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Abstract

Cardiovascular autonomic neuropathy (CAN) is a serious and well known compli-

cation of diabetes. Previous articles circumvented the problem of missing values

in CAN data by deleting all records and fields with missing values and applying

classifiers trained on different sets of features that were complete. Most of them

also added alternative features to compensate for the deleted ones. Here we intro-

duce and investigate a new method for classifying CAN data with missing values.

In contrast to all previous papers, our new method does not delete attributes with

missing values, does not use classifiers, and does not add features. Instead it is

based on regression and meta regression combined with the Ewing formula for

identifying the classes of CAN. This is the first article using the Ewing formula

and regression to classify CAN. We carried out extensive experiments to deter-

mine the best combination of regression and meta regression techniques for clas-

sifying CAN data with missing values. The best outcomes have been obtained

by the additive regression meta learner based on M5Rules and combined with the
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Ewing formula. It has achieved the best accuracy of 99.78% for two classes of

CAN, and 98.98% for three classes of CAN. These outcomes are substantially

better than previous results obtained in the literature by deleting all missing at-

tributes and applying traditional classifiers to different sets of features without

regression. Another advantage of our method is that it does not require practition-

ers to perform more tests collecting additional alternative features.

Keywords: cardiac autonomic neuropathy, diabetes, missing value imputation,

regression learners, meta regression techniques, Ewing formula.

2010 MSC: 68T05, 68T10.

1. Introduction

The applications of data mining methods for the development of computer

systems analyzing data related to cardiac patients are very important and have

been investigated, for example, in the recent articles [1–6]. Cardiac autonomic

neuropathy (CAN) is a diabetes complication due to abnormal functioning of the

autonomic nervous system, which may be associated with sudden cardiac death

([7, 8]). Based on the results of the cardiac autonomic function tests, CAN pro-

gression is categorized as normal pattern, early pattern, definite pattern or severe

pattern. Categories of CAN are determined using rules introduced by Ewing and

Clarke [9]. These rules can also be referred to as the Ewing formula. Features used

in the Ewing formula to define CAN progression are called the Ewing features, or

the Ewing fields, or the Ewing attributes, or the Ewing battery. More information

on the Ewing battery and the Ewing formula is given in the next section.

The aim of this paper is to introduce and investigate a new method of handling

CAN data with missing values of the Ewing features for the detection of CAN

2
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and its progression from normal, early and definite to severe categories. Missing

Ewing features are a common occurrence in cardiac autonomic function tests,

because many patients are unable to perform some of the tests, as noted in [9]. The

task of classifying CAN with missing Ewing attributes has implications for timely

treatment. It can lead to an improved prognosis of the patients and a reduction in

morbidity and mortality associated with cardiac arrhythmias in diabetes.

Algorithms for the classification of CAN data have been considered recently,

for example, in [10–17]. All these articles investigated different classification

schemes and applied one and the same general approach. Their approach is differ-

ent from the method proposed in the present paper. It is described in more details

below. All previous articles only circumvented the problem of missing values

by deleting all attributes with missing values, deleting all records with missing

values from the training set, designing alternative sets of features and applying

various classifiers. Here we introduce and apply a new method of handling CAN

data with missing values. It utilizes regression and meta regression techniques

combined with the Ewing formula.

Let us first briefly explain our new method, and then compare it with the stud-

ies undertaken in the previous articles. The main problem is to determine the

CAN category of a new instance IN of CAN data using a database containing

instances with known categories. In practice, the instance IN may come from a

new patient or an unclassified database record, where the CAN category has not

been indicated yet because of missing values. If all features of the Ewing battery

BEwing are complete in the record IN , then the Ewing formula can determine the

CAN category of IN . The problem is in treating instances IN with missing Ewing

values.

3
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Suppose that a Ewing feature is missing in IN . Denote this Ewing feature with

a missing value in IN by FM . Likewise, by CEwing(IN) we denote the set of the

Ewing features with complete values in IN .

In this article, we propose to impute the value of the feature FM in IN with

a new predicted value and then apply the Ewing formula. To make a prediction,

we create a training set by selecting all records with complete Ewing features and

Ewing categories. Let us denote this set by Strain. A regression or meta regression

learner L can be trained on Strain to predict the value of the feature FM in any new

instance. The regression learner L can be applied to the new instance IN . It will

produce a predicted value V (FM) = L(IN) for the value of the missing feature

FM in IN . Now, the union of the set CEwing(IN) of all complete Ewing features

in IN and the predicted value V (FM) covers the whole Ewing battery. We can

substitute these values in the Ewing formula to derive the CAN category of IN .

Although our new method is natural, it has never been considered in previous

articles. The task of selecting appropriate regression and meta regression tech-

niques as ingredients for our method is quite sophisticated. It is thoroughly inves-

tigated in the present article. We conducted comprehensive experiments and iden-

tified the best combination of the Ewing formula, regression and meta regression

techniques for classifying CAN data with missing values. The best combination

produced outcomes, which are substantially better than previous results obtained

in the literature. A comparison of the outcomes of our new method with the results

of previous papers is given in Section 5.

All previous papers investigated a different general approach to the main prob-

lem mentioned above. They deleted the attribute FM from the instance IN and

from all records in the database, and searched for alternative sets SA of features,

4
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which have complete values in IN . Most of the previous papers added additional

features to the set SA to compensate for the loss of accuracy caused by deleting

the Ewing attribute FM . A classifier was then trained on the set of records from

the database with complete values of all features in SA and with given CAN cat-

egories. After the training and deletion of the missing feature FM from the new

instance IN , this classifier was applied to IN to predict its category. In contrast

to all previous papers, our new method does not use classifiers, does not delete

attributes with missing values, and does not add alternative features, which would

require practitioners to perform more tests.

The rest of the paper is organized as follows. Section 2 gives background

information on CAN, the Ewing battery of tests and the Ewing rules/formula used

to determine the CAN category. Section 3 contains preliminaries on the regression

techniques used in our experiments. The base regression learners investigated

in our experiments are presented in Subsection 3.1. Meta regression techniques

employed to enhance their performance are covered in Subsection 3.2. Section 4

contains more information on the Diabetes Screening Research Initiative (DiScRi)

database and preparing data for experiments. Experimental results and discussion

are given in Section 5. A summary of conclusions is contained in Section 6.

2. Background on cardiac autonomic neuropathy

Cardiac autonomic neuropathy (CAN) is a complication of diabetes that in-

volves damage to the autonomic nerve fibres that innervate the heart and blood

vessels. The resulting abnormalities in heart rate control and vascular dynam-

ics are thought to account in part for the incidence of sudden cardiac death often

observed in people with diabetes [7, 8, 18].

5
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The most important tests required for a risk assessment of CAN rely on re-

sponses in heart rate and blood pressure to various activities, usually consisting of

the following five Ewing tests described in [9, 19, 20].

(1) Heart rate response to the Valsalva manoeuvre (VAHR); where the patient

exhales against 40mmHg pressure while the heart rate is observed.

(2) Heart rate variation during deep breathing (DBHR); where the patient sits

quietly and breathes deeply while an electrocardiogram records the heart

rate variation over 6 breathing cycles.

(3) Blood pressure response to sustained hand-grip (HGBP); where the systolic

blood pressure variation is recorded before and after a sustained hand grip.

(4) Heart rate response to moving from a lying to a standing position (LSHR);

where the beat to beat (R-R) interval change in response to standing from a

lying position is measured.

(5) Blood pressure response moving from lying to standing (LSBP); where the

blood pressure change in response to standing from a lying position is mea-

sured.

Table 1 contains the boundary points for each test derived in [9, 19, 20] from

physiological evidence in association with in-field trials. These boundary values

are also explained by Ewing et al. [20] in great detail. The categorical variables

abnormal, borderline and normal are introduced in the Ewing and Clark formula-

tion for each test.

The rules, or the Ewing formula for determining the five categories for a CAN

risk assessment, are given in Table 2. These rules were originally defined by Ew-

6
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Test Value

Normal Borderline Abnormal

VAHR (ratio) ≥1.21 1.11-1.20 ≤1.10

DBHR (beats/min) ≥15 11-14 ≤10

HGBP (mmHg) ≥16 11-15 ≤10

LSHR (ratio) ≥1.04 1.01-1.03 ≤1.00

LSBP (mmHg) ≤10 11-29 ≥30

Table 1: Ranges and boundary values determining categorical variables for the Ewing battery.

ing et al. [19, 20]. Ewing et al. [20] also compared the categorization given in

Table 2 with two scoring systems used by other researchers: (1) giving 0 for a

normal test, 0.5 for a borderline result, and 1 for an abnormal result, thus giving a

score of 0 to 5 for each patient; and (2) counting the number of tests that are defi-

nitely abnormal, again giving a score of 0 to 5 for each patient. Ewing et al. [20]

demonstrated that these scoring systems give roughly equivalent categorizations

and seem to carry no real advantages.

It is not always possible for all patients to perform all of the Ewing tests. For

instance, the hand grip test may be difficult to do due to arthritis. The lying to

standing tests often cannot be done due to mobility challenges and some patients

have conditions where forceful breathing required for the Valsalva manoeuvre

is contra-indicated. These issues result in CAN risk assessments being made in

practice on the basis of only a subset of the Ewing tests ([9, 19, 20]).

7
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Category Test values

Normal All tests normal or one borderline.

Early One of the three heart rate tests abnormal or two bor-

derline

Definite Two or more of the heart rate tests abnormal.

Severe Two or more of the heart rate tests abnormal plus one

or both of the blood pressure tests abnormal, or both

borderline.

Atypical Any other combination of abnormal tests.

Table 2: CAN categories defined by Ewing et al. [20].

3. Regression and meta regression learners

This sections contains brief preliminaries on the regression and meta regres-

sion techniques applied in this paper. Every regression learner is always trained

on a training set with complete values to predict the value of one attribute given

values of all other features in the set. The way regression and meta regression

techniques are used in our experiments is explained in Section 5.

3.1. Base regression learners

This subsection deals with prerequisites on the base regression learners, which

are compared as ingredients of our method during experiments. The following ro-

bust base regression learners were selected for a complete experimental evaluation

of their performance, because they represent the most essential types of regression

8
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techniques.

• ConjunctiveRule is a learner of conjunctive rules that consist of a set of

antecedents and a consequent. The antecedents are grouped together by

conjunction, i.e., logical AND, and the consequent is the class value for

classification/regression. The antecedents are chosen in the order of their

information gain defined, for classification, in terms of the weighted average

of the entropies of the data covered and not covered by the rule and, for

regression, in terms of the weighted average of the mean-squared errors of

the data covered and not covered by the rule. The distribution of the class

labels or means of the numeric class value in the dataset are used as the

consequent. Reduced Error Pruning (REP) or simple pre-pruning based on

the number of antecedents is applied to the generated rule. If a test instance

is not covered by the conjunctive rule, then it is predicted on the basis of the

default class distributions/value of the data not covered by the rule in the

training set. ConjunctiveRule can predict numeric and nominal class labels.

• EMImputation uses the Expectation Maximization and a multivariate nor-

mal model for replacing missing numeric values.

• IBk is a K-nearest neighbours regression learner. It can select an appropriate

value of K based on cross-validation.

• Kstar uses an entropy-based distance function for instance-based regres-

sion, where the predicted class value of a test instance comes from the val-

ues of training instances similar to it.

• LinearRegression applies the Akaike Information Criterion for model selec-

9
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tion in linear regression for prediction.

• M5Rules generates a decision list for regression problems using separate-

and-conquer. In each iteration it builds a model tree using M5 algorithm

originally proposed by R.J. Quinlan [21], and makes the “best” leaf into a

rule, as described in [22].

• REPTree is a fast decision tree learner building a decision tree based on

information gain and pruning it via reduced-error pruning with backfitting.

We use WEKA implementations of these base regression learners and refer to

[23–27] for more information.

3.2. Meta regression techniques

It is well known that meta regression can improve the performance of the base

regression learners. Each meta regression learner is built by applying one of the

known meta regression techniques to a base regression learner ([27]). Our experi-

ments investigated and compared the following five meta regression techniques in

their ability to improve the performance of the base regression learners as ingre-

dients of our method of treating the missing Ewing values.

• AdditiveRegression successively enhances the performance of a base regres-

sion learner. Each iteration fits a model to the residuals left by the previous

regression learner. Final prediction is made by adding the predictions of all

regression learners.

• Bagging is a regression scheme for bagging base regression model to reduce

variance.

10
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• MultiScheme is a regression scheme using cross validation on the training

data or the performance on the training data to select a base regression

model from several models according to the mean-squared error.

• RandomSubSpace constructs a decision tree based classifier that maintains

highest accuracy on training data and improves on generalization accuracy

as it grows in complexity. The classifier consists of multiple trees con-

structed systematically by pseudorandomly selecting subsets of components

of the trees constructed in randomly chosen subspaces.

• RegressionByDiscretization employs any regression learner on a copy of

the data that has the class attribute discretized. The predicted value is the

expected value of the mean class value for each discretized interval based

on the predicted probabilities for each interval and on conditional density

estimation accomplished by building a univariate density estimator from the

target values in the training data weighted by the class probabilities.

More information on these meta regression techniques and their WEKA im-

plementations is given in [24, 27].

4. Diabetes screening research initiative database

We use a new and unique database from a diabetes screening research initiative

(DiScRi) project [18–20, 28, 29]. DiScRi is a diabetes complications screening

program in Australia where members of the general public participate in a com-

prehensive health review consisting of tests including electrocardiogram (ECG),

the Ewing battery, retinal scans, peripheral nerve function and assessment of di-

verse biomarkers associated with risk and early detection of diabetes and cardio-

11
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vascular disease. ECG data is crucial for medical applications, as illustrated, for

example, by [30–33]. The DiScRi database is more than ten times larger than

the data set used by Ewing in terms of the number of participants involved. Data

on over 200 variables from over two thousand attendances have been collected in

DiScRi, see [18, 29].

Since there are few atypical and severe patients in the DiScRi database, we

deleted all instances with severe and atypical Ewing category and investigated

two classifications for cardiac autonomic neuropathy progression originally de-

fined by Ewing et al. [19, 20]. The first classification divides all patients into two

categories allocating each patient either to the normal category, or to definite cat-

egory. The second one divides all patients into three categories allocating each

patient to one of the following categories: normal, early, definite. An alternative

option was to merge all atypical and severe instances into other categories. This

option was not used here, since such mergers are arbitrary and so they may lead to

a certain reduction of the accuracy of the method. Note that since there are only

small numbers of atypical and severe instances in the DiScRi database, this may

result only in relatively minor changes.

5. Experiments and discussion

The aim of our experiments was to find a combination of the regression and

meta regression techniques with the Ewing formula that achieves the best predic-

tion of the Ewing category for a new instance IN with a missing Ewing value.

There are five Ewing attributes, and so the missing feature FM can take on one

of the five values: VAHR, DBHR, HGBP, LSHR, LSBP. We considered all combi-

nations of the regression and meta regression techniques with the Ewing formula
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and used the DiScRi database to determine the accuracy each combination can

achieve in predicting each of the missing variables VAHR, DBHR, HGBP, LSHR,

LSBP. This means that for each combination we conducted five tests to determine

the accuracy it achieves in predicting these five variables. Accordingly, for each

particular combination, the charts with the outcomes of our experiments contain

five bars labelled by the variables VAHR, DBHR, HGBP, LSHR, LSBP. These

bars represent results corresponding to these Ewing variables.

We use the prediction accuracy of the CAN category as a measure to compare

the outcomes. Our objective is not to learn how to impute the missing values with

high precision with respect to appropriate metrics, as for example in [34]. Here

we investigate the problem of predicting the CAN category for data with missing

values. Precision of the imputation as one step of the whole procedure plays only

an intermediate role, but the quality of the scheme has to be assessed looking at

the final outcome. Therefore, the accuracy of the final classification of CAN is

the most appropriate measure for evaluating the effectiveness of each method of

handling missing values in this paper. In all previous articles using DiScRi our

experiments have shown that for this database different measures of performance

of classifiers correlate well, as it is often the case for well balanced data sets. This

means that the algorithms with higher accuracy tend to produce better specificity

and other metrics. This is why we included only the accuracies in the diagrams

with outcomes in this paper.

To prevent overfitting of the regression models during tests, we applied tenfold

cross validation. This is a standard and very well known procedure explained, for

example, in [27]. Here we include a brief overview of how it works in our case.

First, we selected all records with complete Ewing values and categories from
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DiScRi database. Let us denote the set of all these records by Dall. The numbers

of instances in each of the two or three categories of CAN in the set Dall are given

in Table 3.

2 classes 3 classes

Normal 461 461

Early - 442

Definite 717 275

Table 3: Breakdown of the CAN categories in the dataset selected for experiments.

Applying tenfold cross validation means that we divided Dall into ten stratified

folds, D1, ..., D10. We used these folds to conduct ten consecutive tests for each

combination of a Ewing feature FM and a regression learner L.

In the first test, we used the set Train1 = Dall \D1 as the training set. The set

Train1 consists of all records from Dall that do not belong to D1. The regression

learner L was trained on Train1 to impute the missing value FM from all other

Ewing values. The testing set Test1 was obtained from D1 by creating a copy of

the set D1 and turning all values of the feature FM into missing values there. (No-

tice that this is different from deleting the whole attribute FM from the set.) The

regression learner L was used to impute the missing Ewing values in all records

of Test1. After that the Ewing formula was applied to derive the category of all

instances in Test1. A Python script was written by the second author to apply

the Ewing rules automatically. The predicted categories were compared with the

correct ones contained in D1. The accuracy of the predicted categories was the
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outcome of the first of the ten consecutive tests.

The other nine consecutive tests for the same L and FM were organized in the

same way for the sets D2, ..., D9 instead of D1. The average accuracy obtained in

all ten consecutive tests is the outcome of tenfold cross validation for L and FM .

It is included as a bar in the diagram with the outcomes, where it is labelled by

the Ewing feature FM .

The accuracies of the detection of CAN and the classification of CAN pro-

gression with three categories using base regression learners ConjunctiveRule,

EMImputation, Kstar, LinearRegression, M5Rules and REPTree are presented in

Figures 1 and 2. The best outcomes were obtained by M5Rules.
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Figure 1: Accuracy of the detection of CAN with two categories for instances with a missing

Ewing feature by using base regression learners to impute missing values and then applying the

Ewing formula to determine the CAN category.

Next, we investigate the ability of the meta regression learners AdditiveRe-

gression, Bagging, MultiScheme, RandomSubSpace, and RegressionByDiscretiza-
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Figure 2: Accuracy of classification of CAN progression with three categories for instances with

a missing Ewing feature by using base regression learners to impute missing values and then

applying the Ewing formula to determine the CAN category.

tion to improve the performance of M5Rules and enhance the effectiveness of the

detection of CAN and classification of CAN disease progression. Figures 3 and 4

contain the accuracies achieved by these meta regression techniques based on the

best base regression method M5Rules.

Thus, our experiments have found the following best combination of meta

regression techniques and the Ewing formula for classifying CAN instances with

missing values. The best results have been produced by the additive regression

meta learner based on M5Rules and combined with the Ewing formula. It has

achieved the best accuracy of 99.78% and the average accuracy of 99.12% for

two classes of CAN and, respectively, the best accuracy of 98.98% and the average

accuracy of 98.31% for three classes of CAN.

To illustrate that our new method is much more effective, here we include
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Figure 3: Accuracy of the detection of CAN with two categories for instances with a missing

Ewing feature by using meta regression based on M5Rules to impute missing values and then

applying the Ewing formula to determine the CAN category.
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Figure 4: Accuracy of classification of CAN progression with three categories for instances with a

missing Ewing feature by using meta regression based on M5Rules to impute missing values and

then applying the Ewing formula to determine the CAN category.
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more details on the classification schemes devised in the previous papers for the

corresponding alternative sets of features considered there.

The article [11] dealt only with two classes of CAN, i.e., it handled only bi-

nary classifications. For the set of features considered in [11] the decision tree

ensemble generated by Decorate based on RandomTree turned out the best. It

achieved the accuracy of 94.23%. The paper [16] considered only three classes of

CAN. The accuracy of the best meta classification scheme used in [16] is equal to

90.84%. Four classes of CAN and more advanced classifiers were considered in

[10]. The accuracy obtained by the best classifier investigated in [10] is equal to

91.61%. Only two classes of CAN were considered in [11–14, 28]. The accura-

cies of the best classifiers designed in [28], [12], [13], [14] are equal to 80.66%,

94.61%, 94.84%, 97.74%, respectively. Thus, we see that our new method is more

effective.

Only complete data were used in [15] and the problem of missing values was

not addressed there. The paper [15] considered both two and three classes of

CAN and developed multi-level classifiers that produced outcomes with the best

accuracies approximately equal to the outcomes of the present article. However,

the results of [15] cannot be applied to handle missing values, since all tests there

used a large set of features.

Finally, let us note that the article [17] was devoted to a totally different prob-

lem of choosing an optimal order of the Ewing tests using the Optimal Decision

Path Finder procedure and visual aids simplifying the selection of the next Ewing

test during applications of this procedure in practice. The results obtained there

for a completely different problem cannot be compared to the outcomes of our

new method proposed in the present paper. Only decision trees were used in [17]
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and the best accuracy achieved there is equal to 94.14%.

6. Conclusions

In this paper, we propose a new method for classifying CAN data with missing

values of the Ewing features. Our experiments investigated various combinations

of the base regression learners and advanced meta regression techniques with the

use of the classical Ewing formula for determining the CAN category. The results

of experiments show that the new method can achieve a significant improvement

compared to the outcomes of all previous classification schemes.

The best results were obtained by our new method using the combination

of the Ewing formula with the AdditiveRegression based on M5Rules. It has

achieved the best accuracy of 99.78% for two classes of CAN, and the best ac-

curacy of 98.98% for three classes of CAN. These outcomes are better than all

previous results obtained in the literature. Another advantage of our method is

that it does not require practitioners to perform more tests collecting alternative

features.
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