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Breast peripheral area correction in digital mammograms 
 

Abstract 

Digital mammograms may present an overexposed area in the peripheral part of the breast, 

which is visually shown as a darker area with lower contrast. This has a direct impact on image 

quality and affects image visualisation and assessment.  This paper presents an automatic 

method to enhance the overexposed peripheral breast area providing a more homogeneous 

and improved view of the whole mammogram. The method automatically restores the 

overexposed area by equalising the image using information from the intensity of non-

overexposed neighbour pixels. The correction is based on a multiplicative model and on the 

computation of the distance map from the breast boundary. A total of 334 digital 

mammograms were used for evaluation. Mammograms before and after enhancement were 

evaluated by an expert using visual comparison. In 90.42% of the cases, the enhancement 

obtained improved visualisation compared to the original image in terms of contrast and 

detail. Moreover, results show that lesions found in the peripheral area after enhancement 

presented a more homogeneous intensity distribution. Hence, peripheral enhancement is 

shown to improve visualisation and will play a role in further development of CAD systems in 

mammography. 
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1. Introduction 

As a consequence of the current digital revolution, traditional film-based hospitals are 

converting to digital hospitals, where patient medical records, chart information, and test 

results are easily available electronically for physicians from anywhere in the hospital and 

beyond. As such, full-digital mammography is gaining importance compared to conventional 

film-screen mammography due to the possibility of separating and individually optimising 

digital acquisition, digital storage, and digital display [1-3]. 

Digital detectors offer higher quantum efficiency and higher resolution than traditional 

screen-film receptors [4]. These characteristics translate into both lower dose and improved 

image quality mammograms. Berns et al. [5] showed that digital mammography acquisition is a 

highly significant 35% shorter acquisition in time. Once images are acquired, the Digital 

Imaging and Communications in Medicine (DICOM) [6] standard handles the storage and 

communication protocol. This allows enabling the integration of the different imaging devices, 

such as scanner machines, displays, and workstations in a fully digital system, usually referred 

to as the Picture Archiving and Communication System (PACS). From there, the images are 

sent to the screening workspace, where one or more experts analyse and diagnose cases. 



In contrast with film-screen imaging, in digital imaging experts view images on electronic 

displays (also called soft-copy displays). These systems offer new opportunities. For instance, 

there is experimental evidence that alternating current and prior mammograms on the same 

display allows better evaluation of temporal changes than conventional display of images next 

to each other [7]. However, a faulty, inadequately calibrated, or improperly set up display can 

compromise the overall quality of a diagnostic procedure [8]. 

In order to help radiologists during breast imaging evaluation, different image processing 

algorithms are being developed to improve the visualisation of digital mammograms. This may 

be achieved by either enhancing some image features to allow the detection of different types 

of lesions [9,10] or by improving the quality of the mammograms to compensate for possible 

acquisition limitations [11]. This paper focuses on the latter, specifically on the correction of 

the presence of an overexposed boundary area in the majority of mammograms, as shown in 

Figure 1(a). This effect is due to breast thickness variation during mammographic acquisition, 

and cannot be solved by modifying the typical contrast parameters that viewers provide 

(window width and window centre). During acquisition, the breast is compressed with a tilting 

compression paddle; hence breast thickness is non-uniform across the mammogram, being 

thinner in the periphery and thus overexposing this area. To compensate for thickness 

variations in the breast periphery, we propose an automatic peripheral enhancement 

algorithm. 

The proposed enhancement method applies a multiplicative correction factor for each pixel 

of the overexposed area. This factor depends just on the pixel intensity and its neighbourhood 

with already corrected intensities. Hence, the procedure starts correcting the overexposed 

pixels adjacent to the non-overexposed area and iteratively corrects the other pixels. This 

process stops at the skin-line, which is defined as the boundary between the breast and the 

dark background. Notice how the use of a multiplicative factor guarantees grey-level 

continuity. Figure 1(b) shows an example of the application of this algorithm. Note that the 

correction of the overexposed area also affects the behaviour of the window width and 

windows centre contrast adjustments. The proposed peripheral enhancement not only 

represents an improvement in the appearance of the images but also for breast cancer 

detection [12,13]. 

The rest of the paper is structured as follows. Section 2 reviews the literature on peripheral 

breast enhancement. Section 3 describes the proposed method. Results are shown in Section 

4. Section 5 shows the benefits of our approach in two different applications. The paper ends 

with discussion. 

 

2. Background 

Several methods have been proposed for overexposed area correction in mammography, 

which can be classified into non-parametric [14-16] or parametric [17-21] approaches. The 

former ones try to adjust the intensity of overexposed areas by means of traditional image 

processing techniques, like segmentation and equalisation. On the other hand, parametric 

approaches adjust the intensity of the images according to a given model, which may be as 



specific as the type of digital detector [17] or as general as a 3D representation of the breast 

[18-21]. A different approach was proposed by Goodsitt et al. [22,23] who designed physical 

filters to adjust x-ray beam distribution in order to compensate the tissue thickness. 

In this work we focus on a non-parametric approach for image correction. Non-parametric 

approaches allow improving the quality of a single image without needing extra information. In 

traditional non-parametric approaches, the correction of the overexposed area follows an 

additive approach. Thus, a specific factor is added to the pixel intensities appearing too in 

order to obtain a more homogeneous intensity distribution throughout the breast. The 

different approaches may vary in the determination of the correction area and in the factor 

which is added. Regarding area, algorithms can be either applied to the whole area [14] or just 

to a region determined by a segmentation algorithm [11]. In the first case, the correction in 

the inner part of the breast is inappreciable, since the additive factor is assumed to be zero in 

that part. In the second case, authors segment the breast using intensity based features in 

order to locate overexposed areas, and the correction algorithm is limited to this part. 

Regarding the correction factor, Bick et al. [14] generated a curve based on the mean grey 

level intensity of all points lying at the same distance from the skin line.  A second curve was 

generated by subtracting this intensity curve from the mean intensity value of the image. The 

intensity value of this second curve at each distance was then added to the corresponding 

pixels. Karssemeijer and te Brake [16,24] first computed a smoothed version of the 

mammogram. Subsequently, all pixels below a threshold were corrected by subtracting from 

the original intensity the smoothed intensity and adding the mean value of the inner part of 

the breast. A similar approach was also developed by Byng et al. [15]. The underlying 

assumption of these approaches is that thickness variations are smoother than density 

variations. 

 

3. Peripheral area correction 

Figure 2 depicts our proposal for breast peripheral enhancement. The method can be 

divided into two main steps: 1) determining overexposed and non-overexposed areas and 2) 

equalising the mean intensities of both areas. The goal is to enhance the intensities of the 

overexposed area to make them similar to the ones of the non-overexposed area. Before 

determining the overexposed area, an initial step is necessary in order to separate the breast 

region from other areas of the mammogram. Besides, the distance transform of the image is 

computed to speed-up the overall process. An optional final step is the integration of the 

pectoral muscle into the final mammogram. In following sections we explain in more detail all 

these steps. 

3.1. Breast area segmentation 

In addition to the actual breast, mammograms contain other regions that must be removed 

before applying the enhancement technique, namely the background (which may contain 

some labels) and the pectoral muscle. In conventional film-screen mammograms, the 

background is noisy and inhomogeneous and approaches have been proposed to deal with this 

problem [25,26]. However, in full-field digital mammograms this region is totally black and 

uniform, and hence it does not require any pre-processing; a clear advantage over 



conventional screen-film. Therefore, the background is composed by all pixels with intensity 

equal to zero. Additionally, labels can be removed by keeping just the larger region of the 

image. 

Different approaches have been proposed for detecting the pectoral muscle in MLO images 

[25,27,28]. In this work we implemented the proposal of Kwok et al. [27]. Roughly, initially the 

pectoral edge is estimated by a straight line obtained by comparing the brighter and darker 

regions of the mammogram’s upper corner. Subsequently, this straight line is transformed to a 

curve. This process consists in moving each pixel in the line through a few pixels along its 

perpendicular line and looking for the best cliff candidate, which is placed as new edge. When 

all the pixels in the line are moved to each candidate position, the new edge is smoothed by 

least square fitting. This process is iteratively performed until convergence. Although the 

algorithm was initially developed for digitised mammograms, we adapted it for digital 

mammograms. 

Therefore, mammograms are divided into breast area, background, and pectoral muscle, 

and only the breast area is kept for subsequent processing. Figure 3(a) shows the result of this 

step, where black areas are not considered in the rest of the processing steps. 

 

3.2. Overexposed area determination 

The overexposed area is determined by computing the histogram of the breast area. Figure 

3(b) shows the histogram of the breast shown in Figure 3(a). Two different areas can be seen 

in the histogram. The right part of the histogram corresponds to brighter intensities, the ones 

located in the inner region of the breast. In this region, no single intensity dominates over the 

rest and the wide peak reflects the inhomogeneous tissues of that region. Conversely, the left 

part of the histogram shows a narrow high peak, which corresponds to the outer region of the 

breast that shows a darker intensity, due to the overexposing effect. This is the part that needs 

to be corrected. 

To locate the overexposed part we analysed the histogram of the mammogram, 

automatically locating the first local peak and subsequently looking for its adjacent local valley. 

The intensities which are contained between the histogram origin and this valley are the ones 

that will be corrected. These intensities correspond to the pixels of the overexposed area, as is 

shown in the binary map of Figure 3(c). This map has been refined using morphological 

transformations to obtain a smoother contour. In initial experiments, the overexposed area 

was determined by the automatic Otsu thresholding algorithm. However, in dense breasts, this 

algorithm tended to merge the overexposed area with fatty tissue. 

 

3.3. Distance transform 

Before the calculation of the correction factor, the Euclidean distance map of the 

mammogram is obtained by computing the minimum distance from each pixel to the breast 

skin-line. This image helps to speed up the whole process, since the use of the distance map 

makes possible to deal with all pixels at the same distance at the same time. 



The distance transform depends on the metric used, being the Euclidean or Manhattan 

metrics the most common ones. The latter provides a faster solution to the problem, especially 

in multidimensional images, at the cost of obtaining only an approximated solution. Rosenfeld 

et al. [29] provided the roots for fast computation of the Euclidean distance transform, and 

recently Fabbri et al. [30] reviewed different approaches for computing it, distinguishing 

among three classes according to their own implementation. In ordered propagation 

algorithms [31], the algorithm starts from the seeds (0 distance) and progressively transmits 

the information to other pixels in order to increase the distance. In raster scanning algorithms 

[32], 2D masks are used to guide the processing of pixels line by line, top to bottom, then 

bottom to top. Finally, independent scanning schemes process each row of the image, 

independently of the others, and then process each column of the result (similarly to the 

implementation of the Fourier transform of an image by a sequence of 1D transforms in 

orthogonal directions). Independent scanning schemes can be divided into parabola 

intersection algorithms [33], mathematical morphology based algorithms [34], and algorithms 

based on Voronoi tessellation [35,36], the latter providing a more general scheme and 

allowing for parallel computing implementations. 

The implementation used in this paper follows the approach of Maurer et al. [35], which 

allows fast computation of the Euclidean distance transform to multidimensional spaces. At 

each dimension level, the distance transform is computed by constructing the intersection of 

the Voronoi diagram (whose sites are the feature voxels) with each row of the image. This 

construction is performed efficiently by using the distance transform in the next lower 

dimension. Authors demonstrated that the algorithm has linear time complexity (O(N)), while 

the parallel version of the algorithm being used here runs in O(N/p) time, being p the number 

of processors. 

 

3.4. Correction factor 

Once the overexposed area has been determined, the goal is to correct its intensities by 

considering the values of the non-overexposed area of the mammogram and following an 

iterative process. Firstly only the pixels belonging to the inner overexposed area are corrected 

looking at the intensities of its neighbouring pixels which are not overexposed. Once these 

pixels have been corrected, the overexposed area mask is reduced and the new inner 

overexposed pixels are corrected. This process is applied until all pixels have been corrected. 

Formally, given a pixel x of breast B with intensity I(x), we define its neighbourhood as: 

 N�x� � �� ∈ 	: ���, � � ���, � ∧ ���, �� � �� 

where t is a pixel of the breast, S is the skin-line contour, d() refers to the distance (notice that 

the first distance is point-to-line while the second one is the common Euclidean distance 

between two points), and k represents the size of the neighbourhood (discussed in the Section 

4). Notice that with this definition, we are considering as a neighbourhood N(x) of pixel x the 

closest neighbours of x with same distance to the breast skin-line. 

We also define Nin(x) as the neighbourhood of x located one pixel further inside the breast: 



N���x� � �� ∈ 	: ���, � � ���, � � 1 ∧ ���, �� � ��   

With these definitions and from the furthest overexposed pixel from the skin-line boundary 

to the closest, the intensity of each pixel is iteratively corrected as: 

 �′��� � ���� ∗
������������������

������	���
 

where ����������	 refers to the mean intensity of each neighbourhood. The rationale behind this 

equation is twofold. By dividing by the mean value of the neighbours at the current distance 

we are normalising the overexposed values without losing information, while when multiplying 

by the mean of previous values we are giving more weight to the intensity continuity 

constraints. Notice that the use of the distance map allows us to speed up the process by 

dealing at the same time with all the pixels which are located at the same distance of the skin-

line. 

 

3.5. Pectoral muscle integration 

The final step of the algorithm is the integration of the pectoral muscle into processed 

images. This step may be unnecessary for posterior computer-based analysis such as the 

detection of abnormalities [37,38] or the analysis of the breast density [39,40]. However, we 

have experimentally observed that radiologists feel more comfortable when the pectoral 

muscle appears in the mammogram. This is done just adding the result of the pectoral muscle 

segmentation and the enhanced mammogram, since they are disjoint regions. 

 

4. Results 

A total of 334 full-field digital mammograms (FFDM) acquired using a Hologic Selenia 

mammographic system, with resolution equal to 70 micron-pixel, size 4096 x 3328 or 3328 x 

2560, and 12-bit depth were used in this work. These images included CC and MLO views of 

117 women, 50 full exams (CC and MLO of left and right breasts) and the rest were CC and 

MLO of either right or left breasts. After double-reading by the experts, 98 images contained 

masses (10 of them were located in the periphery region). 

The only parameter in our algorithm that needs to be tuned is the size of the 

neighbourhood used for correcting the intensities of the overexposed pixels (parameter k). We 

fix this size to be 100 pixels (i.e. 7 mm). Figure 4 shows the resulting image when using smaller, 

similar, and larger values of k. If k is too small the neighbourhood is also small, and the new 

value assigned depends on just few pixels. Hence, the propagated value is always close to the 

reference pixels and corrected pixels are assigned with similar intensity. On the other hand, 

when k is large, the appearance of the mammograms is better, although a dark ribbon appears 

due to the fact that the new value depends from pixels far from it. The best results were 

obtained with k close to 100 pixels. Actually, the tuning of this parameter allows for a certain 

leeway, since we obtained similar results using values of k between 70 and 120 pixels (4.9 and 

8.4 mm). 



Figure 5 shows the result of the enhancement on five different mammograms, three CC and 

two MLO views (displayed without adjusting the contrast of the images). The first column 

corresponds to the original mammograms while the second shows corrected images. In MLO 

views the boundary found automatically between the pectoral muscle and the breast is 

depicted in black. Comparing the mammograms, the dark overexposed areas have been 

corrected, obtaining a more homogeneous intensity distribution along the breast area, and 

obtaining a mammogram with much more visual detail in the peripheral area. Additionally, 

notice that the structures lying between the overexposed and non-overexposed areas are 

continuous and have not been altered or disrupted in any place. This means that the tissue 

shown in the improved area corresponds to the real tissue of that region, and that our 

approach is not introducing artefacts that could affect the subsequent analysis of the image. 

To quantitatively analyse the improvement in terms of image quality, Figure 5(c) and (d) 

shows the histograms of the breast area (without including the pectoral muscle in MLO 

images) before and after the enhancement, respectively. As expected, the big peak in the 

overexposed area is not present in the corrected histogram, and in contrast, the smooth wide 

peak reflects that the intensities are distributed among all the breast area. 

To determine the quality of the processed images, qualitative and quantitative analyses 

were performed. The qualitative analysis was performed by means of visual assessment by one 

radiologist with more than 10 years of experience in mammographic images. All original and 

corrected images were displayed side by side and the observer just labelled the images as 

correctly processed or not, where correctly processed means that the quality of the images 

substantially improved after the enhancement. A total of 90.42% of the images were evaluated 

as correctly processed. In the rest of the cases, the overexposed area was not as dark as in the 

rest of the images, due to either less radiation or breast physiology, and the correction was 

actually not necessary. When applying our method to these images, the area selected for 

correcting was the full mammogram, and the final output was the original image but globally 

enhanced, i.e. without obtaining any local effect. In any case, the quality of the images 

decreased after the processing. 

A quantitative analysis was also performed by comparing the mean intensity and the 

histograms of the original and the enhanced mammograms. Regarding mean intensity, since 

overexposed areas have darker intensities, a “visually better” mammogram should obtain a 

larger mean intensity value. On the other hand, we also have to define what a “better” 

histogram is. Histograms from overexposed mammograms present a high peak in dark 

intensities. This peak is the one that should be reduced when enhancing the mammograms, 

obtaining a histogram with a well-defined central peak after enhancement. To measure this, 

we compute the skewness and the kurtosis of the histogram. The skewness measures how 

asymmetric the histogram is, being 0 a totally symmetric distribution. The kurtosis measures 

how wide the peak is, being 3 the kurtosis defined by a normal distribution. Figure 6 compares 

the mean intensity and both the skewness and kurtosis measures for the 334 analysed 

mammograms summarised in terms of boxplots. As expected, the mean intensity value has 

increased, almost doubling its value. On the other hand, skewness has been reduced, hence 

obtaining a more symmetric distribution, while kurtosis is also reduced, obtaining a wider peak 



of the breast area. Analysing the results using a paired t-Student test, the improvements in 

each measure were significant with p-value < 0.0001.  

 

5. Applications of the breast peripheral enhancement 

In this section we show two important applications where the use of the peripheral 

enhancement allows improving the procedures: first, in expert detection of mass routinely 

performed in clinical practice, and secondly, in a computer aided application based on 

computing the breast density of the mammogram. 

 

5.1. Mass detection after enhancement 

To perform an estimation of the benefits of the approach for manual analysis of the breast 

we asked to the same experts that diagnosed the mammograms to analyse all the cases again 

but after the periphery enhancement (the radiologists were different than the one that 

performed the qualitative evaluation). Notice that there was more than one year of difference 

between the first and the second analysis, and we can consider that radiologists did not 

remember the cases. 

As expected, radiologists were able to diagnose again all the cases containing masses. After 

asking their opinion about the enhancement, they reported two main favourably reasons to 

the enhancement. First of all, masses were easier to detect, allowing a faster analysis of the 

images. For instance, Figure 7 shows three examples of mammograms with masses located at 

the overexposed area. Notice that the masses are highlighted after peripheral correction. And 

secondly, the border of the masses was also clearer compared to without the enhancement. 

This is an important result, since the border and the shape of the masses are two important 

features when diagnosing the mass as cancer or benign. 

 

5.2. Automatic breast density estimation after enhancement 

Breast density is an important risk factor for breast cancer. It is well known that dense 

breasts are more likely to develop breast cancer than fatty breast, and besides, the analysis of 

dense breasts is more difficult, since the own tissue may mask the abnormalities. Breast 

density estimation allows for the classification of mammograms according to their internal 

tissue. Consequently, it is a first step to a more personalised analysis. 

Oliver et al. [39] developed an automatic method for breast density analysis based on first 

segmenting the mammograms into two classes: fatty and dense. Subsequently, features from 

both sets were extracted and used to classify the mammograms. Authors obtained good 

results using two different digitised databases (kappa = 0.81 and kappa = 0.67, respectively). 

However, when using this approach in digital mammograms, the method fails to obtain good 

results due to overexposed area (kappa less than 0.4). As shown in Tortajada et al. [43], in 

order to overcome this issue and obtain better results, the peripheral enhancement was 

applied. The results were improved to kappa = 0.88. 



6. Discussions and conclusion 

Overexposed areas in mammograms are observed as darker areas, and the structures lying 

in these regions are hardly visible. In this work we presented a novel algorithm that 

automatically enhances the intensity of overexposed areas to obtain similar intensities to the 

rest of the mammogram. Our approach was inspired by the additive models that are being 

used to enhance mammograms [14-16]. However, we claim that our multiplicative model not 

only provides intensity continuity on the overexposed area (the same as the additive model) 

but also preserves the intensity relationship between the pixels of the overexposed area.  

The presence of the overexposed area cannot be solved by common visualisation contrast 

tools, due to the fact that most of these tools are based on histogram information. For 

instance, manually applying one of the most common tools such as the adjustment of window 

width and centre [41,42] the whole mammogram cannot be properly visualised. Actually, 

experts should tune the parameters for both overexposed and non-overexposed areas 

independently, which is not possible. When applying our enhancement approach, we are 

locally correcting the overexposed area without considering histogram information. Instead, 

each pixel is corrected using just neighbourhood information. After applying the peripheral 

enhancement, and using the window width and centre adjustment tool, the full mammogram 

can be properly visualised, as shown in Figure 1. 

The proposed approach presents many benefits, either for manual or automatic analysis of 

the mammogram. In manual analysis, the proposed enhancement helps uncover different kind 

of abnormalities in the peripheral zone. Although expert radiologist may actually find them 

after thorough analysis of the mammogram, abnormalities are easier to detect after the 

enhancement. Moreover, the physical limits of the mass, which were not visible on the original 

mammograms, could properly be assessed after enhancement. On the other hand, automatic 

analysis, such as computer aided detection and breast density measurement systems can also 

profit from this enhancement [43,44]. 

We have provided a peripheral enhancement algorithm for digital mammograms. This step 

is necessary to balance the overexposure of the breast periphery. The algorithm has been 

tested on a large database of digital mammograms, obtaining visually more comfortable 

mammogram in 90.42% of the images. In these images, the correction of the overexposed area 

helps improve the image quality and obtain better visualisation and assessment. 
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List of figures 

 

Figure 1. Example of the peripheral enhancement: (a) original and (b) enhanced images. 

The images are obtained after the best manual window width and window centre 

configuration. 

 

Figure 2. Graphical description for the overexposed area correction. 

 

Figure 3. Example of the thresholding process: (a) breast area segmentation, (b) histogram 

of the breast area clustered in 64 bins, (c) overexposed area segmentation. 

 

Figure 4. Example of the peripheral enhancement when varying the value of the size of the 

neighbourhood. (a) k = 20, (b) k = 100, (c) k = 180. The best results were obtained using values 

of k around 100 pixels. 

 

Figure 5. Example of the peripheral enhancement: (a) original mammogram and (b) 

corresponding corrected mammogram, where in MLO views the border between pectoral 

muscle and the breast is shown in black, (c) breast area histogram of the original mammogram, 

and (d) breast area histogram of the corrected mammogram. Notice that the narrow peak of 

darker intensities has been removed and the histogram is now more homogeneous. 

 

Figure 6. Quantitative analysis of the original and enhanced histograms in terms of 

boxplots. (a) mean intensity of the breast area, (b) skewness, and (c) kurtosis. 

 

Figure 7. Example of the peripheral enhancement in mammograms containing masses: (a) 

original mammogram and (b) corresponding enhanced mammogram. The white arrow 

indicates the location of the mass in each image, which is zoomed in the small box for a better 

visualisation. Notice that using the proposed enhancement the contrast of the lesion is now 

clearer. 
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