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Abstract

In recent years, there has been a growing interest in the compression of electroencephalographic 

(EEG) signals for telemedical and ambulatory EEG applications. Data compression is an 

important factor in these applications as a means of reducing the amount of data required for 

transmission. Allowing for a carefully controlled level of loss in the compression method can 

provide significant gains in data compression. Quantization is an easy to implement method of 

data reduction that requires little power expenditure. However, it is a relatively simple, 

noninvertible operation, and reducing the bit-level too far can result in the loss of too much 

information to reproduce the original signal to an appropriate fidelity. Other lossy compression 

methods allow for finer control over compression parameters, generally relying on discarding 

signal components the coder deems insignificant. SPIHT is a state of the art signal compression 

method based on the Discrete Wavelet Transform (DWT), originally designed for images but 

highly regarded as a general means of data compression. This paper compares the approaches of 

compression by changing the quantization level of the DWT coefficients in SPIHT, with the 

standard thresholding method used in SPIHT, to evaluate the effects of each on EEG signals. The 

combination of increasing quantization and the use of SPIHT as an entropy encoder has been 

shown to provide significantly improved results over using the standard SPIHT algorithm alone.
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1 Introduction

Electroencephalography (EEG) has long been used as a tool in clinical settings for 

diagnosing a variety of neurological and physiological conditions. It involves measuring a 

person’s neural activity by placing electrodes on the scalp and detecting the bio-electric 
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activity caused by synchronised neuronal activity within the brain. Typically this is 

performed as an in-patient procedure, whereby the patient is monitored for an extended 

period of time in a clinical setting. This places the patient in a potentially unfamiliar 

environment which may cause anxiety or stress, and removes them from their natural 

environment, which may contain triggers for certain conditions. As an in-patient procedure, 

it also consumes clinical resources, which ultimately costs the health service in staff time 

and money.

One of the most common uses of EEG as a clinical tool is in the diagnosis of epilepsy. 

Epilepsy is a neurological condition that affects approximately 1% of the population [1], [2], 

but is difficult to diagnose. The gold-standard diagnosis requires long-term EEG and video 

monitoring in an attempt to capture a seizure on both video and EEG telemetry [3]. 

However, there is still a chance that no epileptiform activity will be experienced within the 

period of evaluation. Although accurate figures for the general population are difficult to 

determine, one study has shown that for EEGs taken from 308 patients with epilepsy, 18% 

never exhibited epileptiform discharges over several months of recordings and only 55% 

displayed discharges during their first examination [4]. It is conceivable therefore, that a 

patient displaying potential signs of epilepsy, may display no seizure activity during a single 

in-patient monitoring session.

Misdiagnosis is also a significant issue due to limitations in the data available to the 

clinician. Smith et al. [5] reports that elongating the period of EEG observation would have 

the effect of reducing the number of false positives, and increasing the detection rate of 

epileptiform activity. Binnie et al. [6] report that long-term monitoring may be required in as 

many as 5% of people diagnosed with epilepsy, and 13–20% of adult tertiary referrals and 

up to 40% of child referrals with potential cases of epilepsy. Clearly, in these situations, 

long-term in-patient monitoring is less than ideal in terms of expense, resource allocation 

and patient inconvenience. This situation is exacerbated where the availability of trained 

clinicians with the skills to analyse long term EEG data for seizure activity is limited.

Recent years have seen an increased interest in Ambulatory EEG (AEEG) devices and 

telemedical applications [7]–[12]. In a recent survey of 17 neurologists in the UK, 88% said 

they thought AEEG recordings would be more common in the future, and 76% said it would 

be a "major improvement" to their practice if AEEG devices were available [8]. Although 

AEEG devices have been in existence since the 1960s [13], [14], improvements in the 

efficiency of signal processing techniques, combined with increased capacity in modern 

batteries have made a practical implementation more feasible. Wireless communication 

however, still remains proportionally one of the largest consumers of power in the system 

[15]. For patients in remote areas, it can be problematic to provide skilled clinicians to 

analyse data. Telemedical systems can provide a means to monitor and diagnose potential 

epilepsy sufferers from remote locations [16]–[18]. Using an AEEG or remote EEG 

monitoring system would alleviate the demands placed on finite resources by allowing 

clinicians to review the data at their convenience, or use automated seizure detection to 

assist with diagnosis. Remote rural locations where these systems can be of the greatest 

benefit, are rarely serviced with high speed network connectivity, therefore attempting to 
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transmit the raw, uncompressed signal is impractical. Any reduction in the quantity of the 

data to be transmitted would be a benefit.

In general, there are 2 types of data compression: lossless and lossy. Lossless compression 

maintains signal integrity while compressing and decompressing the data, but is generally 

severely limited in the Compression Ratio (CR) it can achieve. Currently the majority of 

EEG compression research focuses on this method. Lossy compression results in an 

imperfect representation of the original signal, because signal fidelity varies according to the 

parameters of the compression method. By allowing a measure of loss to be tolerated, far 

higher compression levels can be achieved. Careful selection of compression parameters can 

maximise CR while minimising the loss of important information contained within the 

signal.

This paper aims to examine the effects of compression by comparing two lossy approaches:

Set Partitioning in Hierarchical Trees (SPIHT) compression, with loss introduced 

through SPIHT's thresholding and embedded encoding features

Progressive lossy quantization of the wavelet coefficients with SPIHT being employed 

losslessly as an entropy encoder

Both schemes can provide a wide range of compression ratios. This paper examines the 

impact of quantization’s rounding method as opposed to SPIHT’s coefficient thresholding 

method as factors of compression in order to maximise compression gains.

The rest of the paper is arranged as follows: Section 2 outlines the research methodology 

used in this work and how this work fits into EEG compression research. The dataset used is 

described and the data compression algorithms are outlined. Additionally, the metrics used 

for evaluating the results are given. Section 3 presents the results obtained from the 

compression tests. Section 4 analyses these results and evaluates the validity of the 

conclusions reached from them, and compares the results found here with results from 

similar research elsewhere. Section 5 gives the conclusions of the paper and proposes 

potential future work.

2 Research Methodology

2.1 Epileptiform EEG Database

The epileptiform EEG data used in this research was provided as part of the Seizure 

Prediction Project by the University of Freiburg, Germany [19]. The database contains EEG 

data recorded during pre-surgical monitoring. It contains seizure and non-seizure data for 21 

patients ranging in age from 13 to 50. The dataset was chosen due to its public availability 

and to limit the number of artefacts present due to recordings being made through 

intracranial electrodes. The 6-channel EEG used in the recordings, is similar to the number 

of channels likely to be used in an AEEG device [20].
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2.2 Compression

3.2.1 Background—Biomedical signal compression techniques can be broadly divided 

into three categories: 1) Direct Data 2) Transform based compression and 3) Other 

compression methods [21], [22]. Direct Data methods are generally time domain based 

approach that exploits redundancies in signal data to increase compression. Compression 

efficiency is therefore limited by the fact that EEG is not sparse in the time domain. Memon 

et al. present an evaluation of a number of direct data compression techniques in [23]. In it 

they note that traditional direct data techniques do not work well on EEG signals due to the 

lack of reoccurring, exact patterns.

Methods in category 3) include compression methods such as non-linear prediction, neural 

network based compression and subband coding (other than those used in transform based 

approaches). Sriraam et al. present a number of recent papers on EEG compression using 

neural networks [24], [25]. In both papers, the authors make use of predictors as part of an 

approach to give near-lossless compression of EEG data. This is combined with quantization 

and entropy encoding schemes to maximise compression gains. In [26], Bazán-Prieto et al. 

present an EEG compression technique based on cosine modulated filter banks, with 7 bit 

quantization. They test their algorithm on two EEG databases; the CHB-MIT Scalp EEG 

Database and the MIT-BIH Polysomnographic Database [27]. It is noted in [22] that despite 

the similarity between the subband decomposition employed by their algorithm and those 

frequently employed by transform based compression, it is not in actuality a transform 

method.

Transform-based compression includes methods that transform the time domain signal into 

the frequency, or other domain prior to compression. Examples of these transform 

operations include the Fourier Transform (FT) and Wavelet Transform (WT) which exploit 

signal sparsity in a particular domain [28], [29]. The research presented by Cárdenas-Barrera 

et al. in [28] is an important paper in the field of EEG compression. It is the first paper to 

propose an upper limit to the level of fidelity loss allowable in EEG compression, based on 

retaining the majority of the signals energy. In this work they examine lossy compression 

approaches based on wavelet and wavelet packet transforms using the MIT-BIH 

Polysomnographic Database [27]. In [30], Daou and Labeau present a 2-D SPIHT based 

EEG compression methodology using EEG data obtained from Montreal Neurological 

Institute. They propose a pre-processing technique to exploit the correlation between EEG 

channels to maximise compression and employs two transform operations: a DWT and 

Discrete Cosine Transform (DCT).

The research presented in the present paper falls into category 2). This paper contributes to 

the area of transform-based encoding by evaluating the impact of reduced quantization bit-

rates on DWT coefficients, prior to entropy encoding. Section 4.2 provides a comparison 

between the results of this algorithm and other works of lossy EEG compression.

3.2.2 Discrete Wavelet Transform (DWT)—This section provides a brief overview of 

the DWT which is employed as a pre-processing step to the compression approaches 

investigated in this paper. DWT is commonly used in compression algorithms due to its 

ability to represent signals in both the time and frequency domain. The DWT decomposes a 
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signal into a set of basis functions known as wavelets [31], [32]. The initial wavelet, also 

known as the mother wavelet (ψ), is used to construct the other wavelets by means of 

dilation and shifting. Dilation is achieved by multiplying the function's time orientation n by 

a scaling factor 2m, where m ∈ Z. Shifting in time is done by k ∈ Z.

Therefore, the wavelet decomposition is defined by:

(1)

where the scale m relates to the wavelet’s dilation. Basis functions associated with large 

scales extract low-frequency information from the signal, while small scales extract high-

frequency or fine-detail components. The DWT coefficients cm,k are defined as the inner 

product of the original signal and the selected basis functions:

(2)

These coefficients provide an alternative representation of the original signal, giving good 

localisation of the signal’s energy components from both a time and frequency perspective. 

In this application the CDF 9/7 biorthogonal DWT was used [33], [34] at a 10 level 

decomposition. This mother wavelet was chosen due to its widespread use in compression 

research, including SPIHT compression of biomedical signals [35]. The high level of 

wavelet decomposition extracts the dominant low frequency components of the signal. This 

improves SPIHTs compression efficiency by allowing the construction of "higher" zero trees 

while encoding. This ability to construct large zero trees is in agreement with empirical 

results which reveal that a 10 level decomposition provides best compression gains and 

reconstruction capability, with low levels of fidelity loss.

3.2.3 Quantization—Quantization is a nonlinear and noninvertible method of mapping a 

large, finite sequence of numbers, x(n), onto a smaller scale, x̂(n). Quantization occurs in 

digital signal processing where signals are sampled and converted into a digital format. The 

range x(n) is divided into a number of equal intervals and then each interval is mapped to a 

codeword. It is worth noting that the codeword refers only to the interval and not to the 

original value. All input values are then expressed in terms of the interval they fall between.

The decoding process attempts to convert the x̂(n) sequence back to the original scale. 

However, due to the codeword referring to the interval only, the decoder can not know the 

exact value of the original signal. For this reason, the decoded sequence, x' (n), will not be 

an exact reconstruction of the original sequence, x(n). The larger the number of intervals, the 

closer the decoded sequence will be to the original. However, with a smaller number of 

intervals, the number of bits needed to represent the encoded sequence diminishes. The 

quantization bit-rates used in this paper ranged from 1 to 16 bits. 16 bits was chosen as the 

highest resolution as it is the quantization level used during the raw capture of the EEG 

signals. Quantization was performed on the wavelet coefficients in order to reduce the range 

of the coefficients being passed to the SPIHT encoder.
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3.2.4 Set Partitioning in Hierarchical Trees—Initially proposed by Said and Pearlman 

in [36], Set Partitioning in Hierarchical Trees (SPIHT) is a compression method originally 

designed for image compression that has since been applied to many other application areas 

[35], [37], [38]. Its core principles are derived from the Embedded Zerotree Wavelet (EZW) 

coder proposed by Shapiro in [39] by exploiting the fact that wavelet coefficients in 

different sub-bands have a temporal relationship with one another. As with the EZW 

algorithm, SPIHT arranges the bits in order of significance, with the most significant bits 

being encoded first. Therefore, if the encoding or transmission is interrupted at any point, 

the signal can be reconstructed to a level of fidelity appropriate to the number of bits 

received. This means that SPIHT allows for direct control of the CR of the signal being 

encoded.

In this paper, the data was compressed with CRs from the set c = {1, 2, 5, 6, 7, 10, 30, 35, 

40, 55, 110, 160, 200}. For c = 1, SPIHT operates in a lossless manner, where the input 

sequence prior to compression is identical to the output sequence after the data has been 

decompressed. When SPIHT operates at CRs higher than this, it compresses the signal by 

discarding all coefficients below the selected threshold. For example, for c = 4, only 25% of 

the original bit length is saved.

3.2.5 Approaches to Compression—The DWT, Quantization and SPIHT components 

were used to test different approaches to lossy compression. Compression involves the 

original signals undergoing a DWT operation followed by Quantization, before being 

encoded using SPIHT. Two different variations in this methodology were used: First, the 

traditional SPIHT approach where the desired CR was selected prior to compression and 

was achieved by terminating encoding at the desired bit-length. For this approach, the 

quantization level of the DWT coefficients was set at 16 bits. This was done to isolate the 

compressive effects to that of SPIHT’s bit-ordering/discarding. This approach was dubbed 

“Standard SPIHT”. In the second approach, the number of bits available to the quantizer was 

varied and the resulting coefficients encoded by SPIHT in lossless mode. In this approach, 

SPIHT was used as an entropy coder to gain maximum compressive gains from the lower 

bit-rates. This approach was taken to isolate the effects of varying the quantization level in 

order to examine its specific effects. This approach was dubbed “QSPIHT”

2.3 Performance Metrics

Two performance metrics were used for evaluating the performance of the compression 

algorithms.

• Percentage Root-mean squared Distortion (PRD) is a standard metric for 

measuring the distortion between 2 signals. It is defined as:

(3)

where x is the original signal, x̂ is the reconstructed signal,  is the mean of the 

signal and ‖․‖ represents the Euclidean and l2 norm.

Higgins et al. Page 6

Comput Biol Med. Author manuscript; available in PMC 2016 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Previous research has already investigated the effects of PRD on EEG 

signals and proposed limits to ensure no impact on diagnostically relevant 

information. Cárdenas- Barrera et al. proposes a PRD limit of 7% to 

ensure 99.5% of the signals energy is retained [28]. Higgins et al. 

however, determined that a much higher PRD (30%) can be tolerated 

while still maintaining seizure information [40], [41]. This is further 

verified in [29] where an automated seizure detection algorithm is used to 

verify these PRD limits. These 7% and 30% PRD limits were chosen as 

the operating points in this research to provide a reference point for 

potential real-world applications such as clinical review and automated 

seizure detection.

• Compression Ratio (CR) is defined as the ratio of the size of the compressed 

signal in relation to that of the original signal, and is given by the formula:

(4)

where L is the length of the input signal in samples, r is the original quantization 

(bit resolution) of each original sample and b̂ is the number of bits representing the 

compressed signal.

In order to determine the CRs of the compression methods, the overall 

length of the compressed databases was used. The cumulative number of 

bits for each frame was recorded and the total number of bits for the whole 

database was compared to the size of the uncompressed data to give a true 

CR for each compression method.

Two further metrics were used to evaluate the validity of the compression results:

• The Power Spectral Density (PSD) is a method of analysing the contribution of 

each frequency to the overall signal power. It describes how the power of a time 

series is distributed with frequency. The PSD of the signals after compression were 

plotted against the PSD of the original signals to evaluate the impact of the lossy 

compression on the energy of the signal. For this research the Welch method of 

PSD estimation was applied to the signals being analysed [42]. A segment length of 

64 with a 50% overlap using the Hamming windowing method and 64 length 

window was used.

Finally, the Cumulative Density Function (CDF) is a measure of probability distribution of 

a random variable. Given a continuous random variable X, the CDF is denoted as a function 

F(x), and is defined for a number x by:

(5)

That is, for a given value x, F(x) gives the probability that observed value of X will be less 

than or equal to x. The CDF was used to examine the likelihood of a compressed frame 
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having a PRD at or below a specific value when the given compression parameters are 

applied.

Unlike other bioelectric signals, such as ECG [43], no metric exists to evaluate 

fidelity loss in EEG signals in regards diagnostically relevant information. PRD 

was chosen for this research due to its widespread use to analyse quality 

degradation in lossy EEG compression ([26], [28], [29]). In this research, PSD 

analysis is added to verify the results inferred by the PRD values.

3 Results

3.1 Standard SPIHT Compression

For this approach, the quantization level was fixed at 16 bits. The signals were compressed 

with SPIHT at a range of lossy compression settings, ranging from CRs of 2 to 200, and then 

decompressed. The PRD of each frame was calculated and then the mean and standard 

deviation over the whole database was determined. Table 1 presents the results of this work. 

It can be seen that at the lowest compression level (CR = 2), the PRDs are very small, 

suggesting an insignificant loss in fidelity between the original and reconstructed signal.

As previously stated, two PRD limits are proposed for use in this research. The 7% and 30% 

limits were used as lower and higher cut-off points for seizure detection applications [28], 

[40], [41]. These limits were therefore selected as operating points for comparative reasons. 

It can be seen from Table 1 that a CR setting of 5 (CR5) gives a PRD of 5.99%, which lies 

within the 7% cut-off limit. Looking at the 30% limit, it can be seen that a CR setting of 35 

(CR35) gives a PRD of 29.26%.

The final column gives the standard deviation of the PRD results. At the proposed settings, 

the standard deviation is ±6.18 and ±18.85 respectively. This suggests that while the average 

PRD results fall within the limits, it is obvious that some frames can be well above the 

desired limits. Further analysis of these results is therefore required and is provided in 

Section 4.1 of this paper.

3.2 QSPIHT Compression

For this section, the database was compressed by quantizing the data in the range of 1 to 15 

bits, and compressed using SPIHT in lossless mode. Table 2 gives the CRs for the database 

after SPIHT compression has been applied. The PRD values were recorded for each frame 

and then averaged over the whole database at each quantization level. Table 2 gives the 

average PRD and standard deviation at each bit-rate.

Looking at the results, it can be seen that while the PRD initially increases slowly, the rate 

of increase gets larger as the quantization level approaches 1 bit. Taking the initial 7% PRD 

limit, it can be seen that at 7 bit quantization (Q7) the PRD is 6.09%. For the 30% PRD 

limit, far lower quantization levels can be tolerated. In this situation, 4 bit quantization (Q4) 

is required to bring it below the 30% cut-off point, giving an average PRD of 23.66%.
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Again the standard deviation is given in the last column of the table. For the suggested limits 

of 7% and 30% PRD is ±7.00 and ±13.88 respectively. Further analysis of the distribution of 

the results is therefore required and provided in Section 4.1 of this paper.

3.3 Comparison

In order to evaluate the performance of each approach, it is necessary to look at the PRD 

achieved by each at any given CR. Fig. 1 gives a plot of the CR vs. PRD for both methods. 

While the CRs for the standard SPIHT approach are known prior to compression, the exact 

CRs for the QSPIHT approach can only be determined after compression has taken place. 

Fig. 2 gives a magnified view of Fig. 1 from 0% to 10% PRD. Looking at Fig. 2 it can be 

seen that both approaches initially have very similar PRD and CR values. This is to be 

expected as at this point both approaches have little loss in signal fidelity, keeping CRs low. 

As the compression rate increases, the curves diverge. It is clear from the graph that 

QSPIHT out-performs Standard SPIHT compression in terms of PRD at a given CR. While 

the largest gains are at the higher CRs, these results fall outside the upper limits of loss 

imposed and are therefore irrelevant in the context of this research. Below the 30% limit, the 

QSPIHT approach still provides an advantage. At 30% PRD, the QSPIHT approach gives a 

CR of just over 100, while the Standard SPIHT approach gives a CR of approximately 40.

Within the 7% PRD limit, the advantage of the quantization approach is still substantial. The 

7 bit quantization limit, found in the above section to fall below this cut-off point, gives a 

CR of 13.05. At 7% PRD, Standard SPIHT gives a CR of approximately 6.

4 Further Evaluation of Validity of Results

4.1 Analysis

In order to analyse the distribution of the PRD results at the proposed compression settings, 

the Cumulative Density Function (CDF) for the resulting frames was calculated and plotted. 

Fig. 3 shows the CDF of the QSPIHT and Standard SPIHT approaches at Q7 and CR5 

respectively for the 7% PRD limit. Looking at Fig. 3 it can be seen that the CDF of both 

approaches are very similar. Both rise rapidly until the probability goes above 0.9, where a 

shallower increase can be observed. This is to be expected as the (relatively) low 

compression settings maintain most of the signal fidelity. Examining the 7% PRD (x = 7), it 

can be seen that the probability of a given frame having a PRD of 7% or less for both 

approaches is 0.8 or 80%.

Fig. 4 shows the CDF of both algorithms at the proposed 30% PRD settings (Q4 and CR35). 

Again both CDFs follow a similar distribution. Standard SPIHT starts higher than QSPIHT, 

implying a higher proportion of frames with PRDs below 10%. Above this however, 

QSPIHT rises faster than Standard SPIHT, implying the QSPIHT approach gives lower 

PRDs than Standard SPIHT in this range. At 30% PRD (x = 30) there is a 0.8 or 80% chance 

for QSPIHT and approximately 0.75 or 75% chance for Standard SPIHT that a given frame 

will have a PRD equal to or lower than the cut-off.

Since PRD is a measure of the level of difference between two signals, and not by definition 

an objective evaluation of the impact of the loss of diagnostically relevant information in the 
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signal, it should not be used as the sole metric to evaluate the performance of the algorithms. 

To do this, a visual inspection and PSD analysis was performed on a selection of 

reconstructed files whose PRDs were close to the above limits. Figs. 5 and 6 give the PSDs 

of original signal and those of the QSPIHT and Standard SPIHT approaches at the 30% and 

7% cut-off PRDs, given in Plots (i–ii) in each Figure. Fig. 5 is a randomly chosen EEG 

signals containing no seizure information, while Fig. 6 was chosen to contain periods of 

seizure data. The parameters found to give optimum results in the section above were used 

to select the signals for comparison. Specifically, these were CR35 and Q4 at 30% PRD and 

CR5 and Q7 at 7% PRD for Standard SPIHT and QSPIHT respectively. Performance was 

judged on how closely the PSD of the reconstructed signals visually matched that of the 

original signal, i.e. how well the energy is maintained in the signal after lossy compression.

Generally all 4 reconstructed signals maintain a PSD close to that of the original signal, 

particularly in the case of the low PRD signals. Fig. 5 shows the greatest amount of variation 

in the signals PSDs with all PSDs being very similar in Figs. 6. Plot (i) shows Standard 

SPIHT at CR35. The greatest variation in original and reconstructed signals PSDs can be 

seen here, with the reconstructed signals power being generally slightly lower than the 

original. Plot (i) also shows QSPIHT at Q4. Here the PSD is closer to that of the original 

signal, although some variation is still visible. Plot (ii) shows Standard SPIHT at CR5. 

Again an improvement can be seen in the reconstructed signals PSD but some loss in fidelity 

is still evident. Finally, Plot (ii) also displays QSPIHT at Q7. Here almost no variation in 

PSD between the original and reconstructed signals is visible, suggesting almost no loss in 

signal information during compression.

A visual inspection was also performed on the signals. Fig. 7 shows a sample of the database 

with (i) the original EEG signal, and the signal compressed with (ii) QSPIHT at Q4 and (iii) 

Standard SPIHT at CR5. This signal gives CRs of 10 and 5 and PRDs of 3 and 2 

respectively. Visually, these three signals are nearly identical, suggesting very high retention 

of signal integrity. Fig. 8 shows a plot of (i) the same original EEG signal, and the 

corresponding sample compressed with (ii) QSPIHT at Q4 and (iii) Standard SPIHT at 

CR35. At these settings, these algortihms give a CR of 42 and 35 and PRD of 14% and 17% 

respectively. At this higher level of loss, some visual discrepancies can be seen. These 

higher levels of compression cause a smoothing effect on the signals due to the loss of finer 

detail coefficients. While some of the finer details are lost in the compression, the general 

shape of the signal is very well maintained. This again suggests the majority of the signal 

information is maintained at this compression level.

The similarities, visually and in the PSDs, of the original and reconstructed signals after 

compression lends credence to the choice of the 7% and 30% PRDs as operating points, as 

most of the signals power is preserved at each compression level. When QSPIHTs superior 

PSD results are combined with the compression results from Sections 3.1 and 3.2 above, a 

clear advantage in increasing quantization level to improve CR performance can be seen.

4.2 Comparison with Other Work

A direct comparison with other EEG compression research is difficult due to the variety of 

EEG databases and performance evaluation metrics used. In comparison to other biomedical 
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signal research, there is a relatively small amount of research being done in the area of EEG 

compression. In order to address some of these difficulties, a publicly available EEG 

database was selected for testing [19] and results were reported using the PRD metric given 

in (3) as it is not influenced by the signal mean. It is possible to make general comparisons 

when CR and PRD results are reported by comparing with those of Fig. 1. It should be noted 

that an alternative definition of PRD, employed by [24], [28], [30], does not remove the 

signal mean prior to calculation. This inclusion of the mean (DC bias) can create an 

artificially low PRD, whereby the mean of the signal is maintained, while important signal 

information is lost. Without adjusting for the signal mean in PRD calculations, the results 

can be up to 4 times better (lower PRD for a given CR) than if the definition employed in 

this paper is used [26]. In the case of [26] and [28], QSPIHT was applied to the same 

databases to aid comparison. Table 3 gives the results of QSPIHT run on these databases for 

bit-levels 4 to 9.

For transform based compression, Cárdenas-Barrera reported an average PRD of 9.54% and 

CR of 7.79; while at 7 bit quantization the average CR is 5.68 with an average PRD of 

6.02% in [28]. Table 3 gives the corresponding results for QSPIHT. The database used was 

the MIT-BIH Polysomnographic database. At Q7, a CR of 9.5 at a PRD of 6.93% is 

achieved. It is interesting to note the advantage of using SPIHT as an entropy encoder, 

increasing the CRs from 7.79 to 13.021 and 5.68 to 9.5024 for 6 and 7 bit quantization 

respectively.

Daou and Labeau present a 2-D SPIHT based EEG compression methodology in [30]. 

Improved compression performance in comparison to 1-D SPIHT and a number of other 

algorithms were reported for PRDs lower than 30%. The results found here suggest that the 

addition of a quantization block, with an appropriate bit-level, prior to SPIHT encoding may 

provide improved compression results with minimal impact on fidelity.

An alternative approach to compression is presented in [26]. Bazán-Prieto et al. report 

achieving a CR of 5.97 at 4.61% PRD and 11.23 CR at 10.45% PRD for the CHB-MIT 

database. On the same database, QSPIHT gave a CR of 5.33 at 3.08% PRD and 13.42 CR at 

10% PRD. This was achieved at Q7 and Q5 respectively. For the MIT-BIH 

Polysomnographic database, a CR of 4.11 is reported at 3.79% PRD and 8.21 CR at 10.26% 

PRD. QSPIHT achieved a CR of 3.73 at a 2.54% PRD and 13.02 CR at 11.81% PRD. This 

was achieved at Q9 and Q6 respectively.

In [24], Sriraam reports CRs of approximately 5:1 with PRDs no higher than 5%, using a 

proprietary database. This result is similar to those of the Standard SPIHT approach used 

here, where CR and PRD have a close to linear relationship. QSPIHT may offer 

improvements on these results.

5 Summary and Conclusions

This paper has examined two methods of EEG compression based on reducing data length 

by: (i) ordering the coefficients into hierarchical trees and then discarding those that fall 

below the threshold value and (ii) rounding coefficients to integer values using varying 
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levels of quantization and losslessly compressing them. This was done by applying the 

SPIHT algorithm at a variety of compression levels in the first approach and varying the 

quantization level for the second. Two limits of signal loss were used to evaluate the 

compression algorithms performance against each other in relation to real-world 

applications. It was found that (ii) achieved higher CRs at a given PRD than (i). At a 7% 

PRD, (ii) achieved a CR of 13.05 while (i) achieved 6. At 30% PRD, (ii) achieved a CR of 

100 compared to 40 with (i). The validity of these results was evaluated by comparing the 

information contained in the signals after they had been decompressed, with that of the 

original signal. It was found that the reconstructed signals maintain the energy spectrum of 

the original signal well, particularly at low PRDs. Furthermore, it was found that the PSD of 

data compressed using (ii) was closer to that of the original signals than (i). This suggests 

that (ii) achieves higher CRs than (i) while maintaining better data fidelity. Thus, it appears 

to be more beneficial to the integrity of the EEG data to use a compression method that 

represents all signal coefficients, even in a reduced form, rather than one that simply 

discards coefficients.

This work may be extended by applying the results found here to the design of an EEG 

compression algorithm that makes use of higher quantization levels as the basis of 

compression. Combining higher quantization levels with other methods of data compression 

may offer a means of further increasing CRs without undue impact on the EEG signals. 

While SPIHT is used here in lossless mode, the results may be improved by combining 

higher quantization levels, with a measure of lossy compression. Alternatively, a coder other 

than SPIHT could be used post quantization if a requirement such as ultra-low power 

consumption is required. Furthermore, the quantization method used here was a standard, 

uniform quantization method. Implementing a more advanced quantization method may 

yield higher CRs or improve signal integrity at a given CR.
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Figure 1. 
Plot of PRD vs. CR for Standard and QSPIHT approach
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Figure 2. 
Plot of PRD vs. CR for PRDs up to 10%
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Figure 3. 
Cumulative Distribution Function of PRD Results per Frame at proposed 7% PRD Settings
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Figure 4. 
Cumulative Distribution Function of PRD Results per Frame at proposed 30% PRD Settings
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Figure 5. 
Welch Power Spectral Density (PSD) of non-seizure EEG sample
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Figure 6. 
Welch Power Spectral Density (PSD) of EEG sample containing seizure
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Figure 7. 
Plot of sample EEG signal. (i) Original EEG Signal, (ii) Signal compressed with QSPIHT at 

Q7 and (iii) Standard SPIHT at CR5
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Figure 8. 
Plot of sample EEG signal. (i) Original EEG Signal, (ii) Signal compressed with QSPIHT at 

Q4 and (iii) Standard SPIHT at CR35
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Table 1

Results for Standard SPIHT Compression

Expected
CR

Actual
CR

Average PRD
(%)

Standard
Deviation (%)

200 202.36 63.49 20.67

160 160.75 58.63 20.29

110 110.87 50.78 19.73

55 55.38 36.97 19.08

40 40.29 31.40 18.92

35 35.24 29.26 18.85

30 30.24 26.90 18.50

10 10.25 12.29 11.02

7 7.26 8.94 8.97

6 6.26 7.67 7.95

5 5.26 5.99 6.18

2 2.28 0.52 0.34
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Table 2

Results for QSPIHT Compression

Bit
Level

QSPIHT
CR

Average
PRD (%)

Standard
Deviation(%)

1 613.20 68.15 13.18

2 260.13 50.09 15.43

3 128.78 35.04 15.23

4 70.88 23.66 13.88

5 40.14 15.58 12.11

6 22.39 9.89 9.56

7 13.05 6.09 7.00

8 8.14 3.67 5.09

9 5.51 2.18 3.66

10 4.11 1.32 2.89

11 3.27 0.83 2.49

12 2.74 0.56 2.34

13 2.36 0.42 2.29

14 2.09 0.34 2.28

15 1.88 0.31 2.27
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Table 3

CR and PRD results for QSPIHT run on MIT-BIH Polysomnographic and CHB-MIT Scalp EEG databases 

[27]

MIT-BIH
Polysomnographic

CHB-MIT Scalp EEG

Bit Level CR PRD(%) CR PRD(%)

4 34.4721 29.8875 24.3321 16.5954

5 20.0354 19.2435 13.4155 10.0279

6 13.021 11.8092 8.0243 5.7098

7 9.5024 6.9341 5.3314 3.0815

8 7.3393 4.0791 3.9292 1.6105

9 3.7265 2.5436 3.1403 0.8410
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