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Abstract

The limitations of manual sleep scoring make computerized methods highly desirable. Scoring 

errors can arise from human rater uncertainty or inter-rater variability. Sleep scoring algorithms 

either come as supervised classifiers that need scored samples of each state to be trained, or as 

unsupervised classifiers that use heuristics or structural clues in unscored data to define states. We 

propose a quasi-supervised classifier that models observations in an unsupervised manner but 

mimics a human rater wherever training scores are available. EEG, EMG, and EOG features were 

extracted in 30s epochs from human-scored polysomnograms recorded from 42 healthy human 

subjects (18 to 79 years) and archived in an anonymized, publicly accessible database. 

Hypnograms were modified so that: 1. Some states are scored but not others; 2. Samples of all 

states are scored but not for transitional epochs; and 3. Two raters with 67% agreement are 

simulated. A framework for quasi-supervised classification was devised in which unsupervised 

statistical models—specifically Gaussian mixtures and hidden Markov models—are estimated 

from unlabeled training data, but the training samples are augmented with variables whose values 

depend on available scores. Classifiers were fitted to signal features incorporating partial scores, 

and used to predict scores for complete recordings. Performance was assessed using Cohen's K 

statistic. The quasi-supervised classifier performed significantly better than an unsupervised model 

and sometimes as well as a completely supervised model despite receiving only partial scores. The 

quasi-supervised algorithm addresses the need for classifiers that mimic scoring patterns of human 

raters while compensating for their limitations.
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Introduction

Sleep is increasingly the subject of debate in the context of public health [1, 2]. Disorders of 

sleep [3] are not only unique in the spectrum of illnesses but also accompany and complicate 

the management of other serious neurological conditions such as epilepsy [4], Parkinson's 

[5] and Alzheimer's disease [6]. Human sleep has been dissected broadly into five distinct 

states of vigilance: Wakefulness (W), rapid eye movement or REM sleep (R), and non-REM 

sleep (N) with stages N1, N2, and N3 that reflect increasing sleep depth. Sleep analysis 

typically involves overnight monitoring in a sleep lab resulting in a polysomnogram: i.e., a 

suite of continuous measurements that may include an electroencephalogram (EEG), 

electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (EKG), among 

other physiologically derived signals. The polysomnogram is inspected by a human expert, 

who labels the predominant vigilance state in sequential epochs, each typically 30s in 

duration, for the entire recording. Despite the adoption of detailed guidelines [7] for labeling 

each vigilance state by practitioners of sleep medicine, and continuing efforts to automate 

the process, scoring sleep in polysomnographic recordings remains a tedious and subjective 

exercise. Even expert raters can be uncertain about the presentation of certain vigilance 

states and may vary widely in their assessment of specific recordings [8].

Computational tools that segment sleep either look for intrinsic patterns in the data [9-11] to 

define the predominant vigilance states or model a human rater's scoring of sample data and 

try to mimic her performance when applied to future recordings [12, 13]. These contrasting 

approaches, referred to as unsupervised and supervised classification respectively, are 

mutually exclusive; moreover, they do not explicitly address issues of rater uncertainty and 

disagreement. Here we propose a simple modification to the way classifiers are applied to 

sleep data to address three specific scenarios:

1. A human rater is more certain about the symptoms of some vigilance states than 

others;

2. A rater labels all the states, but only in samples where the evidence is 

unambiguous; and

3. One classifier needs to mimic a panel of raters with some variance in their scoring 

patterns.

In our algorithmic solution to these distinct but related problems, a set of features computed 

from each epoch of the polysomnogram is augmented, or tagged, with a vector variable 

whose value depends on the available score(s). This sequence of score-augmented input 

variables is used to train an unsupervised classifier—Gaussian mixture models (GMMs [14]) 

and hidden Markov models (HMMs [15]) are used here as illustrative examples—to map the 

continuous-valued features onto discrete vigilance states. Minor variations on this theme are 

used to address each of the scoring scenarios identified above and the performance of the 

classifier compared with appropriate reference methods.
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Methods

Overview

Descriptive features were extracted from sequential signal epochs of overnight 

polysomnograms derived from an online database. For each recording, the hypnogram—i.e., 

the sequence of vigilance state labels assigned by a human rater—was systematically 

modified to simulate situations in which the rater was uncertain about the identity of certain 

states or epochs. The vector time series of features was fitted to two different statistical 

classifiers, a GMM and an HMM, using a novel quasi-supervised algorithm and used to 

predict the sequence of true vigilance states. The predictions were compared against the 

hypnogram to assess the ability of the proposed algorithm to compensate for missing or 

imprecise scores, and tested on a second night's recording from each subject when available. 

The performance of fully supervised and unsupervised classifiers on the same data was also 

assessed as reference cases.

Description of human subject data

This analysis is based on the Sleep EDF database [16] (available from www.physionet.org 

[17]). The database has a total of 61 overnight expert-scored PSG recordings from healthy 

individuals acquired with institutional oversight and informed consent. The data were 

collected from two different studies: 1. Sleep cassette (SC), which includes two successive 

overnight in-home recordings (except in one case) from 20 subjects (10 male and 10 female, 

25-34 years old) without any medications; and 2. Sleep telemetry (ST), in which PSGs were 

recorded in-hospital, from 22 healthy subjects (15 female and 7 male, 18-79 years old) with 

mild difficulty falling asleep, for two nights, one after temazepam intake. However only the 

placebo night was available and used in our analysis. Besides the cohort and data acquisition 

methods, there are no other differences between the SC and ST data sets. The entire duration 

of each PSG (mean duration 8.3±1.1 h, n = 61) was used in our analysis and contains EEG 

(Fpz-Cz and Pz-Oz channels), EOG (horizontal) and submental EMG signals (100 Hz 

sampling rate) as well as a hypnogram of manual scores by a trained technician. The 

hypnograms, which mapped 30s epochs of data onto six states (non-REM 1-4, REM, and 

Wake), were relabeled per the current guidelines of the American Academy of Sleep 

Medicine [7] by combining non-REM stages 3 and 4. Hence, each hypnogram contained up 

to five labels: N1, N2, N3 for non-REM, R for REM, and W for Wake.

Signal feature selection and extraction

All analysis was performed using custom-written code on the Matlab™ environment 

(Mathworks Ltd., Natick, MA). Frontal EEG (Fpz-Cz) from each subject was bandpass-

filtered into seven distinct frequency bands, specifically delta-low (0.5-2 Hz), delta-high 

(2-4 Hz), theta (4-9 Hz), alpha (9-12 Hz), sigma (12-16 Hz), beta (16-30 Hz), and gamma 

(30-45 Hz) using Butterworth IIR filters. The mean power fraction in each band was 

estimated in 30s epochs and combined into a vector of seven EEG features. The root-mean-

squared (r.m.s.) values of broadband EMG and EOG were also included to give a vector X 
of nine features for analysis. All feature values were converted to a decibel scale, i.e., 10 

log10(·), to make the distribution more symmetric over their dynamic range and less 

sensitive to outliers. The choice of spectral bands reflects commonly recognized EEG 
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rhythms; other selections of features may be used within the same modeling and analysis 

framework.

Sleep scoring algorithms

Supervised and unsupervised classification—A statistical classifier assigns sample 

measurements X to one of N discrete categories or classes S∈{1,⋯, N} by assuming a 

(usually parametric) statistical model of X → S. Examples of statistical classifiers are linear 

discriminant analysis (LDA), artificial neural networks (ANN), and support vector machines 

(SVM). In order to construct the statistical model, class-labeled training samples are usually 

required to estimate the parameters, and the model is referred to as a supervised classifier; 

all the above examples belong to this category.

Other models known as unsupervised classifiers can be used to fit models to unlabeled 

training data and predict the class membership of future observations. Such classifiers 

typically look for natural clusters in the data that may coincide with the classes of interest, in 

this case the sequence of vigilance states underlying the polysomnogram. Of course, the 

states modeled by an unsupervised classifier may not conform completely to an individual 

human rater's perceptions of class differences and are determined by the measurements and 

features used to estimate the model parameters. But such classifiers can still be very useful, 

especially when no prior class definitions are available; common examples are k-means, 

linkage trees, GMMs, and HMMs—though some of these may be supervised as well.

Here we describe a method for constructing quasi-supervised classifiers: models that tend to 

mimic a human rater's behavior when scoring information is available but look for structural 

clues in the training data when the available scores are selectively applied or uncertain. To 

demonstrate the feasibility of this approach, we use models that rely on Bayesian inference, 

specifically GMMs and HMMs.

Bayesian models, GMMs, and HMMs—We provide a brief overview of Bayesian 

models in the context of sleep scoring and the issues relevant to GMMs and HMMs. We 

emphasize intuition over mathematical rigor, and refer the interested reader to other sources 

for a formal theoretical treatment [14, 15, 18, 19].

First, we assume that the subject is always in one of N discrete, mutually exclusive vigilance 

states S∈{1,⋯, N}, and that a vector of M features , X ∈ ℝM (T = 

transpose), is extracted from samples of the signals in a polysomnogram in successive 

windows of time (e.g., 30 s duration), so that we have a set of observations X1:T = {X1,⋯, 

XT} that are made in states S1:T = {S1,⋯, ST}. Each value in set S represents a modeled state 

that may—but does not necessarily—correspond directly to a human rater-scored vigilance 

state (N3, N2, etc.). At an arbitrary time t, the subject may be in a vigilance state St but the 

state is quantified by the observation Xt. The classifier's task is to infer St from Xt with 

acceptable accuracy. It is expected that there will be some variability and noise in the 

estimation of X, and this is described by a probability density function f(X) which, when 

integrated over a region of X, gives a probability measure P(X).
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Since the N states are mutually exclusive, the probability associated with an observation X 
integrates the probability that X is observed in any of the states: i.e.,

(1)

The probability that X is observed, when the state is known to be S, is the conditional:

(2)

where P(S) represents the prior probability of state S in the absence of information about X. 

Eq. 2 is known as Bayes rule. From the above, we get an expression for the probability 

distribution of X in terms of the conditional and prior probabilities:

(3)

Starting from an observation X, we can now compute the posterior probability of state S as:

(4)

A reasonable prediction of state is the one that maximizes the posterior:

(5)

A Bayesian model must assume knowledge of the conditional P(X | S), usually in a standard 

parametric form, in order to make predictions. The GMM is one such model [14], in which 

P(X | S) is expressed as a Gaussian distribution parameterized by a state-dependent mean 

vector μS ∈ ℝN×M and covariance matrix ΣS ∈ ℝM×M. Each Gaussian component 

contributes to the mixture to a degree expressed by a linear coefficient αS, which replaces 

the state prior P(S) in Eq. 3. A GMM constructed from sleep data would assume that the 

observation X can be modeled as a mixture of Gaussian components, and that each 

component corresponds to one of the known vigilance states (or perhaps their sub-states).

HMMs [15] can be used to capture the evolution of a process over time and have been used 

for modeling the dynamics of sleep [10, 20-22] An HMM adds a layer of complexity to Eq. 

3 by linking the model states to one another. The purpose is to model not just independent 

observations but the distribution P(X1:T) of the ordered sequence (i.e., time series) of 

observations generated by a latent state sequence S1:T. In this model, the current state 

exclusively determines the distribution of future states (viz. the Markov property):

(6)
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This quantity is known as a state transition probability; its values for all possible 

combinations of St−1 and St constitute an N × N state transition matrix γ, an essential 

property of the HMM. In addition to Markov transitions, the current observation is assumed 

conditionally independent of previous observations and states given the current state:

(7)

Along with a set of state priors π = P(S), fixing γ and the conditional P(X | S) completely 

specifies the structure of an HMM; an assumption of stationarity makes these properties 

independent of time t. In our treatment, the observation X is multivariate Gaussian, and the 

model is therefore a Gaussian observation HMM (GO-HMM) [23]. The simplifying 

assumptions made above permit the recursive application of elementary rules of probability 

(the product rule and Bayes' theorem) to make inferences regarding the dynamics of the 

process underlying observations X1:T. A common problem solved using HMMs is to decode 

the sequence of states S1:T most likely to have generated X1:T. This is commonly 

accomplished using the Viterbi algorithm [15]. The algorithm is initialized by computing the 

distribution of the first observation X1 as δ1(S) = P(X1 | S), for S ∈ {1,⋯, N}, and keeping 

track of the preceding state that maximizes the probability of each successive observation 

. At termination, the optimal path probability is 

 and the terminal state is the one that maximizes P*(S). We can now 

backtrack along the sequence δt to identify the most likely predecessor at each step and 

recover the best state sequence S1:T.

GMM and HMM parameters are estimated from training data using maximum likelihood 

(ML) techniques. In ML estimation [18], a likelihood function L is defined as the joint 

probability density of a set X1:T of independent and identically distributed observations for 

the chosen model with parameter set Θ (e.g., Θ = {αS, μS, ΣS} for a GMM):

(8)

Taking the logarithm on both sides converts the product into a sum over the sample data:

(9)

The likelihood function L expresses the parameters as a function of the fixed observations. 

ML estimation proceeds by taking the partial derivative of log L with respect to each 

parameter, equating it to zero, and solving the resulting system of equations for the unknown 

parameters Θ that maximize log L (hence the name ML). When labeled training data exist, 

ML estimates of GMM and HMM parameters are relatively easy to derive and compute: for 

instance, the ML estimate of the true mean of state S is merely the arithmetic average of 

independent training samples labeled as S by a human rater; similarly for the covariance 
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matrices, state priors, and transition matrix. If no labeled training data are available, the 

observations become related to the parameters through hidden variables (the states S1:T) 

apart from the unknowns Θ, and we have:

(10)

with unknowns on either side of the conditional. This is often intractable, since log L must 

now be maximized over all possible state paths for S1:T to determine the correct maximum. 

One solution to this problem is to use an E-M algorithm (for Expectation-Maximization) 

[18]. E-M is an iterative process that converges to a local maximum when given an initial 

guess of the model parameters. In order to avoid getting trapped in a local trough, several 

initial guesses within the search space are tested and the solution with greatest likelihood is 

selected. A popular version of E-M used for HMMs is the Baum-Welch algorithm [15].

A framework for quasi-supervised classification—We have seen how GMMs and 

HMMs can be estimated and used to predict state when labeled or unlabeled training data 

are available. Though such models are widely used, there are no methods to address 

situations in which sample scores are limited or uncertain. Here we propose a simple method 

for building quasi-supervised classifiers that use partial scores to stage sleep.

Consider a scored polysomnogram from which a sequence of labeled observations X1:T is 

derived. Let each X1:T be augmented with another vector e = [e1,⋯, eK]T so that

(11)

where K is the number of unique states labeled by the human rater (in the hypnogram). For 

instance, K = 3 if the rater labels R and W but does not distinguish between N1, N2, and N3 

in non-REM sleep.

Just as for X1:T, we can model Z1:T as an N-state GMM with parameters Θ = {αS, μS, ΣS} by 

initializing the parameters with randomized seeds and following the E-M algorithm until it 

converges to the solution with greatest likelihood. The N modeled states are not necessarily 

identical to the K states scored by the rater. They must be selected by the user to suit the 

problem at hand. This flexibility is important in different scoring scenarios, as we will see 

below. Finally, the values in e are chosen based on the state label St assigned by a human 

rater to each observation Xt.

Let us start with K = 5 vigilance states (for N3, N2, N1, R, and W) scored from a 

polysomnogram in 30 s epochs. The time series X1:T extracted from the signals can be fitted 

using an E-M algorithm to a GMM or HMM with N = 5 states. If the value of et is 

uncorrelated with St (for instance, always a zero vector), then the E-M algorithm simply 

yields an unsupervised classifier that optimizes the fit of the model to the observed data. If, 

on the other hand, et bears some correlation to the scored state St, we can expect the model 
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to tend toward the human rater's scoring patterns. But S is a categorical variable, and 

therefore incompatible with X in the augmented vector Z. So what form should e take?

Recall that S takes on values from {1,⋯, K}. Let us define e so that:

(12)

Each state S is now identified by a unit vector e in K dimensions. It follows that for two 

observations at times t and t′:

(13)

That is, the set of values assumed by e form an orthogonal basis. This lets us incorporate the 

state label S, a categorical variable, into the quantitative description X of a sample without 

otherwise altering its properties or imposing an artificial ordering on the states. Adopting 

this definition for e in Eq. 11, intuition tells us that if X is now set to zero, the E-M 

algorithm will cluster the data strictly on the basis of scores St —in effect, a supervised 

classifier. Observations augmented with similar tags e will cluster since they are closer to 

each other in the augmented feature space ℝM+K than in ℝM; by the same logic, samples 

with unlike tags are farther apart and less likely to form a cluster. Hence tagging the training 

samples makes an unsupervised classifier behave like a supervised one. If the tags are 

excluded in the training step (or all set to be identical), the E-M algorithm converges to the 

unsupervised model. The tags incorporate the knowledge and intuition of a human rater into 

the parameter estimation. While the unsupervised and supervised asymptotes are illustrative 

and set bounds on the resulting model, it is situations where only partial scoring information 

is available that determines the utility of the quasi-supervised algorithm.

To conclude, the algorithm proceeds as follows (see Fig. 1): Available categorical scores S 

are transformed into vector “tags” e of length equal to the number of scored vigilance states 

K. The tags are attached to the vector of training observations X to give augmented input 

variables Z. Starting with randomized initial guesses for the model parameters, a GMM or 

HMM is estimated from Z using the appropriate E-M algorithm with the desired number of 

states N specified. After stripping entries corresponding to the tag e from parameters μS and 

ΣS, the model is then used to predict the state in epochs for which scores are unavailable or 

uncertain based on un-augmented observations X (i.e., not Z). This approach is quasi-

supervised in that model parameters are estimated using exactly the same methods as for 

unsupervised classifiers—except that the samples are tagged with a score-based vector—but 

converges to a strictly supervised classifier when complete scoring information is 

incorporated into the training data. The choice of score tags e is critical and can be tailored 

to address different typical scoring scenarios, as illustrated below.
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Analysis procedure

The general procedure followed for analysis is the same for Problems 1 to 3 below except 

where noted. First, surrogates were prepared from the available hypnograms based on the 

requirements of each problem. Then samples of the observation vector X were augmented 

with a scoring vector e chosen from one of K unique values corresponding to the states 

scored on the surrogate hypnogram (Fig. 1). The number of states, N, to be modeled was 

fixed and the score-augmented variables used to estimate GMM and HMM parameters 

through an E-M algorithm. The models were used to predict the sequence of vigilance states 

in each polysomnogram and on a second night's data when available. Performance was 

assessed in terms of Cohen's K statistic [24], which measures the agreement in categorical 

scores on a sample scored by two independent raters. K was used here to assess concordance 

between the model predictions and true hypnogram, separately for each vigilance state and 

then for all states pooled together. These metrics were compared for the quasi-supervised 

method against reference methods in which the same algorithm was applied, but in a 

completely unsupervised (no tags) and completely supervised (unit basis vector tags used for 

all five states: K=5) manner. This is intended to help evaluate the extent to which the quasi-

supervised classifier is able to compensate for incomplete score information in the training 

data. Since each polysomnogram is analyzed independently by the three algorithms, 

differences in K for the cohorts (same night and second night) were investigated using a 

Wilcoxon sign rank test separately for the quasi-supervised classifier versus the 

unsupervised and supervised classifiers respectively. In each comparison, a false positive 

probability p under 0.01 was considered statistically significant.

Problem 1: Human rater is uncertain about certain vigilance states—Here we 

consider the situation in which the rater is confident of identifying some states but not 

others. For instance, she is sure of the distinction between W, R, and N, but not stages of N, 

i.e., N1, N2, and N3. Hence labels are not available for three of the five states and 

completely supervised classification is not possible. On the other hand, unsupervised 

classification does not take advantage of the available scores for W, R, and N. In our quasi-

supervised approach, we collapse stages of N into one label on the hypnogram (K = 3), and 

tag W, R, and N with unit vectors e (specifically [1 0 0]T for N, [0 1 0]T for R, and [0 0 1]T 

for W) but fit the data to a GMM or HMM with N = 5 since we wish to recover all the 

vigilance states. The expectation is that W, R, and N will be separated by the E-M algorithm 

based on their disparate tags, but that three natural partitions or sub-states corresponding to 

N1, N2, and N3 will be required to adequately fit the model to samples of N based on the 

distribution of X.

We test the utility of this approach in situations where the rater does not distinguish between 

the following states: I. N1, N2, and N3; II. N1 and W; III. W and R; IV. N1 and N2; and V. 

N1 and R. These choices reflect typical sources of confusion faced by human raters in 

scoring sleep [8, 33, 41].

Problem 2: Human rater scores all vigilance states, but only labels epochs 
with clear manifestations—Suppose that the rater labels samples of all five vigilance 

states, but only those epochs for which he is sure of the predominant state. This can happen 

Yaghouby and Sunderam Page 9

Comput Biol Med. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



at the transitions between different states or in the presence of artifacts. We simulate this 

situation by deleting the scores from three successive epochs at each state transition in the 

hypnogram. In the solution, the score tags e are set to orthogonal unit vectors of length K = 5 

but to a zero vector for unscored epochs. In the modeling step, as in Problem 1, we specify N 

= 5 states. Since e for unscored epochs is equidistant from all the unit vector tags in ℝK, the 

E-M algorithm allocates scored epochs to the five states according to the tag e, but 

distributes the unlabeled epochs among these states based on X.

Problem 3: Two or more raters score a polysomnogram and one model is to 
be trained, but there is some level of disagreement between them—Here, each 

rater produces a hypnogram but there is only one sequence of observations to be modeled. 

Since only one rater's scores were available for each recording, we simulated a scenario in 

which two or more human raters disagree about one-third of the time by generating 

surrogate hypnograms in which 33% of randomly selected epochs had their scores deleted. 

The quasi-supervised classifier was then used to complete the scores and its performance 

evaluated against the original hypnogram. While this is not strictly identical to the case of 

inter-rater disagreement, it is expected that it is a reasonable simulation of that scenario.

Results

Table I summarizes the incidence of states N1, N2, N3, R, and W in each hypnogram in 

terms of the number of 30 s epochs and the percent time spent in that state. Results of 

analysis for Problems 1, 2, and 3 using HMMs are presented in Tables II-IV. The 

corresponding results obtained using GMMs are presented in the Supplement and are 

referred to as Tables S1, S2, and S3. The performance of HMMs was consistently better 

than GMMs, with the same trends being observed in different scenarios.

Problem 1. Only some vigilance states are scored by the human rater

Tables II and S1 give the performance of the quasi-supervised algorithm in terms of Cohen's 

K, compared to completely unsupervised and supervised implementations, for a GMM and 

HMM. Results are presented separately for each state and finally for all states together. Five 

different scenarios are explored in which some of the vigilance states were assigned 

identical scores to simulate scoring uncertainty: Case I. N1, N2, and N3; Case II. N1 and W; 

Case III. W and R; Case IV. N1 and N2; and Case V. N1 and R. Each entry in the table 

represents Cohen's K averaged over 42 overnight PSGs along with the standard error of the 

mean.

In general—with a few exceptions for individual states—the proposed quasi-supervised 

classifier performs significantly better in terms of K than the unsupervised model but not as 

well as the completely supervised model, which represents the maximum attainable 

performance when complete scoring information is available. When all states are 

considered, K for the quasi-supervised classifiers is within the 60-80% range, which is 

thought to indicate excellent agreement [25]; in fact, K of 80% for five states in equal 

proportion would mean almost perfect agreement, which is highly unlikely in practice. In 

contrast, K for the unsupervised classifiers is close to 50% in all cases, i.e., moderate 

agreement. The HMM almost always outperformed the GMM but only by a small margin. 
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When examining the predictions for each hypnogram, the difference was attributed to noise 

fluctuations in the GMM predictions that are smoothed by the HMM, which optimizes the 

entire sequence rather than the state in each epoch without context (see Fig. 2).

In each of the five case studies of selective scoring examined, the quasi-supervised classifier 

significantly improved on the unsupervised model for states that were not scored (in the 

surrogate hypnogram), but not to the extent that it matches the supervised model; for the 

scored states however, the quasi-supervised classifier rivals the supervised classifier in 

performance. This indicates that the proposed algorithm is able to track the human rater 

when scores are available but can still uncover the unscored states by modeling variability in 

the observed data. Fig. 2 illustrates this using a spectrogram derived from a sample 

polysomnogram. Although the scores used to construct the quasi-supervised models did not 

differentiate between N1, N2, and N3, the GMM and HMM are both able to recover the 

scores for these states quite well, thus saving the human rater the inconvenience of having to 

make these distinctions.

K appeared to be relatively low for N1, even for the supervised classifier, in all five case 

studies. This is easily explained by the very low incidence of N1 in the data (see Table I), 

which means that there are few samples for any of the classifiers to train on or distinguish 

from the other vigilance states. In truth, stage N1, occurring at the transition between W and 

N2, is notoriously hard to distinguish. While W is more easily characterized by elevated 

muscle tone and active EOG, and N2 displays distinctive transients such as sleep spindles 

and K complexes, N1 is in a gray area that human raters find hard to demarcate. These 

factors taken together contribute to the poor classification performance on N1. A second 

night's recording was available in 19 of the 42 subjects analyzed. For these subjects, Tables 

III and S2 give the performance of each classifier trained on the first night of recording but 

applied blind to data from the second night. Unlike Tables II and S1, which represents a 

composite of performance with and without scoring information on the same data set, the 

results in Tables III and S2 are strictly derived from out-of-sample classification. As 

expected, K for all states together was lower for all three approaches, unsupervised, quasi- 

and supervised while following similar trends to those noted in Tables II and S1 when 

comparing scored versus unscored states and GMMs versus HMMs. K for the quasi-

supervised classifier was close to 60%, which is lower than in Tables II and S1 but still 

acceptable, especially when considering that K for the unsupervised classifier now dwells 

close to 45%; nor is the supervised classifier that much better at 65-70%.

Problem 2. Only some epochs are scored, but for all vigilance states

Results for Problem 2 are presented in Tables IV and S3. The overall performance of the 

quasi-supervised classifier is somewhat improved by a few points relative to Problem 1 for 

the first night analysis as well as for the second night, which is completely out-of-sample 

data. This is to be expected since sample scores are available here for all five vigilance states 

(except at the transitions between states) and the algorithm is not forced to come up with its 

own definitions. Of course, the unsupervised and supervised classifiers perform about the 

same as before since the scoring information provided to them is unchanged. From the 
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spectrogram in Fig. 3, it can be seen that the model appears to fill in the missing scores at 

the transitions between states in a reasonably satisfactory manner.

Problem 3. One classifier must be constructed based on the sample scores of multiple 
raters

Tables IV and S3 also summarizes results for Problem 3. The performance of the GMM and 

HMM classifiers for in-sample and out-of-sample data is very similar to that obtained for 

Problem 2. It shows that even when a full third of the data is left unscored, the model is still 

capable of filling the blanks with reasonable accuracy.

Discussion

Computerized sleep scoring is desirable because with it comes the prospect of objective, 

data-driven segmentation of vigilance states that can consistently be applied to get 

reproducible output. Unsupervised sleep scoring has been pursued almost since the advent of 

digital EEG. The earliest efforts encoded heuristics used by experts in their visual analysis to 

process spectral measures or other quantitative features of polysomnographic signals and 

divide them into different states of vigilance [26, 27]. The goal was to produce a reasonable 

first pass segmentation that could quickly be refined by an expert into a final sequence of 

scores. Not surprisingly, advances in machine learning techniques have prompted various 

approaches—particularly probabilistic models—to the task of finding natural partitions in 

sleep data that could correspond to different vigilance states. The HMM is one such 

modeling technique that maps continuous observations onto discrete hidden states [15]. 

Early statistical models of sleep dynamics used Markov chain models to represent 

probabilistic transitions between stages of sleep extracted from expert-scored hypnograms 

[28]. These models have become more refined and are being used to characterize disordered 

sleep and the effect of medication [29, 30]. The HMM is a natural extension of the Markov 

chain that assumes the polysomnogram to comprise a sequence of observations generated by 

Markov states that are hidden from view [15]. This has contributed to its popularity in 

automatic sleep scoring [10, 20-22]. HMM parameters are usually estimated using 

unsupervised ML techniques; so the modeled states are not biased by human opinion. They 

are, however, dependent on the features chosen to represent the data and how much they 

vary between vigilance states.

Unsupervised scoring can give very reasonable results without prior training, but must 

ultimately satisfy the gold standard of human assessment. Despite well-defined guidelines—

first suggested in the 1960s [31]—that have evolved over time to reflect a growing 

consensus [7, 32], agreement between human raters scoring the same recording is hardly 

perfect and can be quite variable. One recent study comparing sleep scores between raters 

from two laboratories in different countries [8] found only moderate agreement for controls 

(mean K = 0.57) that was still lower for a cohort with narcolepsy (mean K = 0.54). The 

greatest disagreement was seen between scores for stages N1 and N2, N2 and N3, and N1 

and W; in Problem 1, we used our algorithm to distinguish between these states without 

supervision. A larger study [33] with independent raters from nine centers found better 

overall agreement (mean K = 0.63) although agreement by sleep stage still varied over a 
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wide range. A rater has opinions forged by his or her training that can mutate over time and 

with experience. For this reason it is difficult to predict to what extent an unsupervised 

classifier will agree with a particular human rater.

There is another perhaps more obvious motivation for automatic sleep scoring: a computer 

algorithm may never be perfect in the eyes of one rater or another, but it can be programmed 

to behave like one. Models built for this purpose are known as supervised classifiers. A 

statistical model can be trained to mimic the scoring habits of a particular human rater, thus 

alleviating (if not eliminating) the burdensome task of manual scoring. Supervised sleep 

scoring also has a long history. Early efforts have used discriminant analysis [34] and 

distance metrics [35] of from samples of human-scored vigilance states to determine the 

scores of incoming data. Fisher discrimination, in which the input features are transformed 

to optimize the separation between samples of different states, has also been employed. 

More recent supervised schemes continue to make their way into this domain as and when 

they are developed or as increases in computing power makes it feasible to do so: these 

include linear discriminant analysis [36], neural networks and their variants [37], support 

vector machines [38], and random forest classifiers [39]. Increased computing power has 

also made it feasible to enlarge the feature space in a bid to better fit training data and 

improve performance. But the true measure of a supervised classifier remains its ability to 

accurately score new recordings, i.e., out-of-sample data. The ability of a classifier trained 

on one cohort (e.g., healthy controls) to score data from another cohort (e.g., individuals 

with possible sleep disordered breathing) remains a concern.

We have discussed how unsupervised classifiers can model observations unconstrained by 

human-defined vigilance states, and how supervised classifiers can encode and mimic a 

specific human rater's scoring patterns. The middle ground in which a classifier seeks its 

own definitions but defers to human judgment when required has not been explored. In this 

manuscript, we have described an algorithmic framework that compensates for rater 

uncertainty and incomplete training data to automatically score sleep in a polysomnogram. 

We accomplish this quasi-supervised classification by transforming categorical sleep scores 

into numerical variables or tags that link the scores to continuous-valued features extracted 

from the data. This sleight of hand allows an essentially unsupervised classifier to 

compensate for scoring uncertainty and for partial or incomplete scores in the training data. 

Three problem scenarios were explored using this framework:

1. In which only some states are scored by the human rater

Here the quasi-supervised model recognizes that the system may have more states than 

identified by the scorer. By augmenting samples of the scored states with unique tags, the 

classifier identified scored states with accuracy comparable to a completely supervised 

classifier but still distinguished unscored states in the manner of an unsupervised classifier. 

Consequently, overall performance on in-sample and out-of-sample data is somewhere 

between these extremes.
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2. In which all vigilance states are scored, but not all of the epochs

In this scenario, the rater is uncertain of the prevailing state during some periods of the 

recording. We make the reasonable assumption that this is most likely during transitions 

between states and do not use those scores in the modeling step. The results demonstrate that 

the quasi-supervised classifier was able to fill in the blanks with reasonable accuracy, 

sometimes as well as the supervised classifier.

One question that might arise is whether a quasi-supervised method is really needed for 

addressing Problem 2. Since training samples are available for all the vigilance states, it 

seems that a completely supervised classifier of any sort could be trained to predict sleep 

scores. This is true, but only for “static” classifiers such as LDA, which model individual 

observations and not sequential data. For an incomplete state sequence, a supervised HMM 

cannot be constructed without additional considerations. The quasi-supervised algorithm 

proposed here allows us to proceed using an E-M algorithm for unsupervised model 

estimation by augmenting observations from scored and unscored epochs with distinctive 

tags that reflect the rater's opinion when available.

3. In which multiple raters score all the epochs and states, but sometimes disagree

Since only one professional scoring was available for the analyzed data, we generated 

surrogate hypnograms from the available ones to simulate the scenario in which raters 

disagree one-third (33%) of the time. Then a GMM/HMM was constructed using the quasi-

supervised algorithm from the incomplete hypnograms in which scored epochs represent the 

putative consensus between multiple human raters. As was seen in Problem 2, the algorithm 

performed reasonably well in completing the scores.

We have treated Problems 1, 2, and 3 in isolation, but they could co-occur in a given 

scenario: for instance, multiple raters partially score each hypnogram based on their 

certainty/uncertainty with respect to some states/epochs, but with some level of 

disagreement. Although this composite scenario certainly merits discussion, a rigorous 

analysis would be more useful when two or more independent raters are actually available 

(rather than the simulation of consensus hypnograms that we have used in Problem 3).

In conclusion, we have described a framework for quasi-supervised classification that may 

prove useful for clinical sleep scoring and also for investigating the properties of vigilance 

dynamics through polysomnographic recordings. The proposed method is flexible enough to 

accommodate different situations in which scoring uncertainty occurs and computer 

assistance is desirable. There are some limitations in the method as presented at this time: 

First, since the classifier is constructed around an unsupervised learning algorithm, states 

that are not previously labeled by the human rater must still be identified with known 

vigilance states (or sub-states thereof). Here we have completed that assignment by finding 

the best matching state within the complete hypnogram, which is not feasible in practice. 

For instance, in Problem 1 the rater may identify only N, R, and W, but not stages of N. We 

have fitted the incompletely scored data to a five-state model on the assumption that the two 

excess states will emerge from N as a product of the E-M algorithm. While this was always 

the case in the recordings analyzed here, it need not always be so. Consider a sample from a 
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different cohort—for instance a more elderly one—in which deep sleep (N3) is absent or 

poorly represented [40]. A five state model of this data may have support for N1 and N2, but 

the remaining state may be carved out of the distribution of X under R or W rather than N3. 

More investigation is necessary for defining objective criteria for labeling model states that 

are better aligned with human-recognized vigilance states. A graphical analysis of the 

linkage between the states on the basis of the ordering of common spectral measures (e.g., 

delta/theta power ratio, EMG amplitude) may help resolve this problem.

Secondly, while the algorithm appears to match the rater's opinion for those states that were 

scored in the training data, the remaining states that are identified must still appeal to the end 

user by some yardstick. This is not a straightforward concern to address. We speculate 

however that the use of quasi-supervised classifiers could, over time, help resolve 

discrepancies between data-driven definitions and human perceptions of vigilance. The 

framework proposed here for sleep scoring provides a fresh perspective on human-computer 

interaction that calls for further investigation.

Finally, although the quasi-supervised algorithm was applied here to data from healthy 

subjects, the methods do not rely on the assumption of normal sleep patterns. They are likely 

to apply to disordered sleep as well—for instance, the algorithm performed equally well on 

the ST database, in which patients reported mild difficulty falling asleep. Performance on 

other conditions in which sleep quality is compromised, such as in epilepsy or REM sleep 

behavior disorder, remains to be seen and is deferred to a future investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Three common problems associated with clinical sleep scoring are identified.

• A quasi-supervised classification framework is proposed to address these 

problems.

• The proposed framework compensates for rater uncertainty with reasonable 

accuracy.
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Figure 1. 
Flow diagram for quasi-supervised classification. A vector X of M features is computed 

from each epoch of a polysomnogram. The sleep score S is converted into a unit vector e 
whose length depends on the number K of states scored by the rater. X is augmented with e 
to give Z, the input to an E-M algorithm, which estimates the parameters of the GMM or 

HMM that maximizes the likelihood that a model with N≥K states explains the data. The 

excess dimensions are removed from the mean vector μS and covariance matrix ΣS of each 

state in the model. The model is then used to classify new unlabeled inputs X, or the same 

data in which only K states were previously labeled, into N states.
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Figure 2. 
Automatic sleep scoring when only some states are labeled by the human rater in the 

training data (Problem 1). The figure shows a 3 h sample (starting at 2 a.m.) from a 

spectrogram, i.e., the distribution of signal power in decibels (dB) by frequency over time, 

computed for an 8 h recording in 30 s epochs of EEG from Fpz-Cz. Overlaying the image 

are staircase plots of the True five-state hypnogram (thin line); the surrogate three-state 

hypnogram (thick line), which does not differentiate between N1, N2, and N3; and the 

hypnograms predicted by the quasi-supervised GMM and HMM, which were trained using 

input features augmented with a score vector derived from the surrogate hypnogram. A 

comparison of model predictions with the true hypnogram shows that the GMM and HMM 

are able to reconstruct the unlabeled states with reasonable accuracy even as they track the 

human rater's scores of the labeled states. The HMM is less susceptible to noise fluctuations 

than the GMM, resulting in slightly better performance.
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Figure 3. 
Automatic sleep scoring when all states are labeled by the human rater, but not for all 

epochs in the training data (Problem 2). The figure shows a 3 h sample (starting at 2 a.m.) 

from a spectrogram, i.e., the distribution of signal power in decibels (dB) by frequency over 

time, computed for an 8 h recording in 30 s epochs of EEG from Fpz-Cz. Overlaying the 

image are staircase plots of the True five-state hypnogram (thin line); the surrogate five-state 

hypnogram (thick line), in which scores are deleted for three successive epochs at each state 

transition; and the hypnograms predicted by the quasi-supervised GMM and HMM, which 

were trained using input features augmented with a score vector derived from the surrogate 

hypnogram. A comparison of model predictions with the true hypnogram shows that the 

GMM and HMM are able to track changes in vigilance state across state transitions.
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Table I

Distribution of sleep states per PSG.

State First night (n = 42) Second night (n = 19)

State Epochs % Time Epochs % Time

N3 146±12 15±1 149±17 16±2

N2 445±20 45±2 460±33 45±2

N1 79±7 8±1 61±8 6±1

R 188±9 19±1 188±13 18±1

W 127±10 13±1 153±9 15±1

All values reported as mean±standard error.
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