick slices with a gap
factor of 1.05 mm were selected to provide whole-brain coverage (voxel size: 3.75 ×3.75
×4.55 mm).

Functional images were generated using Analysis of Functional NeuroImages (AFNI)
software package [43] and SPM. Time series images were spatially registered in three-
dimensional space to minimize effects of head motion, temporally interpolated to correct for
slice-time acquisition differences, and blurred using a 10 mm full-width-half-maximum
Gaussian kernel. Functional images were then interpolated to volumes with 3 mm3 voxels
and converted to Montreal Neurological Institute (MNI) standard stereotaxic coordinate
space.

MEG data were recorder on a separate day from the same subjects under the same
conditions as for fMRI.
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The data were recorded with a VSMMedtech Omega 275 whole-head biomagnetometer
system (VSM MedTech, Vancouver, BC, Canada) located at the Mind Research Network
Imaging Center (Albuquerque, NM, USA). The MEG data was recorded at 1200 samples/
second, with only antialiasing filters applied.

Informed consent was acquired prior to data collection (UNM HRRC Protocol 07-121).

MNE analyses were conducted as follows. The continuous recording was filtered from 1 to
100 Hz. Epochs were extracted from the continuous recording for calculation of the evoked
response. The MEG data set was coregistered to the MRI images that result from FreeSurfer
analysis. A boundary element model for use in the forward model was constructed from the
FreeSurfer tessellations of the cortical surface. The patterns of cortical activation were
reconstructed using the minimum norm estimate.

A deconvolution analysis of fMRI data was then performed on a voxel-wise basis to
generate one hemodynamic response function (HRF) for each of the three conditions (novel,
target and standard). Each HRF was derived relative to the baseline state (visual fixation
plus baseline gradient noise) and based on the first 18 seconds post-stimulus onset.
Deconvolution ends with 18 samples per IRF.

Cortical parcellation of each subjects structural image was obtained using Freesurfer [44].
An affine transformation was obtained between subjects T1 weighted image and MNI
template. The cortical parcellations were then transformed to MNI space using the
transformation obtained above. These values were mapped using nearest neighbour
interpolation. A total of 68 cortical ROIs were obtained. For each ROI, deconvolved
response averages were obtained from voxels corresponding to top 25% T-statistic for target
and novel conditions separately, which are later interpolated to 2400 samples to obtain an
exact match to MEG data. This is done to equalize statistical power of both datasets and
avoid introducing a balancing parameter. The ROI average responses were then quantized
on a per subject basis by dividing the maximum and minimum response values across both
target and novel conditions and ROIs into 5 equally spaced bins (“very low”, “low”,
“baseline”, “high”,“very high”). Subject data were pooled (stacked in time) together to
obtain the resulting dataset shown above. A sample deconvolved fMRI and evoked MEG
data are shown in Figure 2a for a single subject with all 68 ROI timecourses per plot for
both modalities and two conditions. Note the difference in temporal scale of fMRI and
MEG, where we gave each modality a window where the stimuli effect is detectable, similar
to the approach used by Daunizeau et. al [45]. Quantized version of this signal stacked
together for all subjects is shown in Figure 2b, which is the complete dataset used in our
study.

3.2. Networks
The MCMC algorithm was run for 1500 iterations of the burn-in periodwhich were
discarded. In subsequent sampling every tenth DAG was saved for further analysis. The
results are based on 1000 stored DAGs that are consistent with the data. Using these graphs
we have computed marginal distributions of the edges, which are shown in Figure 3.

The complete marginal distributions for both modalities and two conditions per modality are
hard to analyze and provide meaningful comparison. Exactly for that reason we will be
using aggregate measures below. However, some of the details are already visible in Figure
3:

• distributions of fMRI induced edges are denser than these of MEG;

• stronger interactions between contralateral homologs in fMRI than in MEG;
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• for novel stimuli in fMRI more of the right hemisphere ROIs are inuencing its left
hemisphere homologs, and for target stimuli the relationship reverses (diagonals of
the darker blocks in Figure 3);

• in MEG there are much fewer connections between homologs, but a reversed
pattern can nevertheless be observed: novel stimuli – left inuences right, target
stimuli – right inuences left, but to a much smaller extent.

To put the distribution in context, Figure 4 shows the highest scoring graphs that were
sampled during MCMC runs for each modality and each condition: a total of 4 graphs. Each
graph is overlaid on top of a brain projection, to show corresponding locations of graph
nodes within the brain. The same graph is also displayed in a force-based layout to avoid
node overlap. Node sizes are proportional to the total node degree. Blue color indicates
anode from the left hemisphere and red – from the right.

The networks produced by the structure search algorithm are consistent with our current
understanding of brain processing the oddball task. The right hemisphere on average is more
active during non-verbal oddballs, the right temporal lobe is the major source of the N1
enhancement/MMN, and also more active during later components [46–51].

Figures 3 and 4 provide detailed information about resulting “effective connectivity”
networks obtained in our study. However, they show all information almost unprocessed. In
order to see the differences between the modalities and stimuli types we take advantage of
an aggregate statistics from Section 2.2 and show degree distribution in Figure 5 for all
nodes in all 1000 sampled networks for MEG and fMRI (novel and target stimuli)for in-
degree and out-degree separately. Histogram bars that identify nodes with number of
children more than 15 are of separate color to emphasize the difference in MEG and fMRI.

Out-degree distributions of Figure 5 exhibit behavior which is reversed between MEG and
fMRI. In the MEG case the distribution gains the tail in the case of target stimuli compared
to the novel stimuli distribution, but in fMRI case the fat tail of the distribution in the novel
stimuli case is not present when the target stimuli is presented. In-degree distributions (the
indegree was limited above by 3 for computational reasons, which is a common practice for
improving tracktability of the structure search algorithm [19])are not changing in the fMRI
case, and shift to a denser case (more families of 2 and 3 parents) for the target stimuli.

4. Discussion
Structure search in Bayesian and dynamic Bayesian networks has been previously applied to
“effective connectivity” estimation in fMRI data [52– 54, 19, 20]. We are not aware of an
application similar to ours that would compare structures across modalities.

In Bayesian and, in general, probabilistic approaches the system is modeled with the joint
probability distribution over random variables, which represent different aspects of the
system. Quantities of interest and their distributions are discovered from the available
information through systematic application of probability calculus [55]. Probabilistic
Bayesian approaches are attractive in their inherent ability of providing confidence estimates
automatically, since the result is usually not a single solution but rather a distribution of
likely solutions [55]. An additional and important benefit of these methods is their relatively
easy extensibility to different numbers of data sources and flexible incorporation of prior
information. This can be used in future work to combine MEG and fMRI modalities to
discover underlying Bayesian networks.

Interesting to note that marginal edge distributions are denser in case of fMRI and there are
more connections across hemispheres especially between contralateral homologs. This can
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be explained be temporal blurring of hemodynamic response function. Brain “effective
connectivity” networks are processing units and must be constantly involved in information
flow. The oddball task is not complicated and requires brain resources only for a short time.
While MEG is able to capture that “context switch” when the brain network is processing
the stimuli not being involved in other tasks, fMRI even after deconvolution still contains
large amounts of information about what brain was doing in these 18 seconds after response.
This is, certainly, more demanding than just processing the oddball stimuli and leads to
denser networks. Also the background brain processing is not specific to the right
hemisphere, as is the task in our study, and results in denser inter-hemisphere connections.

The difference in distribution changes between MEG and fMRI shown in Figure 5, suggest
that conclusions in “effective connectivity” studies depend on the modality chosen for the
study. Interestingly, behavior of the out-degree distribution can lead not only to different but
contradicting conclusions depending on weather MEG or fMRI were chosen for the study.
Since an exponential distribution with a fatter tail is closer to the small world network [30],
from MEG estimated “effective connectivity” we may conclude that target stimuli increase
the small-worldness of the brain network. However, for an fMRI only study that conclusion
would have been a decrease in the small-worldness. In order to see if this behavior reversal
only holds for the out-degree distribution, we have computed distributions of several other
metrics described in Section 2.2. Figure 6 summarizes distributions of these metrics for
MEG and fMRI in novel and target conditions. fMRI result either exhibits a change reversed
compared to the MEG trend, or shows no change at all, when MEG based distribution does.
This is an undesired behavior especially for making neurologically meaningful conclusions
[23].

A possible resolution would be information fusion, when several data sources are used to
estimate “effective connectivity”. That could be done either by working with the types of
models used in this paper directly and applying a hierarchical Bayesian model to model
interactions between structures. Another possibility is to first deconvolve the BOLD
response to neural activity and perform structure search on this data, as already done by
dynamic causal modeling [15]. This still may have problems for biasing the structure
towards fMRI, and a better approach would be to use all available functional modalities to
estimate neural activity on which a structure search algorithm can later operate [56].

5. Conclusions
In this study we have shown that “effective connectivity”, estimated from the fully observed
data, depends on the functional modality. Possible solutions would involve fusion of
functional modalities for “effective connectivity” estimation, deconvolution of available
modalities to the neural signal, or both in the latent variable modeling.

By recovering network patterns expected in an oddball study, we have confirmed that
Bayesian network is a suitable tool for “effective connectivity” studies. To the best of our
knowledge, we have used for the first time the aggregate measure of complex network
structures to study behavior of “effective connectivity” networks, as opposed to their
previous applications to the structural and “functional connectivity”. The use of MCMC
approach as the structure learning algorithm proved to be fruitful by allowing analysis of
distributions of measures on all likely graphs.
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Figure 1.
An example DAG (1a), and a family from a Bayesian network (1b) together with its
corresponding nonlinear conditional distribution (1c).
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Figure 2.
Processed data from a single subject (2a) and quantized data for all 6 subjects (2b) for MEG
and fMRI in novel and target stimuli conditions.
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Figure 3.
Marginal distribution of edges: inter- (dark off-diagonal blocks) and intra- (bright red
diagonal blocks) hemisphere dependencies are highlighted. Vertical dimension denotes
parents (indexed i) and horizontal dimension denotes children (j). A bright (i, j)th element
denotes a high probability that ROI i is the parent of ROI j.
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Figure 4.
Four highest scoring networks (one per modality per condition) in three anatomical
projections and one force-based layout view with non-overlapping nodes. Node size
indicates degree (larger means higher). All sizes are normalized across all networks: a node
of the same size on the figure means the same degree in all networks. Red hues are for the
right hemisphere and blue for left. Darker node colors indicate smaller node-betweenness,
brighter – higher [23].
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Figure 5.
Distributions of node degrees. Left two columns are for the not limited by the method out-
degree (number of nodes that a given node is inuencing) and the right two columns are for
the limited to no more than 3 in-degree (number of nodes inuencing a given node)
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Figure 6.
Distribution of various graph metrics among the most likely Bayesian network structures
obtained from MEG and fMRI collected under identical paradigms. Each subplot compares
MEG (on the left) and fMRI (right pane) results on novel and target stimuli (yellow vs. red).
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