
Mining approximate temporal functional dependencies with pure
temporal grouping in clinical databases
Carlo Combi a, Matteo Mantovani a, Alberto Sabaini a, Pietro Sala a, Francesco Amaddeo b,
Ugo Moretti b, Giuseppe Pozzi c,n
a Dipartimento di Informatica, Università degli Studi di Verona, strada le Grazie 15, I-37134 Verona, Italy
b Dipartimento di Sanità Pubblica e Medicina di Comunità, Università degli Studi di Verona, p.le L.A. Scuro 10, I-37134 Verona, Italy
c DEIB, Politecnico di Milano, p.za L. da Vinci 32, I-20133 Milano, Italy

Received 17 February 2014
Accepted 6 August 2014

1. Introduction

Current clinical database systems enable us to store huger and huger quantities of data, and data mining techniques help in extracting
relevant knowledge from these data. Analyzing temporal evolution of data, time series, changes of information over time, may lead to
additional temporal knowledge. Temporal data mining is the research field in this direction, working on structured [1] and, occasionally, on
semi-structured data [2].

Knowledge on (clinical) databases may be expressed in two ways: on one hand, it can be represented through suitable constraints on
data; on the other hand, it can be derived through the analysis of data by discovering patterns, regularities, and so on.

According to the first point of view and considering data stored in a plain relational database, we may express constraints by identifying
functional dependencies (FD). Let us consider, for example, a simple database table describing the reference areas for emergency
admissions in a region. We typically specify that patients have a single reference hospital for emergencies, depending on their address
(considering the neighborhood of the admitting reference hospital). We can thus specify a functional data dependency between the home
address of the patient and the location of the hospital: all patients with the same address must refer to the same hospital. Leveraging the
definition of functional dependencies as a way of expressing constraints on data, the research community focused also on extending FDs to
deal with data temporalities [3–7]: as example, a temporal functional dependency (TFD) may be used to express the

n Corresponding author.
E-mail addresses: Carlo.Combi@univr.it (C. Combi), Matteo.Mantovani@univr.it (M. Mantovani), Alberto.Sabaini@univr.it (A. Sabaini), Pietro.Sala@univr.it (P.

Sala), Francesco.Amaddeo@univr.it (F. Amaddeo), Ugo.Moretti@univr.it (U. Moretti), giuseppe.pozzi@polimi.it (G. Pozzi).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2014.08.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2014.08.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2014.08.004&domain=pdf
mailto:Carlo.Combi@univr.it
mailto:Matteo.Mantovani@univr.it
mailto:Alberto.Sabaini@univr.it
mailto:Pietro.Sala@univr.it
mailto:Francesco.Amaddeo@univr.it
mailto:Ugo.Moretti@univr.it
mailto:giuseppe.pozzi@polimi.it

constraint that the reference hospital for emergencies depends on the patient home address, but this dependency may change according
to the season of the year.

On the other hand, a different approach has to be taken if we consider, for example, a database table collecting data on patients who
were admitted for emergencies to hospitals. In this case, we cannot constrain patient addresses to hospitals in a strict way, but we could
discover on the collected data that the dependency between patient addresses and hospitals hold on most tuples of the database, but not
on all the tuples of that database. We call this an approximate functional dependency (AFD): patients with the same home address usually
go to the same hospital (not always the reference one) when they are at home, but, as an example, some patients on holiday could have
been admitted to an hospital which is not the closest one to their home address. The issue of discovering approximate functional
dependencies from data has been largely studied in the literature [8–11].

As final consideration, we may also experience that over some periods of the year we generally observe an approximate functional
dependency, while in some other periods we observe a different approximate dependency: for example, it could occur that patients go to
different hospitals for emergencies even according to some specific skills of hospitals in managing seasonal pathologies. In this case, it still
holds that we can discover approximate dependencies between patient addresses and hospitals for emergencies, but only if we group data
according to the season and the year of the emergency admission. We call this an approximate, temporal functional dependency (ATFD). At
the best of our knowledge, studies on approximate temporal functional dependencies still lack.

According to the depicted scenario, the aim of this paper is to propose a first step, focusing on a specific type of ATFD, of a general
framework for temporal data mining of clinical data. In particular, we adopt a framework for temporal functional dependencies recently
proposed by Combi et al. [7]: the framework subsumes all the previous proposals dealing with temporal functional dependencies for
relational databases and introduces some new kinds of temporal functional dependencies. According to this framework, we then focus on
the issue of mining (approximate) temporal functional dependencies based on a temporal grouping of tuples. We introduce the concept of
approximate temporal functional dependency with temporal grouping, and discuss through some examples both the case when grouping is
induced by granularities (i.e. time units) and the case when sliding windows are used. Then, we propose efficient algorithms for this kind of
temporal data mining. Finally, we discuss the application of our algorithms to real world clinical data from the psychiatric and
pharmacovigilance domains.

Besides the technical performances, we discuss the clinical meaning and the most relevant mined temporal dependencies; in this regard,
it is worth noting that the mined temporal functional dependencies are a relatively new kind of clinical knowledge on data, which deserves
further efforts to become clearly interpretable by physicians in a daily clinical setting. Indeed, while association rules and temporal
association rules have been considered in clinical domains for years and their role in the clinical decision-support process has been widely
acknowledged [12,13], approximate temporal functional dependencies represent a new piece of knowledge that has to be properly
integrated in clinical decision-support processes. As an example, temporal association rules may allow one to derive knowledge as “most
patients presenting a symptom of chest pain overlapping nausea receive, within few days, a therapy with acetylsalicylic acid”. On the other
side, approximate temporal functional dependencies provide knowledge at a higher abstraction level, as “in most cases, patients with the
same symptoms are given the same drug (i.e. active principle), considering a time window of 10 days”. Such kind of knowledge refers to a
general relationship between some features of a patient, in this case symptoms and therapies: the relationship holds for any specific values
of such features. Such a valuable kind of knowledge requires physicians to merge it with more specific knowledge, such as that one coming
from temporal association rules, in the whole decision making process.

The main novelty aspects of this paper can be summarized as in the following, even with a specific reference to the preliminary work in
[14], where the main focus was on the proposal of ATFDs and on some preliminary experiments on a reduced set of psychiatry data with
some first prototypal algorithms:

� we discuss in detail the proposed approach for ATFDs and introduce completely new algorithms both for granularity-based temporal
mining and for mining through sliding windows;

� we present and discuss two important clinical domains, i.e. psychiatry and pharmacovigilance, where temporal data mining is highly
required. As the mined temporal dependencies are sometime completely new and unexpected even to expert physicians, we discuss
here some possible interpretations of the discovered knowledge;

� the new experimental results, with a new and extended setting considering two different data sets from psychiatry and
pharmacovigilance, consist of both a detailed performance analysis and an evaluation and discussion of the mined ATFDs from a
clinical point of view.

In the following, we describe the background and the related work (Section 2) and discuss the two clinical domains we considered for
temporal data mining, namely psychiatry and pharmacovigilance (Section 3); we introduce the concept of approximate temporal
functional dependency (ATFD), providing some examples on the application scenario (Section 4); then we describe how to mine minimal
ATFDs (Section 5) and deploy the proposed techniques in clinical domains; we describe the experimental results obtained by considering
data in the two mentioned domains (Section 6), and finally (Section 7) we draw some conclusions and sketch out some possible directions
for future research.

2. Background and related work

We recall here the definition of functional dependency (FD), and then introduce its extensions: approximate functional dependency
(AFD) and temporal functional dependency (TFD). Such concepts will lead to the definition of approximate temporal functional dependency
(ATFD) of Section 4, where ATFD inherits the properties both from AFD and from TFD.

The concept of functional dependency (FD) comes from the database theory and is defined as follows [15]:

Definition 2.1 (Functional dependency). Let r be a relationship over the relational schema R: let X; Y DR be attributes of R. We assert that r
fulfills the functional dependency X-Y (written as rFX-Y) if the following condition holds: 8 t; t0 Arðt½X� ¼ t0½X�) t½Y� ¼ t0½Y �Þ

Informally, for all the couples of tuples t and t0 showing the same value(s) on X, the corresponding value(s) on Y for those tuples are
identical.

2.1. Temporal functional dependencies

Moving closer to the main kind of temporal features we shall consider here, several kinds of temporal functional dependencies (TFDs)
have been proposed in the literature, usually as temporal extensions of the widely known (atemporal) functional dependencies [16]. As an
example, we may consider that patients affected by a common pathology p1 may assume a common therapy t1 during some month M1,
while in other month M2 the same patients affected by the same pathology p1 as above, do follow the another common therapy t2.

Recently, Combi et al. proposed a framework for TFDs that subsumes and extends the considered previous proposals [7]. The proposed
framework is based on a simple temporal relational data model based on the notion of temporal relation, i.e. a relation extended with a
timestamping temporal attribute VT, representing the valid time temporal dimension, i.e. the time when the fact is true in the real
world [17].

Two temporal views have been introduced: they allow one to join tuples that represent relevant cases of (temporal) evolution. On the
base of the introduced data model, and leveraging the introduced temporal views, TFDs may be expressed by the syntax
½E�ExpðRÞ; t�Group�X-Y where E�ExpðRÞ is a relational expression on R, called evolution expression, t�Group is a mapping N-2N, called
temporal grouping, and X-Y is a functional dependency.

As for the semantics, similar to the case of standard FDs, a TFD is a statement about admissible temporal relations on a temporal
relation schema R with attributes U [fVTg. A temporal relation r on the temporal relation schema R satisfies a TFD
½E�ExpðRÞ; t�Group�X-Y if it is not possible that the relation obtained from r by applying the expression E�ExpðRÞ features two tuples
t; t0 such that (i) t½X� ¼ t0½X�, (ii) t½VT � and t0½VT � (and the valid times of their evolutions, if present) belong to the same temporal group,
according to the mapping t�Group, and (iii) t½Y �at0½Y �. In other words, FD X-Y must be satisfied by each relation obtained from the
evolution relation by selecting those tuples whose valid times belong to the same temporal group.

Temporal grouping enables us to group tuples together over a set of temporal granules, based on one temporal dimension. We focus
here on the VT temporal dimension.

Four different classes of TFD have been identified in the following [7]:

� Pure temporally grouping TFD: E�ExpðRÞ returns the original temporal relation r. Rules of this class force the FD X-Y , where X;YDU, to
hold over all the maximal sets which include all the tuples whose VT belongs to the same temporal grouping.

� Pure temporally evolving TFD: E�ExpðRÞ collects all the tuples modelling the evolution of an object. No temporal grouping exists, that is,
the temporal grouping collects all the tuples of r in one unique set.

� Temporally mixed TFD: The expression E�ExpðRÞ collects all the tuples modelling the evolution of the object. The temporal grouping is
applied to the set of tuples generated by E�ExpðRÞ.

� Temporally hybrid TFDs: First, the evolution expression E�ExpðRÞ selects those tuples of the given temporal relation that contribute to
the modelling of the evolution of a real-world object (that is, it removes isolated tuples); then, temporal grouping is applied to the
resulting set of tuples.

In the remainder of the paper, we shall focus only on pure temporally grouping TFDs.

The related

2.2. Approximate functional dependencies

The concept of approximate functional dependency (AFD) derives from the concept of plain FD. Given a relation r where a FD holds for
most of the tuples in r, we may identify some tuples for which that FD does not hold. Consequently, we define some measurements over the
error we make in considering the FD to hold on r. One measurement [8] is known as G1 and considers the number of violating couples of
tuples. Another measurement [8], known as G2, considers the number of tuples which violate the functional dependency. The most
common measurement [8], known as G3, considers the minimum number of tuples in r to be deleted for the FD to hold. Formally,
G3ðX-Y; rÞ ¼ jrj�

scaled
maxfjsj∣sD

measuremen
r 4s

t
F
g
X-Yg
3 is defined as g3ðX-Y ; rÞ ¼ G3ðX-Y ; rÞ=jrj

We can now introduce here the definition of approximate functional dependency AFD as follows:

Definition 2.2 (Approximate functional dependency). Let r be a relation over the relational schema R: let X;YDR be attributes of R. Relation
r fulfills an approximate functional dependency X-

ε
Y (written as rFX-

ε
Y) if g3ðX-Y ; rÞrε, where ε is the maximum acceptable error

defined by the user.

Among the several AFDs that can be identified over a relation r, the minimal AFD is of particular interest, as many other AFDs can then
be derived from the minimal one. We thus define the minimal AFD as follows:

Definition 2.3 (Minimal AFD). Given an AFD over r, we define X-
ε
Y to be minimal for r if rFX-

ε
Y and 8X0 � X we have that rjX0-

ε
Y .

3. Motivating medical domains

In order to motivate and validate our approach, we consider two clinical domains: the first one refers to psychiatry, collecting data
about contacts between patients and psychiatrists, psychologists, and social workers; the second one refers to pharmacovigilance,
collecting data about drug administrations and adverse reactions.

3.1. Psychiatric case register

The first application domain (see Section 3.3 for further examples) refers to the Verona Psychiatric Case Register (PCR). The Verona
Health District serves about 460,000 inhabitants. The National Health Service in trust with the University of Verona offers a public
Community-based Psychiatric Service (CPS), providing psychiatric care to mentally ill as well as psychological care and responses to social
needs. Data about patients are collected in the information system PCR, which has recorded information about patients' accesses to this
service since 1979. At the first contact with the psychiatric service, socio-demographic information, past psychiatric history, and clinical data
are routinely collected for patients aged 14 and over. Recorded contacts with psychiatrists, psychologists, social workers and psychiatric
nurses including home visits, telephone calls, and day cares. Data on some 28,700 patients and more than 1,500,000 psychiatric contacts
have been recorded. Besides patients' personal data (e.g., birth information, health insurance card number, gender, nationality, and
previous contacts), patients' medical record, and contact information (contact duration, involved professionals, referrals, contact type, and
conclusions), PCR also records education, employment, professional status, type of accommodation, and marital status of patients.

PCR is used as a basis to evaluate the direct management costs for groups of patients, and to monitor the effects coming from changes
in resources, organization, and needs. The clinical purposes include monitoring of patients to plan future contacts at regular time intervals,
and providing clinicians with reports about admissions and contacts for every patient in a given time period.

PCR stores several temporal data: a patient's contact is temporally qualified by its occurrence timestamp, while other personal
information are qualified by their respective valid time. These temporal data can then be used by epidemiologists, e.g. to identify the
number of contacts in different time periods with respect to different factors such as age, diagnosis.

3.2. Pharmacovigilance

Pharmacovigilance (PhV) collects, analyzes, and prevents adverse reactions induced by drugs (ADR) [18]. In fact, also because of the
limitations of pre-marketing trials (e.g. short duration of the study, highly selected test population), adverse reactions often go undetected,
and become evident when the drug is put on the market, only [19]. Therefore a continuous monitoring of the effects is needed.

The spontaneous reporting of ADRs identifies unexpected reactions and informs the regulating authority about them. This practice is
valuable, provides early warnings, and requires limited economic and organizational resources [20]. It also has the advantage of covering
every drug on the market and every category of patient.

PhV considers possible relationships between one or more adverse reactions and one or more drugs, mainly focusing on unknown or
completely undocumented relationships. Reports suggest a cause-effect link among ADRs and drugs: the link can be classified as
“suspected” or “concomitant’. Reports are submitted by a physician, a chemists, or a private citizen.

Each report includes patient's information (age, nationality, gender, weight, outcome of reactions, and so on), drug(s) involved in the
suspected reaction(s) (identified by their Anatomical Therapeutic Chemical – ATC – classification, brand name, dosage), and the description
of the occurred adverse reaction(s) encoded by means of the MedDRA classification [21]: MedDRA is a standard medical terminology used
to classify adverse event information associated with the use of bio-pharmaceuticals and other medical products (e.g. medical devices and
vaccines).

Temporal data refer to entry date, drug name, exposure period, and adverse reaction. These temporal data are used to investigate any
cause-effect relationship among drugs and reaction(s) in different time periods, or according to the time frame of the exposure.

3.3. The motivating example

Throughout the paper we will refer to examples from the Verona Psychiatric Case Register (PCR). Table 1 graphically depicts a simplified
excerpt of database table Contact: VT (valid time, i.e., the date of the contact), ContactNumber (internal identifier of the contact),
Patient (patient's name), Duration (of the contact), Area (location of the patient at contact time), and Professional (name of the
operator responsible of the contact).

We can start making some comments. Generally, one Patient refers to the same Professional: but this may not be always true. In

Moreover, AFD Patient-
0:5

holds because 3ð -

the example of Table 1, we have Professional¼“Mike” for all the tuples but Tuple#¼2 and Tuple#¼6. Thus, FD Patient-Professional
does not hold: that FD holds if we delete those two tuples out of the six tuples we have in Table 1. Consequently, according to the
measurement of Definition 2.2, G3

Professional
ðPatient-Professional;

g
Contact

Patient
Þ ¼ 2.

P rofessional;ContactÞr0:5. Thus, accepting an error of 0.5 (50% of
error), we can assert the AFD Patient-Professional. Instead, the AFD Patient-

0:1
Professional does not hold, because g3ðPatient-

Professional;ContactÞ40:1.
Obviously, the plain FD X-Y equals the AFD X-

0:0
Y , where g3ðX-Y ; rÞ ¼ 0:0.

Table 1
A (adapted) fragment of database table Contact, collecting data about contacts of patients with the Community-based Psychiatric Service.

Contact

VT Contact number Patient Duration Area Professional Tuple#

2007-05-14 828 Joan 10 North Mike 1
2007-09-18 840 Joan 10 North Romina 2
2007-11-05 859 Joan 15 North Mike 3
2008-03-11 934 Joan 35 South Mike 4
2008-03-12 935 Joan 35 West Mike 5
2008-05-13 936 Joan 20 South Romina 6

Besides plain AFDs, clinicians could be interested in discovering some temporal properties, relevant even from the clinical point of view.
For example, according to the content of Table 1, it could be important to discover that some (approximate) dependencies hold month by
month. The dependency from Patient to Duration holds month by month and it could be related to seasonal conditions influencing the
overall state of the patient and requiring different durations of the contact. On the other hand, further dependencies could be observed
when corresponding tuples are within a fixed time span. For example, an approximate dependency holds from Patient to
Duration, considering a time span of three months (i.e., by deleting Tuple#¼2 and Tuple#¼6): such an approximate dependency could
be related to the fact that the same patient usually has contacts of the same duration within some given time span, as the possible changes
of a psychiatric state are slow with respect to the frequency of the contacts. As we shall see in the following sections, such dependencies
require to group data in different ways, either according to non-overlapping time granules or according to (overlapping) time windows.
We observe here that discovering this kind of temporal dependency over clinical data could help physicians to have a better and deeper
understanding and management of some temporal behaviors of their patients.

4. Approximate temporal functional dependencies

Moving from the definitions of FD, TFD, and AFD, we now introduce the concept of ATFD. In the following, we consider the basic temporal
extension of the relational model proposed in [7]: we consider relations of a generic relational schema R with attributes
U [fVTg, where the set U is that of atemporal attributes, while VT represents the valid time. Moreo

r t
ver,
Group X

according
Y

the tax
t
onom

Group
y proposed

in [7] and described in Section 2, we consider here pure temporal grouping TFDs of the form ½ ; � � - , where � consists
only of granularity (Gran) or sliding window (SW) grouping:

1. Grouping on granules (granularity grouping, or Gran grouping): A temporal granularity is a partition of a temporal domain in indivisible
non-overlapping groups, i.e., granules, of time points: minutes, hours, days, months, years as well as working days are granularities [22].

Definition 4.1 (Grouping by Gran(i)). Two tuples t1; t2 Ar belong to the same temporal group Gran(i) iff t1½VT �; t2½VT �AGranðiÞ where Gran
(i) is the ith granule of granularity Gran.

2. Grouping on sliding windows (SW): A sliding window1 SWði; kÞ includes all the time points in interval ½i…iþk�1�. Thus, once we fix the
length of the SW over relation r (i.e. k in the example), every SW over r will feature that length, and will - at most - include k elements
(if relation r has tuples for all the time points of interval ½i…iþk�1�).

Definition 4.2 (Grouping by SW(i,k)). Two tuples t1; t2Ar belong to the same sliding window SWði; kÞ iff t1½VT �; t2½VT �A ½i…iþk�1�.
Before introducing ATFD, let us consider a new error measure, namely G4, we shall use for approximate temporal functional

dependencies. G4 considers the minimum number of tuples in r which must be modified for the plain TFD to hold on all the tuples of r. In
the following, if looking for an FD such as X-Y , we assume to modify only values for the Y attributes. The ε parameter is user-defined and
it states the maximum error acceptable by that user:

G4ð½r; t�Group�X-Y ; rÞ ¼minfjsj∣sDr; ððr�sÞ [wÞF ½r; t�Group�X-Yg
where the set w is the minimal one for which the following formula holds

8 tAs ð(t0Awðt½U�Y � ¼ t0½U�Y �4t½VT � ¼ t0½VT �ÞÞ
The related scaled measurement g4 is defined as g4ðX-Y ; rÞ ¼ G4ðX-Y ; rÞ=jrj
We anticipate here that, if we consider the Gran grouping, the two measurements g3 and g4 do not differ. However, as we shall describe

in the following, g3 and g4 may differ when the SW grouping is considered.

4.1. ATFD with Gran grouping

We define the ATFD with granularity grouping as

ε

Definition 4.3 (ATFD with Gran grouping). Let r be a relation over the relational schema R with attributes U [fVTg: let X; Y DU be
attributes of R. Let Gran be the reference granularity. Relation r fulfills an approximate temporal functional dependency (written as
rF ½r; Gran�X-Y) iff g3ð½r; Gran�X-Y ; rÞrε.

That is, the percentage of tuples in the entire relation r to be deleted for a ATFD to hold on all the tuples of r is less than ε; tuples of r are
then grouped according to the granule of Gran their VT value belongs to, to evaluate the considered ATFD. We recall that the count of
tuples in r to be deleted refers to the entire relation r, and not to the group – and one tuple may belong to one group only, if we use a Gran
grouping.

As an example, let us consider the fragment of the database table Contact, as depicted by Table 1, and Definition 4.3 based on the
measurement G3.

0:4
ATFD ½Contact; YearðiÞ� Patient-Duration holds, as tuples for which the rule does not hold, i.e. the tuples Tuple#¼3 or Tuple#¼6 in the

specific example, and which need to be deleted for the rule to hold on all the tuples are less than the 40% in the entire table (Table 1).
In fact, if we group the tuples according to granularity Year granularity, we can identify groups Yearð2007Þ, Yearð2008Þ. For the first

group (Yearð2007Þ), two tuples (Tuple#¼1 and Tuple#¼2) out of three in the group confirm the FD Patient-Duration for a Duration of

1 Actually a sliding window comes with three parameters, granularity, beginning timestamp, and size, as the number of time points inside the window.

10. For the second group (Yearð2008Þ), two tuples (Tuple#¼4 and Tuple#¼5) out of three in the group confirm the FD Patient-Duration
for a Duration of 35. As a consequence, the overall error is 2/6, or 1=3, and it is smaller than 40%, and the required ATFD
½Contact; YearðiÞ� Patient-0:40Duration holds on the fragment of Table 1.

If we again consider the fragment of Table 1 and group tuples according to granularity Year, as we did before, we can check ATFD
½Contact;YearðiÞ� Patient-0:1Area, accepting an error of 10%. While FD Patient-Area holds on all the tuples of group of Yearð2007Þ (where
Area¼“North”), inside the group of Yearð2008Þ the FD (where Area¼“South”) fails on one tuple (Tuple#¼5) out of the three we have.
The overall error is 1/6 or 16.66%, which is greater that the allowed 10%. Thus, ATFD ½Contact;YearðiÞ� Patient-0:1Area with an error of
0.1 does not hold on the fragment of Table 1.

As for plain AFD, we can introduce the concept of minimality also for ATFD.

Definition 4.4 (Minimal ATFD with Gran grouping). An ATFD ½r;Gran�X-ε Y is said to be minimal for r iff rF ½r;Gran�X-ε Y and 8X0 � X we
have that rj ½r;Gran�X 0-

ε
Y .

4.2. ATFD with SW grouping

We define the ATFD with sliding window (SW) grouping as follows:

Definition 4.5 (ATFD with SW grouping). Let r be a relation over the relational schema Rwith attributes U [fVTg: let X;YDU be attributes
of R. Let fi…iþk�1g be a sliding window (SW) of length k. The relation r fulfills an approximate temporal functional dependency (written
as rF ½r; fi…iþk�1g�X-ε Y) iff g4ð½r; fi…iþk�1g�X-Y ; rÞrε.

A similar definition can be derived from Definition 4.5 by replacing g4 with g3, as we shall discuss in Section 4.3.
We consider as many SWs as possible, every SW sizing k elements: thus, the first considered sliding window is i…iþk�1, the second

considered sliding window is iþ1…iþk, the third considered sliding window is iþ2…iþkþ1, and so on. Every SW sets up a group (or
chain) over which the ATFD is checked. The ATFD must hold, with an acceptable amount of error smaller than ε, over the entire database:
we recall that, if we delete (as for measurement g3) or modify (as for the measurement g4) a tuple inside a SW, that tuple will remain
deleted or modified in all the SWs (either preceding or following the current SW) which include that tuple.

As an example, let us consider the fragment of the database table Contact, as depicted by Table 2, where the attribute VT refers to the
valid time of the tuple at the day granularity. If we fix the length of the SW to 5, i.e. every sliding window includes a group (or chain) of five
days, the first SW will formally include time points {2009-04-11, 2009-04-12, 2009-04-13, 2009-04-14, 2009-04-15}: since relation r in
Table 2 has tuples for VT¼2009-04-11 or VT¼2009-04-14 or VT¼2009-04-15, the first SW includes 3 tuples having VT values 2009-04-11,
2009-04-14, 2009-04-15. Thus, the following 6 SWs consider all the possible VT value groups {2009-04-11, 2009-04-14, 2009-04-15}, {2009-
04-14, 2009-04-15}, {2009-04-15}, {2009-04-26, 2009-04-27, 2009-04-28}, {2009-04-27, 2009-04-28}, and {2009-04-28}.

ATFD ½Contact; fi…iþ4g� Patient-0:4Duration holds. Indeed, tuples for which the dependency does not hold, i.e. Tuple# 3 and Tuple#

6 in the specific example, are those which need to be modified according to the measurement g4 of Definition 4.5. More precisely, the value
of attribute Duration for Tuple# 3 has to be changed to 20; the value of attribute Duration for Tuple# 6 has to be changed to 40.
Should wemodify these two tuples, we shall obtain a plain TFD, holding on all the six SWs. The tuples we modified are less then the 40% of
the entire fragment (Table 2), thus proving that the ATFD holds even with a threshold ε of 2/6 (i.e. 1/3), which is smaller than 0.4.

If we again consider the fragment of Table 2 and group tuples according to the same six SWs as we did before, we can now check the
ATFD ½Contact; fi…iþ4g� Patient-0:1Area, accepting an error of 10%. The TFD fails on one tuple (Tuple# 5, i.e. 1/6 of the entire relation),
which needs to be modified according to measurement g4 of Definition 4.5: thus, the ATFD does not hold with a ε of 0.1.

Analogous to Definition 4.4, we can introduce the concept of minimality also for ATFD with SW grouping.

ε

ε ε
Definition 4.6 (Minimal ATFD with SW grouping). Given an ATFD over ½r; fi…iþk�1g�, we define X-Y to be minimal for r iff
rF ½r; fi…iþk�1g�X-Y and 8X 0 � X we have that r j ½r; fi…iþk�1g�X0-Y .

4.3. g3 and g4 with SW grouping

When using a SW grouping, and only when using this grouping, measurements g3 and g4 (and the related G3 and G4) may differ: on the
other side, when using granularity grouping, measurements g3 and g4 do not differ. In fact, in the SW grouping, according to the measurement
g3 we delete one or more tuples: this may modify the temporal relationships among the tuples, the number of tuples inside every SW, and –

occasionally – the total number of SWs to consider. Instead, according to the measurement g4, wemodify one or more tuples, leaving unchanged
the temporal relationships among tuples, the number of tuples inside every SW, and the total number of SWs to consider.

As an example, let us consider the fragment of Contact in Table 3, assuming a length 2 for the SW (i.e.we consider i…iþ1). We shall
then have the following SWs, {2010-06-11, 2010-06-12}, {2010-06-12, 2010-06-13}, {2010-06-13, 2010-06-14}, {2010-06-14, 2010-06-15},
and {2010-06-15}, for a grand total of 5 SWs. We are interested in the ATFD ½Contact; fi…iþ1g� Patient-0:25Professional.

Table 2
A fragment taken from the database table Contact.

VT Patient Duration Area Tuple#

2009-04-11 Jackie 20 North 1
2009-04-14 Jackie 20 North 2
2009-04-15 Jackie 15 North 3
2009-04-26 Jackie 40 South 4
2009-04-27 Jackie 40 West 5
2009-04-28 Jackie 30 South 6

For the measurement G3, the FD Patient-Professional holds in the SWs {2010-06-11, 2010-06-12}, {2010-06-13, 2010-06-14},
{2010-06-14, 2010-06-15}, {2010-06-15}: the FD does not hold in the SW {2010-06-12, 2010-06-13}. Consequently, if we delete from
Table 3 Tuple# 3, the remaining SWs are {2010-06-11, 2010-06-12}, {2010-06-12}, {2010-06-14, 2010-06-15}, {2010-06-15}. The FD
holds on all the SWs
remaining after the deletion of Tuple# 3. Thus, the measurement G3 is 1, as we only deleted one tuple (Tuple# 3), obtaining the ATFD
with an error of 1=5 (i.e. 20.00%), which is smaller than the maximum acceptable error of 0.25. The ATFD holds, and the measurement G3

returns G3ð½Contact; fi…iþ1g�Patient-Op; ContactÞ ¼ 1.
For the measurement G4, if we update in Table 3 Tuple# 1 and Tuple# 2, setting the value of the attribute Professional to
“Romina”, the ATFD will hold in the SWs {2010-06-11, 2010-06-12}, {2010-06-12, 2010-06-13}, {2010-06-13, 2010-06-14}, {2010-06-14,
2010-06-15], and {2010-06-15}, that is in 5 out of the 5 SWs. Thus, the measurement G4 is 2, as we modified two tuples (Tuple# 1 and
Tuple# 2) to obtain the ATFD. Changing one tuple only, whatever the tuple is, does not suffice to obtain the required TFD:
G4ð½Contact; fi…iþ1g�Patient-Op; ContactÞ ¼ 2

We obtain the ATFD with an error of 2=5 (i.e. 40%), which is greater than the maximum acceptable error of 0.25: as a consequence,
according to G4 the ATFD does not hold with the required threshold of 25%.

5. Mining minimal ATFDs

We now consider how to mine minimal ATFDs both with granularity and sliding window groupings. While mining Gran grouping
ATFDs can be mapped to mine corresponding suitable AFDs, mining SW grouping ATFDs requires ad hoc algorithms. The approach we
propose here differs from the one in [14], where we performed both Gran and SW grouping ATFDs through an AFD analysis by the TANE
[10] tool.

5.1. Mining granularity-based ATFDs

Let us now consider how we can reduce the evaluation of minimal Granularity-based ATFDs to the evaluation of corresponding
minimal AFDs: such approach allows us to use well-known algorithms for AFD and to characterize the complexity of mining minimal
ATFD. In general, we proceed in three different steps: in the first one (PreAFD), the given relation is pre-processed to represent, by a
suitable attribute, the granule/window each tuple belongs to. Next, we have an (atemporal) relation to consider for the usual AFD
extraction (AFD phase). Finally, a suitable post-processing phase (PostAFD) is needed to properly identify and represent the mined ATFDs.

As the temporal grouping of a granularity Gran is a bijective function, we may conclude that the set E of tuples not satisfying the
considered granularity-based ATFD, may be partitioned in subsets EGðiÞ, where EGðiÞ is the set of tuples of E having their valid time contained
in the granule G(i).

r
Thus, it holds jE

R
j ¼ G

U
4ð½r;

VT
Gran�X-Y ; rÞ.

Given an instance with schema ¼ [f g, a granularity Gran and a threshold ε, the preprocessing phase (see Algorithm 1 PreAFD-G (r,G))
builds up the relation preAFD with schema R0 ¼ U [fcodGrang: the attribute VT is replaced by the attribute codGran. The tuples of preAFD
have the same value for codGran if and only if they belong to the same temporal granule of the given granularity Gran. More
formally, for each tuple t of r, we apply the function f ðGran; tÞ : r↦preAFD, where f ðtÞ½U� ¼ t½U� and f ðtÞ½codGran� ¼ i, with t½VT�AGranðiÞ.
Algorithm 1 shows the pseudo-code of the preprocessing phase, having complexity OðjrjÞ.

Algorithm 1. PreAFD-G(r,G).

Input: r,G
Output: preAFD
1 preAFD’∅; /n preAFD has schema U [codGran n/
2 forall the tiAr do
3
4
5

t0½U�’ti½U�;
t0½codGran�’f ðG; tiÞ;
preAFD’preAFD [t0

�������
6 end forall
7 return preAFD

On the obtained relation preAFD, the next phase derives the minimal AFDs, according to the threshold ε. Let outAFD be the set of the
found AFDs. As discussed in [10], the complexity of the corresponding algorithm is Oð2jRjÞ, since the number of attributes of preAFD is that
of R.

Table 3
A fragment taken from the database table Contact.

VT Patient Professional Tuple#

2010-06-11 Claudia Mike 1
2010-06-12 Claudia Mike 2
2010-06-13 Claudia Romina 3
2010-06-14 Claudia Romina 4
2010-06-15 Claudia Romina 5

The error tuples of the ATFD ½r;Gran�X-Y are, through the correspondence function f, the same as those of the AFD codGran;X-Y on
preAFD. As preAFD and r have the same cardinality (f is total and injective), we have g4ð½r;Gran�X-Y ; rÞ ¼ g4ðcodGran;X-Y ; preAFDÞ.
Indeed, for each Gran(i) for the set ri ¼ ft½U�jtAr4 t½VT �AGranðiÞg we can compute G4ðX-Y ; riÞ and, by definition, ∑iG4ðX-Y ; riÞ ¼
G4ð½r;Gran�X-Y ; rÞ. According to the definition of f(t), we have that the set r0i ¼ ft0½U�jt0ApreAFD4 t0½codGran� ¼ ig ¼ ri; thus
G4ðX-Y ; r0iÞ ¼ G4ðX-Y ; riÞ and it holds G4ðcodGran;X-Y ; preAFDÞ ¼∑iG4ðX-Y ; r0iÞ ¼ ∑iG4ðX-Y ; riÞ ¼ G4ð½r;Gran�X-Y ; rÞ.

As jrj ¼ jpreAFDj, we may conclude that g4ð½r;G�X-Y ; rÞ ¼ g4ðcodGran;X-Y ; preAFDÞ.
The last phase (post-processing) maps the derived AFDs into the minimal ATFDs holding in r. In Algorithm 2 PostAFD-G maps the AFDs

of the form codGran;X-
ε
Y into the ATFDs of the form ½r;Gran�X-ε Y . The complexity of the algorithm is OðjoutAFDjÞ: as the number

(joutAFDj) is of order Oð2jRjÞ, Algorithm 2 has complexity Oð2jRjÞ.

Algorithm 2. PostAFD-G(outAFD).

Input: outAFD
Output: postAFD

1 postAFD’∅; /n postAFD is a set of ATFDs of the form codGran;X-
ε
Y n/

2 forall the codGran;X-
ε
YAoutAFD do

3 j postAFD¼ postAFD [ð½r;Gran�X-ε YÞ
4 end forall
5 return postAFD

It is straightforward to observe that these three phases allow us to derive all the minimal ATFDs with grouping based on granularity
Gran, and holding in r with threshold ε.

Finally, a strategy (see Algorithm 3) is needed to evaluate how to mine a relation r according to a set of temporal granularities. Let us
focus on ð

FinerThan
GranSet; !

Gran
Þ, a set

Gran
of continuous and total granularities

Gr
with

an
a total order according to

Gr
relation

an
FinerThan

FinerThan
[22].

Gran
Informall

Gran
y,

relation ð 1; 2Þ holds if each granule of granularity 1 is contained in a granule of 2. If ð 1; 2Þ,
then

1. rF ½r;Gran2�X-ε Y) rF ½r;Gran1�X-ε Y .
2. (Pruning condition) rj ½r;Gran1�X-ε Y) rj ½r;Gran2�X-ε Y .

In Algorithm 3 StrategyG(r, GranSet) starts to mine, according to order ! , the ATFDs from the minimal (finest) granularity to the
coarsest one in ðGranSet; !Þ. In mining the ATFDs with coarser granularity, we shall find those ATFDs with antecedent X0 +X, where X is
the antecedent of a ATFD at a finer granularity. If there is no ATFD at granularity Grani, for the pruning condition no ATFD will be mined at
any granularity Gran(j) such that GranðiÞ!GranðjÞ. In Algorithm 3 StrategyG has complexity Oð2jRjÞ, since the three phases PreAFD-AFD-
PostAFD are executed at most jGranSetj times.

Algorithm 3. StrategyG(r, GranSet,ε).

Input: r;GranSet; ε
Output: ATFDs
1 currGran’inf fGraniAGranSetg;
2 ATFDs’∅;
3 while currGrana∅ do
4
5
6
7
8
9
10
11
12

ATFD’f½r; currGran�X-ε Y found in r executing PreAFD�G; AFD; and PostAFD�Gg;
if ATFD¼∅ then
j return ATFDs

else
ATFDs’ATFDs [ATFD;

GranSet’GranSet�currGran; =n ATFDs isthesetofallminimal ATFDs n=

; =n½r;Grani�X-ε Y validin r for granularities AGranSet currGran’inf fGraniAGranSetg

�������
end if

��������������������
13 end while
14 return ATFDs

ε

5.2. Mining SW-based ATFDs

For SW grouping, in [14] we adopted an approach in 4 phases: PreAFD-G, AFD, PostAFD-G, and StrategyG. We introduce here a novel approach
for SW-based analysis, which does not need any PreAFD and PostAFD step. In the following we will focus on G3 and g3 error measures.

We aim at verifying whether the ATFD ½R; t�Group�X-Y holds over an instance r of a temporal relational schema RðU; VTÞ. First, we
define the relation ValueCountðr; vÞ ¼ fðy; vt; cÞjc ¼ jftjt Ar 4 t½VT � ¼ vt 4t½X� ¼ v4 t½Y � ¼ ygjg, which, given the instance r of the schema R
and a tuple v of values for attributes X, returns triples ðy; vt; cÞ. A triple ðy; vt; cÞ belongs to ValueCountðr; vÞ iff there exists exactly c40
distinct tuples t Ar where t½X� ¼ v4 t½Y� ¼ y4 t½VT � ¼ vt.

Given r as above, a set r0Dr is minimal for ½R; SlidingWindowðkÞ�X-Y iff r–r0 fulfills ½R; SlidingWindowðkÞ�X-Y , and for every r″� r0 we
have that r–r″ does not satisfy ½R; SlidingWindowðkÞ�X-Y .

In order to identify the ATFD ½R; SlidingWindowðkÞ�X-ε Y we can restrict our analysis to the minimal sets r0: it can be easily observed that
½R; SlidingWindowðkÞ�X-ε Y holds over a given instance r iff there exists a minimal set r0 for ½R; SlidingWindowðkÞ�X-ε Y with jr0jrϵ � jrj. By
restricting our analysis to minimal sets, only, we have to find oneminimal set with minimum cardinality. This allows us to check immediately if an
ATFD ½R; SlidingWindowðkÞ�X-ε Y holds over a given instance of R. Let us consider now the following result over minimal sets:

Lemma 5.1. Given an instance r of a temporal relational schema RðU;VTÞ, for every kAN, for every minimal set
r0Dr for ½R; SlidingWindowðkÞ�X-Y, and for every value v, it holds ValueCountðr0; vÞDValueCountðr; vÞ

Algorithm 4. VerifySW(½R, SlidingWindowðkÞ�X -
ε
Y , r).

Input: ½R; SlidingWindowðkÞ�X-ε Y ; r
Output: TRUE or FALSE
1 σ’0;
2 foreach vAfxj(tArðt½X� ¼ xÞg do
3
4
5
6

σ’σþMinDeleteðValueCountðr; vÞ; kÞ;
if σ4ϵ � jrj then
j return FALSE
end if

���������
7 end foreach

8 return TRUE; /n verify if ½R; SlidingWindowðkÞ�X-ε Y holds over r n/

Lemma 5.1 provides us with the following property: the tuples of r which have the same attribute values for (X; VT) are either totally
deleted or totally kept in a minimal set r0Dr for ½R; SlidingWindowðkÞ�X-Y .

By means of this property, a procedure that verifies ½R; SlidingWindowðkÞ�X-ε Y over r is described in Algorithm 4. By definition, we
have that r does not satisfy ½R; SlidingWindowðkÞ�X-Y iff there exists at least one pair of tuples t; t0 with t½X� ¼ t0½X�4t½Y �a
t0½Y �4 t0½VT ��t½VT �rk.

Thus, we can partition r into r¼ rv1 ;…; rvm , where rvi ¼ ftjtAr4 t½X� ¼ vig (i.e. tuples having the tuple vi of values for attributes X).
For each i, 1r irm, we compute the minimal set r0vi for ½R; SlidingWindowðkÞ�X-ε Y restricted to the set rvi . It follows immediately that

⋃1r irmr0vi represents a minimal set r0 for ½R; SlidingWindowðkÞ�X-ε Y over the whole relation r.
In the procedure, every set rvi of the partition is represented by its ValueCountðr; viÞ relation, which contains the minimum amount of

information needed to determine the cardinality of r0vi .
The whole collection of relations ValueCountðr; viÞ, for 1r irm, can be computed in Oðjrj � log ðjrjÞÞ, by means of a simple counting

aggregation function over r lexicographically ordered and grouped by attributes X;Y ;VT .

am vi ½ ; ð Þ� -
ε

vi j ð ; iÞj j vi j
As
ount of

shown
tuples

in
that

Algorithm
have

4,
to
the
be remo

auxiliary
ved from

function
r to

MinDelete
satisfy R

is applied
SlidingWindow

to each
k X

rel
Y

ation
on r .

ValueCount
Since

ðr; viÞ
ValueCount

and it
r
r
v
eturns

r r
the
, the o
minimum

verall
worst-case complexity is reached when the partition is formed by one set only, namely r, i.e. all the tuples in r assume the same (tuple of)
values for attributes X.

With Oðf ðnÞÞ being the worst case complexity of MinDelete, where n is the size of the input relation, the overall worst case complexity is
Oðjrj � log ðjrjÞþ f ðjrjÞÞ (as we shall see, k does not affect the complexity of MinDelete).

We now have to identify an efficient algorithm to compute the function MinDelete, as described in Appendix A. First, Appendix A.1
describes a quadratic time algorithm version of MinDelete, that allows us to introduce the main ideas behind our solution, such as the
representation of temporal relations by Directed Acyclic Graphs (DAGs): this naive algorithm shows that ½R; SlidingWindowðkÞ�X-ε Y can be
computed in polynomial time for every instance r of R. Next, Appendix A.2 improves the asymptotic complexity of MinDelete, by providing
an Oðjrj � log jrjÞ version of its.

6. Mining clinical data

We developed two running prototypes for off-line analysis: G-ATFDminer (Granularity Approximate Temporal Functional
Dependency Miner) and SW-ATFDminer (Sliding Windows Approximate Temporal Functional Dependency Miner).

6.1. Results for mined granularity-related ATFDs

G-ATFDminer is a Java based system aimed at extracting rules of approximate temporal functional dependency for granularity (Gran)
grouping. We test G-ATFDminer on the psychiatric data set of Section 3.1, and on the phamarcovigilance data set of Section 3.2.

We start by considering the scalability of the implemented software. The parameters of the algorithm are set as follows: ϵ ¼ 0:1; time
granularity set to MONTH.

6.1.1. Performance analysis for GATFDminer
The first analysis refers to tests with a fixed number of rows, but a varying number of attributes. G-ATFDminer was tested on a machine

equipped with a 6 core AMD OpteronTM 4284, and 8 GB of RAM. We use the Ubuntu 12.04 64-bit (kernel 3.2.0-23-generic) operating
system, Java version 1.7.0, and Postgresql 9.1 as DBMS.

By running the G-ATFDminer, we identify some meaningful dependencies on the psychiatric data set we discuss here:

� ½MONTH�GAF Scale-Area: this dependency points out that the state of the patient, expressed by means of the GAF scale, is directly
connected to the geographical area the patient lives in. An urban environment, due to its chaotic nature, could negatively influence the
state of the patient. Since the dependency refers to the month granularity, one may infer seasonal changes of state in patients, too;

� ½MONTH�Patient-GAF Scale: this dependency points out that patients are relatively stable: their state, expressed by the GAF Scale, does
not change within a month;

� ½MONTH�Patient-Operator1: this dependency links the patient to a particular operator (Operator1 is the first person that talks to the
patient during a call or a visit). Patients are more used to talk to the same operator, instead of talking to different ones (strangers);

� ½MONTH�Area-Number of Psychiatrists: this dependency links the geographical area to the number of psychiatrists deployed during
one month: shifts or teams of psychiatrists last for at least one month.

6.1.3. Pharmacovigilance
The most relevant dependency we obtained by running the G-ATFDminer on the pharmacovigilance data set is ½MONTH�

ðSeverity;Duration;Gender;DrugÞ-Dosage. It points out that drug dosage during a therapy, characterized by drug name, patient gender,
duration and the severity (expressed a boolean flag), is likely to be adjusted due to reports about occurrences of adverse reaction. This
means that the occurrences of adverse reaction may be linked to the dosage of a drug during therapies.

6.2. Results for mined SW-related ATFDs

SW-ATFDminer (Sliding Window Approximate Temporal Functional Dependencies Miner) is a Java based software extracting rules of
approximate temporal functional dependencies for sliding window (SW) grouping.

Table 4
Processing time in seconds for the test over 10,000 rows from the psychiatric data set.

Attributes 2 3 4 6 8 10 13 17
Time (s) 3 6 16 47 177 468 1896 48,900

Table 5
Processing time in seconds for the test over 10,000 rows from the pharmacovigilance data set.

Attributes 2 3 4 6 8 10 13 17
Time (s) 2 4 16 108 623 2889 12,150 107,100

Fig. 1. Graphical plot of data from Tables 4 and 5. The red line refers to the theoretical overall complexity of the algorithm; the blue line refers to the experimentally detected
values over the psychiatric data set; the green line refers to the experimentally detected values over the pharmacovigilance data set. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Table 4 depicts the processing time in seconds over the psychiatric data set, consisting of 10,000 rows. Likewise, Table 5 depicts the
processing time in seconds, according to the number of attributes (the number of rows is kept fixed to 10,000) over the pharmacovigilance

data set. Fig. 1 depicts the processing time compared to the theoretical overall complexity of the algorithm.
The second analysis refers to tests with a fixed number of attributes (5 in the example) over the psychiatric data set and over the

pharmacovigilance data set, but with a varying number of rows. Table 6 depicts the processing time in seconds for the psychiatric data set
(5 attributes). Likewise, Table 7 depicts the processing time in seconds for the pharmacovigilance data set (5 attributes): due to the smaller
number of rows in this data set, experiments were performed up to 212 � 100 rows. Fig. 2 compares the processing times with the
theoretical overall complexity of the algorithm. The processing time is directly proportional (linearly) to the number of rows in input. The
estimated complexity is n � log ðnÞ, but by using the pruning strategies, we tear down the processing time close to linear time.

6.1.2. Psychiatric case register

We start by considering the scalability of the implemented software. The parameters of the algorithm are set as follows: ϵ¼ 0:1;
minimumwindow size is 1 day; maximumwindow size is 100 years. This means that the mining algorithm returns the maximumwindow
size for ATFDs to hold within this specified interval.

We now describe some of the mined functional dependencies over the two data sets of Section 3.

6.2.1. Performance analysis for SWATFDminer
The first analysis refers to tests with a fixed number of rows, but a different number of attributes. As in Section 6.1, we tested SW-

ATFDminer on a machine equipped with a 6 core AMD OpteronTM 4284, and 8 GB of RAM. We use the Ubuntu 12.04 64-bit (kernel 3.2.0-
23-generic) operating system, Java version 1.7.0, and Postgresql 9.1 as DBMS.

Table 8 depicts the processing time in seconds over the psychiatric data set, consisting of 10,000 rows. Likewise, Table 9 depicts the
processing time in seconds, according to the number of attributes (the number of rows is kept fixed to 10,000) over the pharmacovigilance
data set: due to the smaller number of attributes in this data set, experiments were performed up to 16 attributes. Fig. 3 depicts the
processing time compared to the theoretical overall complexity of the algorithm.

One may argue that the experimental results (the blue line in Fig. 3) show that by our approach, due to suitable pruning strategies, it is
possible to mine using 25 attributes before having a decay in the performances. Theoretically, this performance decay should occur as the
number of attributes exceeds 10, as depicted by the red line of Fig. 3.

The second analysis refers to tests with a fixed number of attributes (5 in the example) over the psychiatric data set and over the
pharmacovigilance data set, but with a varying number of rows. Table 10 depicts the processing time in seconds for the psychiatric data set (5
attributes). Likewise, Table 11 depicts the processing time in seconds for the pharmacovigilance data set (5 attributes): as before, due to the smaller
number of rows in this data set, experiments were performed up to 212 � 100 rows. Fig. 4 compares the processing times with the

Table 6
Processing time in seconds for the test over 5 attributes from the psychiatric data set.

Rows (2n � 100) 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (s) 14 17 20 23 22 25 28 31 37 66 231 292 535

Table 7
Processing time in seconds for the test over 5 attributes from the pharmacovigilance data set.

Rows (2n � 100) 1 2 3 4 5 6 7 8 9 10 11 12
Time (s) 24 25 25 24 22 26 28 48 48 78 79 132

Fig. 2. Graphical plot of data from Tables 6 and 7. The red line refers to the theoretical complexity of the algorithm; the blue line refers to the experimentally detected values
over the psychiatric data set; the green line refers to the experimentally detected values over the pharmacovigilance data set. The experimental values are much lower than
the theoretical estimation due to suitable pruning strategies. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)

Table 8
Processing time in seconds for the test over 10,000 rows from the psychiatric data set.

Attributes 2 3 4 6 8 10 13 16 26
Time (s) 3 6 8 24 118 224 625 5084 113,820

Table 9
Processing time in seconds for the test over 10,000 rows from the pharmacovigilance data set.

Attributes 2 3 4 6 8 10 13 16
Time (s) 2 8 15 100 238 425 2031 7069

By running the SW-ATFDminer, we identify some meaningful dependencies we discuss here:

� ½133days�HealthStructure-ContactType: Due to the large window of 133 days, this dependency points out that healthcare structures are
specialized in providing particular contact types (that is either scheduled, urgent, or not classified). For example, urgent contacts are
less likely to be registered in community-based structures vs. hospital-based structures.

Rows ð2n � 100Þ 2 4 6 8 10 11 12 13
Time (s) 11 12 17 28 73 93 193 243

Table 11
Processing times in seconds for the test over 5 attributes from the pharmacovigilance data set.

Rows ð2n � 100Þ 2 4 6 8 10 11 12
Time (s) 20 19 22 30 51 67 89

Fig. 4. Graphical plot of data from Tables 10 and 11. The red line refers to the theoretical complexity of the algorithm; the blue line refers to the experimentally detected
values over the psychiatric data set; the green line refers to the experimentally detected values over the pharmacovigilance data set. The experimental values are much lower
than the theoretical estimation due to suitable pruning strategies. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)

theoretical overall complexity of the algorithm. The processing time is directly proportional (linearly) to the number of rows in input. The
estimated complexity is n � log ðnÞ, but by using the pruning strategies, we tear down the processing time close to linear time.

6.2.2. Psychiatric case register
The psychiatric data set consists of 26 attributes. Theoretically, a mining algorithm would need to validate 872,415,232 (i.e. 26 � 225)

functional dependencies: however, after running the pruning operation, only 125,919 have been tested by SW-ATFDminer to obtain 3042
valid rules. By testing only the 0:014% (125; 919=872; 415; 232 ¼ 0:014%) of all the possible ATFDs (that is 1 functional dependency every
6945), SW-ATFDminer allows one to treat an otherwise intractable problem.

Fig. 3. Graphical plot of data from Tables 8 and 9. The red line refers to the theoretical overall complexity of the algorithm; the blue line refers to experimentally detected
values over the psychiatric data set; the green line refers to experimentally detected values over the pharmacovigilance data set. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)

Table 10
Processing times in seconds for the test over 5 attributes from the psychiatric data set.

� ½112days�Patient-GAFScale: Even in this case the window size is very large (112 days). This dependency states that the patient's GAF
score (Global Assessment of Functioning is a numeric scale used by mental health professionals to rate subjectively the
psychopathology severity, the social and occupational functioning of patients) basically is assessed every 3 months, when changes
in the patient's mental condition are observed.

� ½13days�FirstContact-ContactType: This dependency states that, in a window of 13 days, whenever a patient contacts the service for the
first time (FirstContact¼TRUE), the type of that contact is the same for all the patients. This occurs also when the contact is not the first
one (FirstContact¼FALSE). This could be of interest: in fact, both the antecedent and the consequent of the dependency may assume
2 or 3 values, so one could guess, for instance, that the first contact of a patient is usually urgent, and the other contacts are routine/
scheduled ones. This could be considered as an indicator of a good quality of care, as after an urgent contact (usually in an emergency
room), the next contact is scheduled with a short waiting list.

� ½12days�ðGAFScale; PatientÞ-Duration: Over a window of 12 days, this dependency links the patient and the current condition
(measured by the GAF score) to the duration of the contact. It means that, if a patient is scored with a higher functioning (high GAF
score), the duration of the outpatient contact is shorter, since the need for psychological, psycho-pharmacological and social support is
reduced. If a patient has a lower GAF score, the duration of the outpatient contact is longer.

� ½5days�Patient-Referral: This dependency states that, in a window of 5 days, the referral of the service depends on the patient
(typically, the referral is a family member, a neighbor, the police, or the physician). The small window size indicates that the referral of
a contact is strictly linked to the condition of the patient at that particular stage of the disease.

� ½5days�ðDuration;GAFScaleÞ-Professional: This dependency links the duration of the contact and the GAF score of the patient to the
professional involved in the contact. The duration of the contact is longer if the patient is talking to his/her usual professional, while if
talking to an unusual professional, the contact is shorter.

6.2.3. Pharmacovigilance
We selected 19 attributes from the pharmacovigilance (PhV) data set, and processed them by the SW-ATFDminer. Theoretically, a

mining algorithm would need to validate 4,980,736 functional dependencies (i.e. 19 � 218): however, after running the pruning operation,
SW-ATFDminer tested only 49,904 of them.

By running the SW-ATFDminer, we identify some meaningful dependencies we discuss here:

� ½30days�ðDrug;AdverseReactionÞ-Outcome: Due to the large size of the window, this dependency points out that – given an adverse
drug reaction – the outcome does not change. This is of interest for the analyst (i.e.asserting that the suspected drug is indeed the one
that caused the reaction). In this case, it is not completely understood by pharmacologists why this dependency does not hold even for
bigger window sizes.

� ½23days�ðDrug;AdverseReactionÞ-HealthcareRegion: This dependency links a drug and its adverse reaction to the geographical region
where that event has been detected. This dependency is explained as follows. Many reports are related to specific active
pharmacovigilance projects. For example, many reports from the Lombardy region come from a project focusing on the monitoring
of emergency departments: many drug-reaction couples (e.g., bleeding and aspirin) occur several times in the considered data sets due
to this project. Even in this case, the length of the sliding window needs further investigations. Moreover, it is of interest to analyze this
kind of dependency only for those reports which are not related to specific pharmacovigilance projects.

� ½11days�ðDrug; TreatmentDurationÞ-Outcome: This dependency states that the outcome of any adverse reaction induced by a drug can
be linked to the drug itself and to the duration of the treatment. This dependency is similar to the first one. In this case, it is interesting
to observe that, given a drug, both the induced adverse reaction and the duration of the treatment induce a dependency with respect to
the outcome. This could confirm that the same drug may produce different outcomes, according to the time span of the treatment.

� ½6days�AdverseReaction-Severity: This dependency links the reaction to its severity. It is acknowledged by pharmacologists that a
reaction is usually severe/not severe regardless of the associated drug. This feature holds even in this case, where severity is associated
with the overall report, possibly containing several reactions for the same drug.

� ½5days�ðATC;AdverseReactionÞ-DrugRole: The ATC (Anatomical Therapeutic Chemical) classification system is widely used to classify
drugs. ATC classifies drugs into different groups, according to the organ or system on which they act, and/or their therapeutic and
chemical characteristics. This dependency links the higher level of this classification (e.g. cardiovascular system, dermatology, central
nervous system), and the observed adverse reaction to the drug role (e.g. suspected of being the cause of the reaction, or just
contemporary). This dependency may be explained by the “notoriety” of a reaction with respect to a group of drugs. For example, a
hypertensive drug is expected to possibly induce hypotension, an anti-arrhythmic one may cause bradycardia. The short width of the
sliding window could be explained by the irregular flow of reports and by the fact that different types of reports come in different time
periods. Even in this case, the found window size has to be studied and deeply considered by pharmacologists.

7. Conclusions

In this paper, we introduced and discussed approximate temporal functional dependencies, with their related algorithms and clinical
data mining issues. More precisely, we discussed how to mine pure temporally grouping temporal functional dependencies. We
considered both granularity-based and sliding window temporal groupings. We applied ATFD mining to two different clinical data sets,
related to psychiatric patient management and to pharmacovigilance. ATFDs proved to be an interesting tool for mining clinical data and
the derived dependencies have been discussed as for their clinical relevance.

As a future work, we plan to extend mining techniques to other kinds of temporal functional dependencies, according to the framework
proposed in [7]. Moreover, a tuning of these techniques for specific temporal clinical data will be considered. In particular ATFDs could be
the result of specific tools within an integrated suite of (temporal) data mining tools for clinical data, comprising both temporal
dependencies and temporal association rules.

Conflict of interest statement

None declared.

Appendix A. The function MinDelete

This appendix describes two implementations for the MinDelete function: Appendix A.1 describes a naive implementation, while
Appendix A.2 describes a smarter implementation.

A.1. A naive MinDelete function

Function MinDelete of Algorithm 5 receives as input a relation r with schema RðY ; VT ; CÞ; this relation stores, for a given tuple of values for
attributes X, the number C of tuples, which share the same value for the attribute Y at the same valid time VT in the original instance r.

Algorithm 5. MinDeleteNaive(r ; k).

Input: r ; k
Output: DAG_Shortest_PathðV ; E;W ; S; f Þ
1 / n r is supposed to contain only tuples ðy; vt; cÞ where y is a value in the domain of Y, and bothvt and c are natural

numbers n /
2 assign to y a value ADomðYÞ;
3 s’ðy;mintA rt½VT ��k�1;0Þ;
4 e’ðy;maxtA rt½VT �þkþ1;0Þ;
5 V’r [fs; eg;
6 E’fðs; tÞjtArg [fðt; eÞjtArg [fðt; t0Þjt; t0Ar4t½VT �ot0½VT �4ðt0½VT ��t½VT �4k3 t½Y � ¼ t0½Y �Þg;
7 foreach ðt; t0ÞAE do
8 j Wðt; t0Þ’ ∑

t″A r4 t″a t0 4 t½VT�o t″½VT�r t0 ½VT �
t″½C�

9 end foreach
10 return DAG_Shortest_PathðV ; E;W ; S; f Þ

Given such relation r , the algorithm computes the minimum number of tuples t, with t½X� ¼ x, to be deleted from r in order to have the
TFD ½R; SlidingWindowðkÞ�X-Y to hold over the remaining tuples of r that share the same tuple x of values for t½X�. That is, Algorithm 5
looks for a minimal set r0xDrx for ½R; SlidingWindowðkÞ�X-Y .

The procedure builds a DAG with positive weights on the edges. The nodes of G represent tuples of the input relation, and have two
auxiliary nodes s and e. The set E of edges and their respective weights W are defined as follows:

� there is one edge from s to every tAr, and one edge from every tAr to e;
� one edge connects two tuples t; t0Ar, iff the two tuples with subsequent VTs (t½VT �ot0½VT �) do not create a conflict with respect to

½R; SlidingWindowðkÞ�X-Y . This occurs when either t½Y � ¼ t0½Y � or t0½VT ��t½VT �4k;
� the weight of every edge ðt; t0Þ is the number of tuples that must be deleted if all the tuples represented by t together with all the tuples

represented by t0 will be kept in the final solution and no other tuples are in between, with respect to their valid time. In particular,
when considering tuples within the sliding window, we cannot have tuples between t½VT � and t0½VT � with the same corresponding
values for attributes X and different values for Y (i.e. violating the dependency).

Every path from s to e in the DAG describes one possible “deletion-strategy”. Every edge indicates that the two tuples may coexist without
violating the dependency. If an edge e¼ ðt; t0Þ is chosen in the shortest path between s and e, it means that t and t0 are kept in r, and thus all
the tuples of the DAG in-between them are deleted. The number of such deleted tuples is represented by the weight of the edge e.

As an example, let us consider in Fig. A1 the edge between nodes tiþ1 and tiþ6. Tuples tiþ2; tiþ3;…tiþ5 will be deleted. Every path from
s to e guarantees that ½R; SlidingWindowðkÞ�X-Y is satisfied by all the remaining tuples sharing the same tuple x of values for attributes X.

Fig. A1. A fragment of the DAG created by procedure MinDelete.

Indeed, all the edges on a path guarantee that the two connected nodes represent tuples that can be in a relation satisfying the given
temporal functional dependency. Moreover the sum of the weights on every path from s to e is exactly the number of the tuples to be
deleted, if the corresponding strategy would be adopted. Finding the weighted shortest path from s to e in the DAG corresponds to
identifying the minimum number of tuples to be deleted to make rx consistent with ½R; SlidingWindowðkÞ�X-Y , i.e. considering only those
tuples with the given (tuple of) values for attributes X.

The complexity of such a procedure is Oðjrj2Þ, and it is determined by the worst case complexity to compute the weights for the edges.
Such a computation requires, in the worst case, a quadratic parse of the original relation r: this dominates the overall complexity for every
single source shortest path procedure used to compute the output value. We shall see in the next section how such weights can be
incrementally computed just in time, tearing down the complexity of the whole procedure by exploiting the particular structure of the
generated DAG.

A.2. A smart MinDelete function

The procedure MinDelete can be improved with respect to the asymptotic complexity analysis, obtaining the procedure described in
Algorithm 6. The soundness and completeness of such a procedure is given by Lemma A.1, which can be proved by contradiction.

Lemma A.1. Given a shortest path P ¼ s; t1; …; tm; e in the DAG builtup according to Algorithm 5, for every pair of consecutive nodes ti; ti þ 1 in P
there does not exist a path P0 in the DAG with jP0j41 and P0 ¼ ti; t01; …; t0m0 ; ti þ 1.

This result strongly depends on how the weights are computed in the DAG, and informally it enables us to disregard all the edges that can
lead to a longer path when computing the shortest path through the function SHP. SHP computes the cost of the shortest path between

two given nodes. For example, in the DAG of Fig. A1, the edge ðti; ti þ 7Þ can be deleted without affecting any value for every shortest path.
Indeed, looking at the edge weights we observe that

Wðti; ti þ 7Þ ¼∑i
j
þ
¼
6
i þ 1tj½C�4Wðti; ti þ 4ÞþWðti þ 4; ti þ 7Þ ¼∑i

j
þ
¼
3
i þ 1tj½C�þ∑i

j
þ
¼
6
i þ 5tj½C�

Thus, every path featuring ðti; ti þ 7Þ is not the shortest one, since such an edge may be replaced by the edge pairs ðti; ti þ 4Þ; ðti þ 4; ti þ 7Þ, to
obtain a path with a lower weight. Corollary 1 follows from this result.

Corollary 1. Given a shortest path P ¼ s; t1; …tm in the DAG from s to any node tm AV , then either tm½VT�� tm� 1½VT�4k, or for every t0 with
tm� 1½VT�ot0½VT�otm½VT�, we have t0½Y �atm½Y�.

This means that every node tmAV has either

� a predecessor in its shortest path outside the sliding window or;
� an immediate predecessor among the tuples with the same value for attribute Y in the sliding window.

We call such a tuple, if it exists, the minimal window predecessor of tm. Given a node t, we say that t0, with t½VT ��t0½VT �4k, is its
minimal-external predecessor if and only if for every t″ with t½VT ��t″½VT �4k, we have SHPðs; t″ÞþWðt″; tÞZSHPðs; t0ÞþWðt0; tÞ.

Corollary 2 completes the needed properties for our procedure. It can be proved by contradiction by looking at the properties of the
weights in the DAG.

Corollary 2. For every pair of tuples t; t0 with t½VT �rt0½VT �, let t and t 0 be the minimal external predecessors of t and t0 respectively: then, it
holds t ½VT �rt 0½VT �.

Suppose that we are looking for a given node t. Properties highlighted by the two corollaries 1 and 2 restrict the value of SHPðs; tÞ to
minððSHPðs; t0ÞþWðt0; tÞÞ;ðSHPðs; t″ÞþWðt″; tÞÞ. Thus, t0 is the minimal-external predecessor of t, and t″ is the minimal-window predecessor
of t (if any).

Algorithm 6. MinDelete(r ; k).

Input: r ,k
Output: Min
1 optimized version for MinDelete; /n r contains only tuples ðy; vt; c; lc; pw; pwc; fw; shpÞ wherey, vt andc are defined as in

Algorithm 5. Attributeslc, pw, pwc, fw andshp are natural numbers. n/
2 for i¼ 1 to jr j do
3
4
5
6
7
8
9

if i¼ 13ti�1½VT �oti½VT � then
Count’0; j’i;

while tj½VT � ¼ ti½VT �4 jr jrjdo
j Count ¼ Countþtj½C�
end while

���������
end if
ti½LC�’Count

�����������������
10 end for
11 ; /n T is assumed to be a balanced binary search tree. Each node of T is ordered on the field key which assumes

values in the domain of y and contains attributes idx and bonus which are natural numbers. n/
12 T’∅;Count’0;
13 for i¼ jr j down to 1 do

14
15
16
17
18
19
20
21
22
23
24

ti½PW �’NIL;n’T :searchðti½Y�Þ;
if naNIL then
if tn½idx�½VT ��ti½VT �rk then
j tn½idx�½PW �’i; tn½idx�½PWC�’Count�n½bonus�
end if
T :deleteðti½Y�Þ

����������
end if
n’NewNodeðÞ;n½key�’ti½Y�;n½idx�’i;n½bonus�’Countþti½C�; T :insertðnÞ;
if i413 ti½VT �4ti�1½VT � then
jCount’Countþti½LC�
end if

���������������������������
25 endfor
26 foreach tAr do
27 j t½FW� ¼mintj A r4 t½VT�Z tj ½VT �4 t½VT�� tj ½VT �rkj

28 foreach
29 Ext’Win’0;
30 for i¼1 to jr j do
31
32
33
34
35
36
36
37
38
39
40
41
42
43
44
45
46
47

OutValue’Extþti½LC��ti½C�;
if ti½PW �aNIL then
j InValue’tt½PW �½SHP�þti½PWC�; ti½SHP�’minðInValue;OutValueÞ
else
j ti½SHP�’OutValue

end if
if io jrj4 ti½VT �otiþ1½VT � then
Win’Winþti½LC�; Ext’Extþti½LC�;
if tiþ1½FW �4ti½FW � then
for j¼ ti½FW� to tiþ1½FW ��1 do
Ext’minðExt;Winþtj½SHP��tj½LC�Þ;
if tj½VT �otjþ1½VT � then
j Win’Win�tj½LC�
end if

������������
end for

�����������������
end if

������������������������
end if

��
48 end for
49 Min’tjrj½SHP�;Count’0;
50 for i¼ jr j�1 down to 1 do
51
52
53
54

if tiþ1½VT �4ti½VT � then
j Count’Countþtiþ1½LC�
end if
Min’minðMin; ti½SHP�þCountÞ;

����������
55 endfor
56 return Min

The procedure described in Algorithm 6 makes use of these properties to tear down the complexity of procedure MinDelete to
Oðn � log ðnÞÞ. The procedure requires that the tuples are ordered lexicographically on VT ;Y (given an arbitrary order on Y) in the input
relation r. In the following, we assume that retrieving a tuple tj given its index j has a computational cost log ðjr jÞ, by supposing that there
is some sort of an indexing structure (e.g. a B-tree) built up on the indexes of the tuples, and that the computational cost of computing
such a structure is Oðjr j � log jr jÞ.

Moreover, the procedure assumes that in the input relation there are five additional auxiliary not-initialized attributes LC, PW, PWC, FW
and SHP. These integer attributes have the following meaning:

� LC means “level count”, and it represents the sum for the C attribute for all the tuples that share the same VT with the current one
(including t itself). Formally

t½LC� ¼ ∑
t0 A r;t½VT � ¼ t0 ½VT�

t½C�

Such an attribute is introduced in order to improve the readability of the code: the attribute is computed at the very beginning of the
procedure and for every t Ar with a simple single scan of r (lines from 2 to 10 in Algorithm 6).

� PW stands for “predecessor in window” and it is the index for which tt½PW � is the minimal-window predecessor of t in r .
Formally (recall that tuples in r are lexicographically ordered on VT ;Y):

t½PW � ¼

max i
tiAr4 t½Y � ¼ ti½Y �
4t½VT ��ti½VT �rk

!
if

(tArðt½Y � ¼ ti½Y�
4 t½VT ��ti½VT �rkÞ

NIL otherwise

8>>>><
>>>>:

� PWC represents the weight of the edge between a node t and its minimal window predecessor (if any):

t½PWC� ¼ Wðtt½PW �; tÞ if t½PW �aNIL
NIL otherwise

�

Both PW and PWC are computed in the second for-loop of the algorithm (lines from 13 to 25 of Algorithm 6), but their computation is
much more complex with respect to the one for LC values.
In fact, a naive way to compute them may lead to a quadratic complexity, making all our efforts unfruitful. On the contrary, the values
PW and PWC can be computed for all the tuples t Ar in Oðjr j � log jr jÞ by using a balanced tree T, say a B-tree, as an auxiliary
structure (any other data structure where the computational cost to search/insert/delete is logarithmic will perform the same way).
A

Y
node

n
n
idx
of such a tree consists of a key value n½key�, which repr

Y
esents a value in the domain of Y, given an arbitrary order

n
of the
bonus

values
for . ½ � represents the index of the last tuple with attribute equal to the key encountered in the current window. ½ � is a
value to easily compute the value of PWC. During the procedure, for every node nAT we guarantee that for every n0 A T , with nan0,
n½key�an0½key�. This second for-loop that computes the values for attributes PW and PWC for all the tuples t Ar, works backward from
the tuple with the maximum value for the attributes VT ; Y. At every step, PW is assigned to be NIL for the current tuple ti, and the key
ti½Y � is searched into T. If there exists a node nAT with n½key� ¼ ti½Y � and tn½idx�½VT��ti½VT�rk, then ti is the minimal-window predecessor
of tn½idx�, and tn½idx�½PW � ¼ i.
The value tn½idx�½PWC� is computed as follows: at every step Count is increased by the value ti½LC� of the current tuple if it represents the first
tuple of all the tuples with the same VT. When we insert a node n, we store into n½bonus� the current value of Count, which is the sum of all the C
attributes for the tuples already encountered. The weight tn½idx�½PWC� ¼Wðti; tn½idx�Þ is simply computed as Count �n½bonus�.
At the end of the iteration, n is removed from the tree and a new node for the current tuple is inserted into T. For every iteration we have a

constant number of retrieve/search/delete/insert operations, each one costing Oðlog jr jÞ. The loop completes after Oðjr j � log jr jÞ operations.
� FW stands for “first in window”, and for a tuple t it represents the minimum index j such that a tuple tj exists for which

0rt½VT ��tj½VT �rk.
The third for-loop of the algorithm (lines from 26 to 28 of Algorithm 6) computes j for every tuple tAr . Algorithm 6 performs jr j Min
operations on the indexes, by using the value t½VT � for the current tuple t. We recall that the index i of every tuple is given according to
the lexicographical order on VT ;Y . Then, for every ir j we have ti½VT �rtj½VT �. The complexity of the third loop is Oðjr j � log jrjÞ.
The fourth for-loop of the algorithm (from line 30 to 48 of Algorithm 6) for every tuple tAr computes SHP. At the end of the fourth
loop, we require that t½SHP� ¼ SHPðs; tÞ for every tAr .
We use two additional variables, namely Ext and Win, belonging to the set of natural numbers. Ext represents the SHP value for the
minimal-external predecessor for the tuple t. Win represents the sum of all the attributes C for all the tuples t0 of the current tuple t
with t½VT ��t0½VT �rk. For every tuple, the value of the attribute SHP is the minimum between the minimal-external predecessor and the
SHP of the minimal-windows predecessor (if any) plus their respective weights. At the end of every iteration, we update – if needed –

the value Ext (lines from 37 to 47). Then we collect all the tuples that are in the current window, and that will not be included into the
next one. Such a set of tuples is non-empty iff tiþ1½FW �4ti½FW� where ti is the current tuple.
According to the property expressed by Corollary 2, the set containing the candidates for minimal-external predecessor is restricted to
the current tuple, and the tj ones, with j¼ ti½FW �;…; tiþ1½FW ��1. Values for tj½SHP� ¼ SHPðsjÞ are already defined, and the value for
Wðtj; tiþ1Þ is computed by the most internal for-loop (lines from 40 to 45) by means of Win. A graphical representation of this for-loop
is depicted in Fig. A2.
Having SHPðs; tÞ for every tAr , we still have to determine the cost of the shortest path of the entire graph, i.e. SHPðs; f Þ. This is done by

Fig. A2. A graphical representation of how the minimal external predecessor value Ext is updated when ti þ 1½FW�4ti½FW�. The new value of Ext is given by the minimum
among the values associated with dashed edges (such operation is performed iteratively by the most internal for-loop of lines from 40 to 45 in Algorithm 6).

the fifth and last for-loop (lines from 50 to 55 of Algorithm 6). Basically, this loop moves backward from the tuple tAr with maximum
value for the attributes VT and Y, computing the distance between the current tuple and f: at the end, the minimum value is returned.
The complexity of the fifth loop is Oðjr jÞ and the overall complexity of the procedure MinDelete shown in Algorithm 6 is Oðjr j � log jr jÞ.
In conclusion, the complexity of procedure VerifySW is Oðjr j � log jr jÞ: this complexity does not depend on the size of the sliding window
k, which is provided as input. However, the sliding window size may assume any positive value: we are interested in finding all the
independent ATFDs ½R; SlidingWindowðkÞ�X-ε Y with the maximum sliding window size, where only ϵ and r are provided by the user.
Indeed, k is the maximum value, for which the approximate temporal dependency ½R; SlidingWindowðkÞ�X-ε Y holds over r.

At the beginning of this section we observed that, in the worst case, the number of couples (X,Y) to be tested is exponential [23]. The
size k of the sliding window is provided as a parameter, which does not affect the complexity of the procedure. One may ask if testing all
the possible sliding windows in the interval ½0;maxtA rt½VT �� is reasonable: in fact, testing all the possible sliding windows would increase
the overall complexity, depending in this case on the value maxtA rt½VT �. However, such a test is not necessary in this case.

Lemma A.2 (Downward closure property). For every temporal relation R, for every couple of attributes X;Y, for every instance r of R, for every
0rϵr1, and for every k, if ½R; SlidingWindowðkÞ�X-ε Y holds over r, then for every k0rk we have that ½R; SlidingWindowðkÞ�X-ε Y holds over r.

Lemma A.2 asserts that finding the maximum k, if it exists, for which ½R; SlidingWindowðkÞ�X -
ε
Y holds over r, may suffice. Then, by

having X, Y and ϵ fixed, we perform a dichotomic search by the procedure VerifySW, starting from k¼maxtA rt½VT �, till we either terminate
unsuccessfully or find the maximum sliding window k for which ½R; SlidingWindowðkÞ�X-ε Y holds over r. The complete procedure is given
in Algorithm 7.

VerifySW can be applied at most log ðmaxtA r t½VT �Þ times. Finally, let kmax ¼maxtA rt½VT � be the maximum value for the attribute VT in
the instance r; the encountered complexity in finding the maximum size k (if any) for which ½R; SlidingWindowðkÞ�X-ε Y holds over r is
jrj � log ðjrjÞ � log ðkmaxÞ, by assuming that the VT is non-negative, and kmax is expressed in the lower time-granule of its temporal domain (e.
g. if VT is a year–month–day date then kmax is expressed in days).

Algorithm 7. MaxSlidingWindow(R;X; ϵ;Y ; r).

Input: R;X; ϵ;Y ; r
Output: k

1 ; / n A procedure for the dichotomic search of the maximum size k, if it exists, such that [R; SlidingWindowðkÞ�X-ε Y
holds over r. n /

2 kmax’maxtA r t½VT �]; kmin’0;
3 while kmaxakmin do

4
5
6
7
8
9
10
11
12
13
14
15

if VerifySWð½R; SlidingWindowðkmaxÞ�X-ε Y ; rÞ then
j return kmax

end if
if NOT VerifySWð½R; SlidingWindowðkminÞ�X-ε Y ; rÞ then
j return NIL

end if
k’⌈kmax þkmin

2 ⌉;

if VerifySWð½R; SlidingWindowðkÞ�X-ε Y ; rÞ
j kmin’k

else
j kmax’k

end if

������������������������������
16 end while

17 if VerifySWð½R; SlidingWindowðkmaxÞ�X-ε Y ; rÞ then
18 j return kmax

19 else
20 j return NIL
21 end if

References

[1] C. Combi, G. Pozzi, R. Rossato, Querying temporal clinical databases on granular trends, J. Biomed. Informatics 45 (2) (2012) 273–291.
[2] C. Combi, B. Oliboni, G. Pozzi, Modeling and querying temporal semistructured data, in: S. Kozielski, R. Wrembel (Eds.), Annals of Information Systems: New Trends in

Data Warehousing and Data Analysis, vol. 3, Springer ScienceþBusiness Media, New York, NY, USA, 2009, pp. 299–323.
[3] J. Wijsen, Temporal FDs on complex objects, ACM Trans. Database Syst. 24 (1) (1999) 127–176.
[4] V. Vianu, Dynamic functional dependencies and database aging, J. ACM 34 (1) (1987) 28–59.
[5] C.S. Jensen, R.T. Snodgrass, M.D. Soo, Extending existing dependency theory to temporal databases, IEEE Trans. Knowl. Data Eng. 8 (4) (1996) 563–582.
[6] X.S. Wang, C. Bettini, A. Brodsky, S. Jajodia, Logical design for temporal databases with multiple granularities, ACM Trans. Database Syst. 22 (2) (1997) 115–170.
[7] C. Combi, A. Montanari, P. Sala, A uniform framework for temporal functional dependencies with multiple granularities, in: D. Pfoser, Y. Tao, K. Mouratidis, M.

A. Nascimento, M.F. Mokbel, S. Shekhar, Y. Huang (Eds.), SSTD, Lecture Notes in Computer Science, vol. 6849, Springer, Berlin, Heidelberg, 2011, pp. 404–421.
[8] J. Kivinen, H. Mannila, Approximate inference of functional dependencies from relations, Theor. Comput. Sci. 149 (1) (1995) 129–149.
[9] Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen, Efficient discovery of functional and approximate dependencies using partitions, in: S.D. Urban, E. Bertino (Eds.), ICDE,

IEEE Computer Society, Los Alamitos, California, 1998, pp. 392–401.

http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref1
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref2
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref2
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref2
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref2
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref2
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref3
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref4
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref5
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref6
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref7
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref7
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref8
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref9
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref9

[10] Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen, TANE: an efficient algorithm for discovering functional and approximate dependencies, Comput. J. 42 (2) (1999) 100–111.
[11] S. Lopes, J.-M. Petit, L. Lakhal, Functional and approximate dependency mining: database and fca points of view, J. Exp. Theor. Artif. Intell. 14 (2–3) (2002) 93–114.
[12] R. Bellazzi, C. Larizza, P. Magni, R. Bellazzi, Temporal data mining for the quality assessment of hemodialysis services, Artif. Intell. Med. 34 (1) (2005) 25–39.
[13] L. Sacchi, C. Larizza, C. Combi, R. Bellazzi, Data mining with temporal abstractions: learning rules from time series, Data Min. Knowl. Discov. 15 (2) (2007) 217–247.
[14] C. Combi, P. Parise, P. Sala, G. Pozzi, Mining approximate temporal functional dependencies on pure temporal grouping, in: DMBIH, IEEE Workshop Proceedings,

IEEE, Los Alamitos, California. 2013, pp. 258–265.
[15] E.F. Codd, Normalized data structure: a brief tutorial, in: E.F. Codd, A.L. Dean (Eds.), SIGFIDET Workshop, ACM, New York, NY, 1971, pp. 1–17.
[16] J. Wijsen, Temporal dependencies, in: L. Liu, M.T. Özsu (Eds.), Encyclopedia of Database Systems, Springer, USA, 2009, pp. 2960–2966.
[17] C. Combi, A. Montanari, G. Pozzi, The T4SQL temporal query language, in: M.J. Silva, A.H.F. Laender, R.A. Baeza-Yates, D.L. McGuinness, B. Olstad, Ø.H. Olsen, A.O.

Falcão (Eds.), CIKM, ACM, New York, NY, 2007, pp. 193–202.
[18] World Health Organization and WHO Collaborating Centre for International Drug Monitoring, The Importance of Pharmacovigilance, Safety Monitoring of Medicinal

Products, World Health Organization, Geneva, Switzerland. 2002.
[19] M. Sordo, G. Ochoa, S.N. Murphy, A pso/aco approach to knowledge discovery in a pharmacovigilance context, in: GECCO (Companion), 2009, pp. 2679–2684.
[20] R. Meyboom, M. Lindquist, A. Egberts, I. Edwards, Signal selection and follow-up in pharmacovigilance, Drug Saf. 25 (6) (2002) 459–465.
[21] MedDRA MSSO, About MedDRA, in: About MedDRA, 2010. URL 〈http://www.meddramsso.com/public_about_meddra.asp〉.
[22] C. Combi, M. Franceschet, A. Peron, Representing and reasoning about temporal granularities, J. Log. Comput. 14 (1) (2004) 51–77.
[23] H. Mannila, K.-J. Räihä, On the complexity of inferring functional dependencies, Discrete Appl. Math. 40 (2) (1992) 237–243.

http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref10
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref10
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref11
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref12
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref13
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref15
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref16
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref17
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref17
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref20
http://www.meddramsso.com/public_about_meddra.asp
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref22
http://refhub.elsevier.com/S0010-4825(14)00206-6/sbref23

	Mining approximate temporal functional dependencies with pure temporal grouping in clinical databases
	Introduction
	Background and related work
	Temporal functional dependencies
	Approximate functional dependencies

	Motivating medical domains
	Psychiatric case register
	Pharmacovigilance
	The motivating example

	Approximate temporal functional dependencies
	ATFD with Gran grouping
	ATFD with SW grouping
	g3 and g4 with SW grouping

	Mining minimal ATFDs
	Mining granularity-based ATFDs
	Mining SW-based ATFDs

	Mining clinical data
	Results for mined granularity-related ATFDs
	Performance analysis for GATFDminer
	Psychiatric case register
	Pharmacovigilance

	Results for mined SW-related ATFDs
	Performance analysis for SWATFDminer
	Psychiatric case register
	Pharmacovigilance

	Conclusions
	Conflict of interest statement
	The function MinDelete
	A naive MinDelete function
	A smart MinDelete function

	References

