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Abstract

Cardiac optogenetics is emerging as an exciting new potential avenue to enable spatiotemporally 

precise control of excitable cells and tissue in the heart with low-energy optical stimuli. This 

approach involves the expression of exogenous light-sensitive proteins (opsins) in target heart 

tissue via viral gene or cell delivery. Preliminary experiments in optogenetically-modified cells, 

tissue, and organisms have made great strides towards demonstrating the feasibility of basic 

applications, including the use of light stimuli to pace or disrupt reentrant activity. However, it 

remains unknown whether techniques based on this intriguing technology could be scaled up and 

used in humans for novel clinical applications, such as pain-free optical defibrillation or dynamic 

modulation of action potential shape. A key step towards answering such questions is to explore 

potential optogenetics-based therapies using sophisticated computer simulation tools capable of 

realistically representing opsin delivery and light stimulation in biophysically detailed, patient-

specific models of the human heart. This review provides (1) a detailed overview of the 

methodological developments necessary to represent optogenetics-based solutions in existing 

virtual heart platforms and (2) a survey of findings that have been derived from such simulations 

and a critical assessment of their significance with respect to the progress of the field.
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Introduction

Cardiac optogenetics is an exciting new field in which cells in the heart are genetically 

modified to express light-sensitive proteins (opsins) so that low-energy light can be used to 

induce transmembrane current, providing a means for electrophysiological control (1,2). 

Many different types of opsins exist, including ionic channels and pumps that produce 

different types of membrane current (i.e., depolarizing or hyperpolarizing) when illuminated 

with light in a particular wavelength range (3-8); this rich diversity means that optogenetics 

enables numerous useful applications in opsin-expressing tissue, including eliciting or 

suppressing action potentials (APs) with exquisite spatiotemporal specificity. Thus far, this 

versatile approach has been implemented using transgenic animals (with global cardiac 

expression) and in cells, tissue, and organs that have been light sensitized by gene or cell 

delivery (9-13). Beyond its irrefutable appeal as a basic science tool, it remains to be seen 

whether optogenetics-based solutions may provide an alternative to electrotherapy to treat 

cardiac arrhythmias (14,15). Computer modeling provides an avenue to narrow the scope of 

experimental investigations by helping to pinpoint which light-based therapy innovations are 

most likely to make a difference in the clinic. The aim of this review is to summarize the 

work that has been done so far towards virtual cardiac optogenetics, i.e. the incorporation of 

optogenetic tools in realistic simulations of the heart. First, we provide a comprehensive 

overview of the methodological approach for integrating new features at the sub-cellular 

(protein), cellular, tissue, and organ scales of biophysically-detailed cardiac models; then, 

we highlight interesting and relevant findings that have emerged from simulations of cardiac 

optogenetics to date.

Methodology Overview

Simulations conducted in detailed models of the heart (ventricular, atrial, or whole-heart) are 

increasingly recognized as an essential aspect of the investigation of cardiac disease (16-19), 

with applications ranging from mechanistic analysis of rhythm disorders (20-29) or pump 

dysfunction (30-33) to the development of novel therapeutic methodologies (34-36). 

Excitingly, the emergence of models reconstructed from medical images (obtained via 

magnetic resonance, computed tomography, etc.), which incorporate patient-specific detail 

about cardiac geometry and structural remodeling, has opened up new avenues for 

translating results from simulations into insights relevant to clinical applications (37-43). 

Since optogenetics has emerged at a time when such a rich and robust set of tools for cardiac 

computational modeling exists, there is great enthusiasm to discover what might be learned 

about this exciting new technology if it can be explored in biophysically-detailed models of 

the heart (1,14,15); to achieve this goal, new methodologies have been developed to 

represent light sensitization and optical stimulation at multiple spatial scales (44), as 

summarized in Fig. 1. At the protein scale (I), the light- and voltage-sensitive electrical 

properties of opsins expressed in the sarcolemma are represented; at the cell scale (II), the 

integration of opsins in individual myocytes or exogenous donor cells is modeled; at the 

tissue scale (III), the heterogeneous spatial distribution of opsin-expressing cells resulting 

from light sensitization must be represented; finally, at the organ scale (IV), it is necessary 

to capture the application of optical stimuli to the heart, taking into account light-matter 

interactions resulting in photon scattering and light attenuation. This section provides a 
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detailed review of different methodologies that have been devised, either in the context of 

cardiac optogenetics or for other multiscale heart modeling studies.

Modeling Cardiac Optogenetics at the Protein Scale—The first step towards 

multiscale simulation of cardiac optogenetics is the development of accurate models of the 

light- and voltage-dependent electrophysiological behavior of opsins. Initial efforts in this 

direction have focused on the algal blue light-sensitive protein channelrhodopsin-2 (ChR2), 

the most widely used excitatory opsin in optogenetics research. ChR2 forms a light-sensitive 

cation channel that is permeable to H+, Na+, K+, and Ca2+, with a reversal potential of 

approximately 0 mV (3). Analysis of spectral characteristics revealed that ChR2 energy 

absorption is maximal for light with a wavelength of approximately 480 nm (45). Hegemann 

et al. formulated the first mathematical description of the ChR2 photocycle (46), proposing a 

Markov model with states representing open, closed, and refractory channel configurations; 

a rapid closed-to-open transition in the presence of blue light was found to be necessary to 

achieve a simulated ChR2 current (IChR2) consistent with experimental measurements. 

Based on experiments in voltage-clamped ChR2-expressing cells revealing IChR2 with a 

distinct a peak-and-plateau morphology, potentiated by the irradiance of the optical 

stimulus, it was inferred that a model with at least four states (including a second open state 

associated with a refractory light-adapted channel configuration) was required to fully 

reproduce the photosensitive properties of ChR2 (45,47).

Recent efforts by Williams et al. (48) led to characterization of both light- and voltage-

sensitive properties of ChR2 photocurrent and its operation in cardiomyocytes. Based on 

experimental data, an extended version of the four-state model by Nikolic et al. (47) was put 

forward, that includes voltage rectification and voltage dependence of kinetic parameters. 

The inclusion of an empirical scaling function to represent ChR2's voltage rectification was 

found to be essential in accurately reproducing the behavior of IChR2 during the different 

phases (upstroke, notch, plateau, repolarization) of light-triggered cardiac action potentials 

(APs). Experimental validation was enabled by an “optical AP clamp” to extract the IChR2 

waveform during light-triggered cardiac AP (48,49). This approach involves measuring the 

total membrane current in a ChR2-expressing cell with membrane voltage clamped to a 

specific AP morphology and recreation of the optical stimulus used to trigger the AP; by 

comparing currents in the presence and absence of illumination, the dynamic IChR2 during 

the AP can be extracted.

Fig. 2A shows photocurrent traces in response to 5 blue light pulses of different intensity for 

the ChR2 model by Williams et al. in cells clamped to resting Vm = –80 mV. Fig. 2B shows 

the response to both electrical and optogenetics-based stimuli in a simulated cardiomyocyte 

(50): first, two electrically-paced APs; then, two APs prolonged by the application of strong 

light stimuli during the plateau phase (200 and 400 ms long, each delivered 100 ms after the 

AP-triggering electrical stimulus); finally, four APs that are triggered purely by light pulses 

of different durations (10, 50, 100, and 400 ms).

In addition to ChR2, other opsins have been studied, but few have been characterized 

mathematically. Popular inhibitory opsins include the light-sensitive chloride pump 

halorhodopsin (NpHR) and the proton pump Archaerhodopsin-T (ArchT). In contrast to 
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ChR2, illumination of NpHR or ArchT results in an outward (repolarizing) current that has 

been used to silence electrical activation in spontaneously activating cardiac cells 

(11,12,51). Nikolic et al. developed a three-state model of NpHR (open, closed, 

desensitized) and showed that light stimulation of a simulated NpHR-expressing neuron 

silenced excitation, even in the presence of a driving stimuli (52). Fig. 2C shows NpHR 

current (INpHR) profiles in response to orange light pulses; the model used here is an original 

implementation by the authors of this paper, adapted from the Nikolic et al. version (52) 

with some parameters calibrated to match photocurrent values recorded in NpHR-expressing 

myocyte (51), as summarized in Table 1. Consistent with experimental observations (6), the 

model produced peak and plateau INpHR values that were much smaller in magnitude than 

IChR2 for light stimuli with the same Ee values. The behavior of the photocurrent produced 

by NpHR and ArchT is qualitatively similar (53), thus lessons learned from computational 

studies with a simple generic model of an inhibitory opsin are relevant to both. Fig. 2D 

shows that when the INpHR model was incorporated in a cardiomyocyte model (50), 

application of orange light inhibited the initiation of APs by electrical stimuli. However, it 

must be noted that electrical stimuli in this case were only 35% higher than the excitation 

threshold (32.4 vs 24 μA/cm2); when stronger electrical pulses were applied, 

hyperpolarizing current from NpHR failed to prevent AP initiation, although AP duration 

was abbreviated. This is consistent with in vitro experiments on NpHR-expressing 

myocytes, in which illumination could reliably shorten APs but rarely suppressed them 

completely (51). In general, the photocurrents produced by the first generation inhibitory 

opsins (pumps) are insufficient to reliably counter and completely halt cardiac activity at the 

tissue level without having to employing high irradiances that may produce heating, as 

explained in Supplementary Material published by Williams et al. (48).

Future efforts in this field should include the development of detailed biophysical models of 

bioengineered variants of ChR2 and other opsins with desirable characteristics for 

therapeutic applications in the heart. For example, CatCh (54) has increased permeability to 

Ca2+ and has been used in vitro for termination of arrhythmogenic reentry in neonatal rat 

atrial myocyte monolayers (55); other notable variants are ChRonos (56) with accelerated 

channel kinetics, and ChRimson (56) or ReaChR (57), a red-shifted mutant better suited for 

in vivo applications due to better light penetration compared to the blue light used to excite 

ChR2. Alternatively, computational efforts in this area can be used to propose new features 

for optical actuators to be engineered in the context of organ-scale cardiac applications.

Modeling Cardiac Optogenetics at the Myocyte Scale—At the myocyte level, it is 

necessary to represent the different approaches that have been used to inscribe light 

sensitivity. From the modeling perspective, these can be classified into two broadly defined 

paradigms, both of which are discussed below: (1) direct expression of opsins in cardiac 

myocytes and (2) electrical coupling of exogenous opsin-expressing cells (i.e., donor cells) 

to myocytes (i.e., host cells). The first approach comprises both gene delivery (GD), which 

uses viral vectors to light-sensitize cardiomyocytes directly in vitro (51,55,58,59) or in vivo 

(13), and the creation of transgenic cells, tissue, and organisms from opsin-expressing 

embryonic stem cells (9,12,60-62). From a computational standpoint, this paradigm is 

represented in models of transduced cells by adding the opsin-mediated current in parallel to 
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endogenous membrane currents (due to ion channels, pumps, and exchangers) of the 

cardiomyocyte. This approach has been used to simulate the light sensitization process in a 

variety of cell types (atrial, ventricular, specialized conduction system, etc.) for numerous 

different species (human, canine, rabbit, etc.) (44,48,49,61).

The second approach, a cell delivery (CD) method, involves the use of dedicated opsin-rich 

donor cells; these cells are then co-cultured with host cardiac cells or injected into the 

beating heart muscle and, if coupled to the host cells, provide light sensitivity. The proof-of-

concept in vitro work for CD involving optogenetic transgenes was carried out using ChR2-

transfected human embryonic kidney (HEK-293) cells (i.e., somatic cells) (10). These were 

shown to form electrically coupled “tandem cell units” (TCUs) with neonatal rat ventricular 

myocytes, resulting in a light-excitable syncytium. Optical mapping confirmed light-paced 

excitation waves in the resultant hybrid tissue from co-culturing of these two cell types (10). 

Subsequent work by Nussinovitch et al. applied the CD approach using the NIH3T3 

fibroblast cell line expressing either excitatory or inhibitory opsins (11). Computationally, 

there are two steps involved in the realistic representation of opsin-rich donor cells. First, an 

appropriate electrophysiological model for the donor cell is chosen and the opsin-mediated 

current is added in parallel to endogenous donor cell ionic currents. For cardiac applications 

explored thus far, the use of an electrically passive cell model (i.e., a parallel resistor-

capacitor circuit with a fixed resting potential) has proved appropriate for representing 

inexcitable donor cell types (e.g., HEK-293 or NIH-3T3) (11,44). Modeling should be 

extended to other donor cell types potentially relevant for CD applications, e.g. cardiac 

fibroblasts (63) or stem cell derived cardiomyocytes. The second step is to incorporate into 

the model a representation of the extent of electrical coupling between donor and host cells. 

This problem must be tackled on a case-by-case basis by incorporating observations from 

experiments with electrically coupled donor and host cells; for example, Jia et al. used dual-

cell patch clamp recordings in light-sensitive TCUs to demonstrate that the minimum 

coupling conductance between ChR2-rich somatic cells and cardiomyocytes required for 

CD-mediated optogenetics was approximately 2nS(10).

Modeling Cardiac Optogenetics at the Tissue Scale—Important aspects for 

modeling at the tissue level is the incorporation of realistic spatial patterns of opsin-

expressing cells, resulting from either viral transfection (GD) or donor cell injection (CD). 

Spatial expression characteristics particular to optogenetics have not been characterized for 

in vivo applications of gene or cell delivery. Based on experimental data from other 

transgene applications, it is reasonable to expect that there will be a wide variety of 

heterogeneous patterns depending on both the moiety of infection (i.e., multiplicity of 

transduced units) and the method of delivery (i.e., localized versus systemic delivery) 

(64-66). Although it may be possible to obtain image-based models of transduced cell 

distribution by segmenting then processing confocal images of flurophore-tagged opsins 

(10), this methodology could prove extremely tedious and time consuming for whole hearts.

For computational applications, a stochastic algorithm can be used to generate in silico light-

sensitive cell spatial distributions that mimic patterns observed for GD and CD studies in 

vitro (44). This algorithm was originally devised by Comtois et al. (67) to represent different 

types of fibrosis distributions in 2D models of atrial tissue; Boyle et al. (44) extended the 
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methodology for use in 3D and proposed its use to represent light-sensitive cell 

distributions. This algorithm generates spatial patterns by control of two parameters that 

range from zero to one: density (D) and clustering (C). Within a particular tissue volume 

defined as the target for light sensitization, elements were deemed opsin-expressing one-by-

one until the proportion of light-sensitive tissue by volume was equal to the target value D. 

Critically, a stochastic process was used to determine whether each new light-sensitive 

element should be added to an existing cluster of opsin-expressing tissue (with probability 

C) or if a new cluster should be started at a random location within the target volume. This 

resulted in a range of spatial distributions of optogenetically-transduced units, including 

both highly clustered patterns (the expected result of direct myocardial injection (64,65)) 

and highly diffuse patterns (as anticipated for systemic delivery (66)).

Four unique spatial distributions of opsin-expressing cells in an image-based model of the 

human left atrium (68,69) are shown in Figs. 3A-D (D = 0.4, C = 0, 0.35, 0.65, and 0.95, 

respectively). As the C parameter value increases, there was a clear qualitative trend towards 

aggregation of light-sensitive elements into distinct clusters. Moran's I spatial 

autocorrelation (70) was calculated for these models and others (with different D values); 

this metric yields values closer to zero for more diffuse distributions and closer to one for 

clustered spatial patterns. As shown in Fig. 3E, findings from this quantitative analysis were 

consistent with the observed effect of the C parameter from Figs. 3A-D, regardless of D 

value.

Modeling Cardiac Optogenetics at the Organ Scale—The steps necessary for 

simulating the dynamics of excitation and contraction in biophysically-detailed and 

anatomically realistic models of the atria (71) and ventricles (17,72) are well known, but 

additional steps are needed to represent the optical stimuli that would be applied as part of 

any optogenetics-based treatment methodologies. Recent studies have outlined possible 

approaches for applying such light stimuli to the beating heart, including miniaturized 

endoscopic fiber optics-based systems (73), injectable optoelectronics compatible with 

cardiac tissue (74), and flexible membranes studded with light-emitting diodes (75). 

Nonetheless, it remains largely unknown how the efficacy of optogenetics-based treatments 

will be affected by the attenuation of light energy applied to the heart, caused by photon 

scattering and absorption by tissue and blood (76-79). One approach to model light-tissue 

interactions is to track the behavior of individual photon packets in heart tissue via Monte 

Carlo methods (79). This approach results in a highly accurate approximation of the 3D 

distribution of irradiance resulting from cardiac illumination, including subtle effects such as 

the sub-surface energy peak caused by photon back-scattering (76); however, it is 

computationally intense (79) and representation of back-scattering is considered non-

essential in the context of cardiac optogenetics (2), since the primary light-related constraint 

is the fact that opsin-exciting light cannot penetrate very deeply in cardiac tissue. An 

appropriate and computationally expedient alternative is to approximate model attenuation 

effects by solving the steady state photon diffusion equation, which assumes homogeneous 

absorption and isotropic scattering in the cardiac tissue:
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where Ee and w are, respectively, the distributions of irradiance and photon sources at each 

point r; ∇2 is the Laplace operator; D is the diffusivity of light in the medium (which 

depends on absorption and scattering characteristics); and μa is the tissue-specific rate of 

light absorption. Values of the latter two coefficients also depend on the wavelength (λ) of 

light used to illuminate tissue; nominal values for blue (λ = 488 nm; D = 0.18 mm, μa = 0.52 

mm–1) and red light (λ = 669 nm; D = 0.34 mm, μa = 0.10 mm–1) are known from previous 

optical experiments (80). In practice, the equation is solved with w = 0 within the tissue and 

Ee values imposed as a Dirichlet boundary condition on the entire heart surface, with Ee = 

Ee,max at directly-illuminated points (where Ee,max is the irradiance of unattenuated light) 

and Ee = 0 elsewhere on the surface (78). Lastly, for simple optical stimulation 

configurations (e.g., a single light source), light attenuation can be approximated by an 

exponential decay (44,78):

where d is the distance from point r to the nearest illuminated point and  is the 

optical penetration depth (588 μm and 1.84 mm for blue and red light in cardiac tissue, 

respectively).

Spatial profiles of irradiance are shown for four unique optical stimulation configurations in 

Fig. 4; these distributions were generated by using a finite element method to solve the 

steady-state photon diffusion equation (78), as described above. The examples shown here 

compare blue (Figs. 4A-B) and red light sources (Figs. 4C-D) as well as illumination of the 

entire epicardium (Figs. 4A,C) versus multiple distributed points (Figs. 4B,D). The 

differences between these maps highlight the impact of wavelength on light attenuation in 

cardiac tissue, as evidenced by the difference in Ee values on the endocardial surface of the 

left ventricular free wall; red light applied epicardially was reduced by 2-3 orders of 

magnitude, whereas blue light was attenuated to ~10–6 of Ee,max.

Finally, an important aspect of cardiac optogenetics modeling is the ability to estimate the 

input energy requirements for optical stimuli, which enables a direct comparison of 

proposed clinical light therapy approaches with existing electrical techniques. Boyle et al. 

(2) used values reported for single-optrode neural optogenetics applications (74) to derive a 

straightforward method for approximating the energy requirements for ChR2 excitation with 

any number of arbitrarily-sized optrodes; they inferred that the input energy required to 

achieve an irradiance of 10 mW/mm2 for one second is approximately 208.3 mJ per square 

millimeter of directly-illuminated tissue.

Insights from Simulations of Cardiac Optogenetics

Effects of Cardiac Cell Type on Energy Required for Optogenetics-Based 
Stimulation—Cells in different parts of the heart undergo APs with distinct properties, 

which stem from major differences in the makeup of inward and outward membrane 

currents. Since optogenetics-based stimulation involves light-induced depolarizing or 

hyperpolarizing transmembrane stimuli, differential energy requirements are expected for 
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the optical induction of AP in different cell types given a certain opsin expression rate. 

Williams et al. (48) simulated the performance of ChR2 alongside the native membrane 

currents from ion channels, pumps, and exchangers in human ventricular (50), atrial (81), 

and specialized conduction system cells (i.e., Purkinje fibers) (82). As shown in Fig. 5, these 

experiments revealed differences between the three cell types in terms of the rheobase and 

chronaxie value of strength-duration curves; Purkinje fibers were optically excitable with the 

lowest-energy light stimuli, followed by atrial cells then ventricular myocytes. The authors 

showed that this effect was attributable to variation in the native ionic currents active during 

the early stages of the AP, with the inward rectifying potassium current (IK1) playing a 

particularly prominent role; indeed, when the native IK1 formulation for the ventricular 

model was replaced by the one from the Purkinje fiber model, there was a significant 

improvement in optical excitability (lower threshold for excitation) in such ventricular 

myocytes. In a follow-up study (83), the same group demonstrated that, in spite of 

fundamental differences between the mechanisms of cellular depolarization, the primary 

determinants of electrical and optical excitability are the same (namely, dynamic variations 

in cardiomyocyte membrane resistance and inward rectifier current due to intrinsic 

properties of different cell types).

Optogenetics-Based Cardiac Pacing—Single cell-level factors for optogenetic 

stimulation, such as those considered by Williams et al. (48), are further compounded by 

tissue-level (multicellular and coupling) effects in the response of cardiac tissue to light. For 

instance, in addition to having intrinsically higher excitability due to membrane ion channel 

composition, Purkinje fibers also experience weaker electrotonic loading effects compared 

to the well-coupled 3D atrial and ventricular tissues because the cardiac conduction system 

is organized into a branching network of cable-like bundles (84). Multiscale models using 

the methodological approach outlined in the first part of this review, implemented by Abilez 

et al. (61), Wong et al. (85), and Boyle et al. (44), provide further insights on the 

contribution of such tissue-level phenomena in optogenetic responses. For example, 

optogenetics-based pacing of ChR2-expressing Purkinje fibers was found to be possible with 

much lower irradiance levels (Ee ≤ 1.69 mW/mm2) compared to analogous stimulation of 

ventricular sites (Ee = 6.49 mW/mm2) (44).

Other aspects of cardiac optogenetics-based pacing were also tested in such multiscale 

simulations. Abilez et al. (61) first demonstrated that photocurrent induced in a small island 

of ChR2-expressing cells (measuring ≥0.02 cm3) would be sufficient to overcome the sink 

effect imposed by electrical coupling with surrounding non-light-sensitized myocytes. 

Limitations due to light attenuation effects or non-uniformities in ChR2 spatial pattern (not 

considered in (61)) were further studied by Boyle et al. (44). The threshold irradiance (Ee,thr) 

required for optogenetics-based pacing of cardiac tissue was determined for different 

delivery modes – direct gene delivery of ChR2 in cardiomyocytes (GD) versus injection of 

specialized non-excitable ChR2-rich donor cells (CD) - and for different spatial distribution 

of light-sensitive cells (comparing diffuse versus clustered patterns). For light sensitization 

via GD, Ee,thr depended predominantly on the amount tissue expressing ChR2 (i.e., higher 

density resulted in lower threshold values); the relationship for CD cases was less 

straightforward, with the lowest Ee,thr values corresponding to spatial distributions that 
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maximized the interface between electrical sources (opsin-rich donor cells) and sinks 

(normal myocytes). Understanding such relationships is important in the context of potential 

in vivo applications of optogenetics-based pacing (13) as non-uniformity of spatial opsin 

patterns is expected.

The cardiac optogenetics simulation methodology described in the first part of this review is 

highly versatile and can be used in heart models of arbitrary complexity, simulating diseased 

stated and different species, and capturing the complex electromechanical response of the 

heart. Boyle et al. (44) simulated optogenetics-based pacing in a canine model of cardiac 

electromechanical contraction, within which myofilament shortening was coupled to 

electrical activation via the intracellular calcium signal at each point in the ventricles 

(86,87). For the case shown here, 10 optical stimulation sites were chosen at endocardial 

locations corresponding to Purkinje system endpoints in the left and right ventricles; for 

each site, cells within a hemispherical tissue volume (3 mm in diameter) were modeled as 

light-sensitive and uniform endocardial illumination was applied. This resulted in electrical 

activation (Fig. 6A) and mechanical deformation (Fig. 6B) consistent with normal sinus 

rhythm, as reflected by the fact that pressure-volume loops corresponded closely to those 

resulting from electrical stimulation of the His bundle, reassuring of the equivalence of 

electrical and optogenetic stimulation.

Dynamic Modulation of Atrial Action Potential Duration (APD)—Unlike electrical 

stimulation, optogenetics-based perturbations, relying on depolarizing and hyperpolarizing 

currents, provide a finer tool to modulate the morphology of cardiac APs (1,49,51). These 

features make optogenetic stimulation a potentially unique tool for mitigating deleterious 

effects of APD-altering pathological conditions. Karathanos et al. (88) illustrated this 

concept by conducting cell- and organ-scale simulations in human atrial models affected by 

short QT syndrome (SQTS) (26). This study showed that abnormal APD shortening due to 

mutant inward rectifier potassium current (IK1), the underlying cause of the SQTS variant in 

question, could be almost completely eliminated by illuminating ChR2-rich cells with 

appropriately shaped optical pulses (Fig. 7A). The proposed light-based treatment yielded an 

AP that was closer in shape and duration to the control case compared to the AP resulting 

from optimal drug treatment (Figs. 7B,C). Comparable findings were reported by Park et al. 

in a concurrent in vitro study (51), which elegantly demonstrated the feasibility of 

optogenetics-based APD lengthening in neonatal rat ventricular myocytes transfected with 

ChR2. Such cells exhibit action potential morphologies resembling those of atrial cells as in 

(89), with plateaus at voltages below 0mV permitting the inward flow of ChR2 current and 

thus APD prolongation; however, in (human) ventricular myocytes APD prolongation via 

ChR2 is limited (49) due to the rectifying function of ChR2, as revealed computationally. 

Furthermore, optogenetics-based APD shortening was demonstrated in vitro by using NpHR 

in neonatal rat myocytes and illuminating with green light (51); future simulations with 

inhibitory opsins can yield insights relevant to APD modulation and cardioversion.

Analogous simulations exploring APD modulation in organ-scale simulations were 

conducted to ascertain whether an optogenetics-based approach might be able to mitigate the 

effects of SQTS in the human atria (88); this would be of therapeutic benefit, since AF is a 

common complication arising from SQTS (26). Simulations were conducted in an image-
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based model of the human left atrium (69,90); under idealized conditions for optogenetics-

based treatment (ChR2 expression in 100% of myocytes, no light attenuation), illumination 

with a similar pulse sequence that restored healthy APD significantly prolonged APs 

throughout the atria (mean ± standard deviation for control, SQTS, and light-treated SQTS 

were 250.5±1.5, 137.6±0.9, and 218.4±1.2 ms, respectively). With a more realistic diffuse 

distribution of opsin-expressing cells throughout the tissue (D = 0.4, C = 0.05; comparable 

to patterns observed in vivo resulting from GD of ChR2 via systemic injection in mice (13)), 

the therapy was less effective (APD = 180.7±3.0 ms). Finally, the addition of realistic light 

attenuation effects almost completely abolished the therapeutic benefit of illumination (APD 

= 144.8±3.5 ms). This study highlighted the complex nature of optogenetic response at the 

whole-heart level, and the practical limitations of the technology in its present state, 

particularly for applications beyond simple localized optical pacing, due to limited capacity 

to capture deep tissue with shorter-wavelength light. The authors concluded that it might be 

possible to offset this constraint by using engineered ChR2 variants with higher conductance 

and/or spectral sensitivity more favorable to deep light penetration (i.e., ChRimson (56) or 

ReaChR (57)). Such opsins have to offer increased photocurrent and be operational at low-

light levels because with red-shifted excitation, potential thermal heating issues become 

relevant and need to be taken into account (58) – another venue conducive for computational 

input.

Conclusions

This review summarized the main components necessary for simulating cardiac optogenetics 

in biophysically detailed multiscale models of the heart (including patient-specific image-

based models) and discussed findings and insights obtained by such simulations. Model-

based research has the potential to accelerate progress in this fledgling field by (a) providing 

detailed feasibility assessments for potential organ-scale light-based therapies and (b) 

identifying critical bottlenecks for scaling up applications from smaller to larger-scale 

experimental preparations (e.g., the severe limitations imposed by light attenuation in the 

context of optogenetics-based APD modulation). Notably, the fact that optogenetics has 

emerged at a time when robust and flexible tools for conducting realistic organ-scale 

simulations of the heart already exist provides a unique opportunity. In addition to aiding in 

data analysis and interpretation, computational modeling in cardiac optogenetics has the 

potential to provide guidance in the development of new optogenetic tools by virtual pre-

testing thereby helping to focus the experimental pursuits on the most promising optogenetic 

solutions.
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Highlights

• In Part 1, we discuss state-of-the-art methods used to model cardiac 

optogenetics

• Required techniques at the protein, cell, tissue, and organ scales are summarized

• A novel exploration of optogenetic cardiac action potential silencing is included

• In Part 2, we review findings that have emerged from cardiac optogenetics 

modeling

• Simulations will help assess the efficacy of potential clinical applications
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Figure 1. 
Schematic showing new methodologies that must be integrated with the existing approach to 

multiscale cardiac modeling. Changes required at four discrete spatial scales are highlighted.
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Figure 2. 
Simulated response to optogenetics-based stimulation of opsin-expressing human 

cardiomyocytes. (A) ChR2-mediated photocurrent (IChR2) in response to 200 ms of blue-

light illumination with a range of irradiance (Ee) levels; IChR2 is modeled as described by 

Williams et al. (48) and incorporated in a human ventricular myocyte (50) clamped to Vm = 

–80 mV. (B) Result of electrical and optogenetics-based stimulation in the human 

ventricular myocyte. Both light-based action potential (AP) prolongation (beats 3 and 4) and 

purely light-elicited APs (beats 5 to 8) are shown. Blue light pulses had Ee = 10mW/mm2. 

(C) NpHR-mediated photocurrent (INpHR in response to 200 ms pulses of orange light (Ee = 

1.4 mW/mm2) in ventricular myocytes clamped to a range of Vm values. The formulation 

used to model INpHR is provided Table 1. (D) Optogenetics-based “silencing” of electrical 

stimuli that would otherwise have induced APs. The orange light pulse had Ee = 1.4 

mW/mm2. Electrical stimuli were transmembrane current pulses (strength: 32.4 μA/cm2, 

duration: 1 ms); NpHR-based silencing failed when stronger and/or long-lasting electrical 

stimuli needed to be countered by light.
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Figure 3. 
Simulated distribution of opsin-expressing cells in an image-based human left atrial model 

(68,69). (A-D) Patterns resulting from applying the stochastic distribution algorithm 

described in the text with D = 0.4 and C = 0, 0.35, 0.65, and 0.95. Blue and pink regions 

represent opsin-expressed and non-modified tissue, respectively. Anatomical labels in A 

indicate the left and right superior and inferior pulmonary veins. (E) Relationship between 

Moran's I (70), a spatial metric quantifying clustering, and the C parameter of the 

distribution algorithm for different values of D.
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Figure 4. 
Ventricular distribution of irradiance (Ee) values resulting from epicardial optical 

stimulation. (A-B) Uniform and multi-point illumination, respectively, with blue light (λ = 

488 nm) appropriate for excitation of ChR2. For this wavelength of light, the penetration 

depth in cardiac tissue is approximately 588 μm (80). Note that light attenuation is plotted 

on a logarithmic scale. (C-D) Same as A-B but for illumination with red light (λ = 669 nm), 

for which the penetration depth is 1.84 mm (80), which would be appropriate for 

illumination of certain red-shifted ChR2 variants (e.g., Chrimson (56) or ReaChR (57)).
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Figure 5. 
Comparison of ChR2 photocurrent required for optogenetics-based excitation in models of 

different cardiac cell types. (A) Simulated action potentials (APs) induced by optogenetics-

based stimulation (Ee = 0.5 mW/mm2 over 10 ms) of ChR2-expressing cardiac cells from 

different regions of the heart (ventricular (50), atrial (81), and Purkinje fiber (82)). (B) 

Underlying light-sensitive current for APs shown in A. (C) Strength-duration (SD) 

relationships for optogenetics-based stimulation of different cardiac cell types; squares 

indicate the effect on the ventricular SD curve when the formulation for inward-rectifying 

potassium current (IK1) in that model was replaced with the version from the Purkinje fiber 

model. Reproduced with permission from Williams et al. (48).
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Figure 6. 
Contraction of canine ventricular electromechanical model in response to simultaneous 

optogenetics-based pacing from ten locations corresponding to Purkinje system endpoints. 

(A-B) Spatial maps of membrane voltage (Vm) and strain (measured with respect to end 

diastolic state) at different phases of the cardiac cycle. Optical stimuli (Ee = 12.8 mW/mm2, 

10 ms duration) were applied at 10 distinct ventricular sites located near Purkinje system 

endpoints. (C) Left and right ventricular (LV, RV) pressure-volume loops for the photo-

evoked response, which closely matched those corresponding to normal sinus rhythm (cross-

correlation coefficient γ = 0.9). Reproduced with permission from Boyle et al. (44).

Boyle et al. Page 23

Comput Biol Med. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Optogenetics-based dynamic modulation of action potential duration in atrial myocytes. (A) 

Comparison of atrial action potentials (APs) under three model conditions: normal (control), 

diseased (SQTS; short QT syndrome caused by a KCNJ2 mutation (26)), and SQTS with 

optogenetics-based stimulation to modulate (lengthen) AP duration. Selected ionic currents 

and optical stimulus pulse features are shown in the middle and lower panels, respectively. 

(B) Same as top panel of A but with SQTS treated via chloroquine. (C) Quantitative 

comparison between control APs and diseased/treated APs for cases in A and B; smaller 

values indicate better matches. Reproduced with permission from Karathanos et al. (88).
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Table 1

Equations and parameters for NpHR opsin model, based on the formulation used by Nikolic et al. (52). Rate 

coefficients were obtained via private correspondence with Professor Konstantin Nikolic. Other parameters 

(membrane voltage-sensitive scaling function (f(Vm)), NpHR conductance per unit area (gNpHR), and sub-

threshold irradiance (Ee0)) were calibrated to achieve a good match between steady-state INpHR values and 

experimentally measured currents in NpHR-expressing myocytes illuminated at 1.4 mW/mm2 (compare Fig. 

2C with Figs. 1b,d in the study by Park et al. (51)).

Category Parameter Value / Equation Units

Opsin Model

NpHR photocurrent INpHR = gNpHR × f (Vm) × O μA/ cm2

NpHR conductance gNpHR = 1 mS/cm2

Vm-dependent scaling function f(Vm) = 75.2 + 0.193 × Vm mV

Sub-threshold irradiance Ee0 = 0.00014 mW/mm2

State Differentials

O (initial value = 0) dO/dt = C × α1 - O × α2

C (initial value = 1) dC/dt = I × α3 - C × α1

I (initial value = 0) dI/dt = O × α2 - I × α3

Rate Coefficients

Opening (C to O) α1 = 0.002 × Ee/Ee0 ms−1

Inactivation (O to I) α2 = 0.1 ms−1

Recovery (I to C) α3 = α3D + α3L ms−1

Light-insensitive recovery α3D = 0.1 ms−1

Light-sensitive recovery α3L = 0.02 × log10 (Ee/Ee0) ms−1
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