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Abstract: Diabetic retinopathy (DR) is a sight-threatening condition occurring
in persons with diabetes, which causes progressive damage to the retina. The early
detection and diagnosis of DR is vital for saving the vision of diabetic persons. The
early signs of DR which appear on the surface of the retina are the dark lesions such
as microaneurysms (MAs) and hemorrhages (HEMs), and bright lesions (BLs) such
as exudates. In this paper, we propose a novel automated system for the detection
and diagnosis of these retinal lesions through the processing of retinal fundus images.
We devise appropriate binary classifier detectors for these three different types of
lesions. Some novel contextual/numerical features are derived, for each lesion type,
depending on its inherent properties. This is performed by analysing several wavelet
bands (resulting from the isotropic undecimated wavelet transform decomposition of
the retinal image green channel) and by using an appropriate combination of Hessian
multiscale analysis, variational segmentation and cartoon+texture decomposition.
The proposed methodology has been validated on several medical data sets using
standard performance measures such as sensitivity and specificity. The individually
performance, per frame, of the MAs detector is 93% sensitivity and 89% specificity,
of the HEMs detector is 86% sensitivity and 90% specificity, and of the BLs detector
is 90% sensitivity and 97% specificity. Regarding the collective performance of these
binary detectors, as an automated screening system for DR (meaning that a patient
is considered to have DR if it is a positive patient for at least one of the detectors) it
achieves in average 95%-100% of sensitivity and 70% of specificity at a per patient
basis.

Keywords: Microaneurysm Detector, Hemorrhage Detector, Bright Lesion Detec-
tor, Retinal Fundus Image, Computer-aided Diagnosis, Wavelets, Multiscale Anal-
ysis, Variational Segmentation, Cartoon+Texture Decomposition.

1. Introduction
Diabetic retinopathy (DR) is a sight-threatening consequence of Diabetes

Mellitus which affects the small blood vessels in the retina, the nerve layer
that lines the back of your eye. Often there are no visual symptoms in the
early stages of diabetic retinopathy. Early diagnosis and treatment are es-
sential to prevent significant vision loss from DR. So, it is vital, for a diabetic
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patient to have regular eye examinations. One of the easiest way to diag-
nose DR is by analyzing fundus images. They are the visual records which
document the current ophthalmoscopic appearance of a patient’s retina, the
retinal vasculature, and the optic nerve head (optic disc) from which the
retinal vessels enter the eye. The acquisition of fundus images is inexpensive,
non-invasive and easy to perform. Therefore they are adapted for the large
scale screening purposes.

DR can be mainly classified into two classes: Non-proliferative diabetic
retinopathy (NPDR) and Proliferative diabetic retinopathy (PDR). NPDR
is the earliest stage of DR and can be described as mild, moderate or se-
vere. With this condition, the walls of the blood vessels in the retina become
weak. Tiny bulges protrude from the vessel walls, sometimes leaking or ooz-
ing fluid and blood into the retina. Also, sometimes, deposits of cholesterol
or other fats from the blood may leak into the retina. NPDR can cause
several changes in the eye, including microaneurysms (MAs), hemorrhages
(HEMs) and bright lesions (BLs) (as for instance hard and soft exudates).
PDR is the more advanced form of the disease, where fragile new blood ves-
sels form on the surface of the retina over time. These abnormal vessels can
bleed or develop scar tissue causing severe loss of vision. PDR may cause
more severe vision loss than NPDR because it can affect both central and
peripheral vision. Due to this reason it is very significant to diagnose and
treat DR in the non-proliferative stage.

Computer-aided detection and diagnosis of DR with retinal fundus images
significantly lessens the burden of the implementation of a large scale screen-
ing of the diabetic patients. Recent years have seen the development of the
methods for the accurate detection of MAs, HEMs and BLs by considering
them individually and in a collective way. Without being exhaustive we men-
tion here some of these related works. A survey of various methods related
to DR can be found in [28]. The segmentation of exudates using fuzzy c-
means clustering algorithm is done in [22]. After extracting color, size, edge
strength, and texture features from the regions and a multilayer neural net-
work classifier is used to classify the images. In [3] a new hybrid classifier as
an ensemble of Gaussian mixture model and support vector machine is pro-
posed for exudate detection. In [29] a new candidate segmentation method,
based on mathematical morphology, is proposed. Extracting some features,
a random forest algorithm is used to detect the exudates among the candi-
dates. An automatic MAs detector based on template matching in wavelet
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space using a Gaussian template is proposed in [24]. The detection of MAs
and HEMs based on recursive region growing segmentation algorithm and
a moat operator is done in [25]. After extracting the potential candidates
and formulating a set of features of MAs, HEMs and exudates, [2] used a
hybrid classifier which is a weighted combination of multivariate m-Mediods
and a Gaussian mixture model. An ensemble-based framework for the de-
tection of MAs is proposed in [4]. The algorithm in [23] assessed the need
for referral in DR detection with a decision based on the fusion of results
by meta-classification. In [12] the detection of HEMs is done based on the
hue, saturation and value (HSV) model and the Mahalanobis distance. A
novel splat feature classification method is proposed in [27] to detect retinal
hemorrhages.

The present paper describes an intelligent automated system for the binary
classification of different types of DR lesions through the processing of eye
fundus images.

We derive some novel contextual detectors for the lesions (MAs, HEMs and
BLs) depending on their intrinsic properties. The numerical features, which
define each detector, rely on the analysis of several wavelet bands (result-
ing from the isotropic undecimated wavelet transform [26] decomposition of
the retinal image), and includes an appropriate combination of Hessian mul-
tiscale analysis (more precisely, using the Hessian eigenvalues), variational
segmentation [6, 9] and cartoon+texture decomposition [7]. These features
are then used to classify the retinal image into separate categories of DR.
We perform a thorough testing of the proposed method on several rich data
sets to ensure its good performance in realistic environment.

The rest of the paper is structured as follows. Section 2 presents in detail
the methodology, by explaining the definition of the MAs, HEMs and BLs
detectors. This includes the extraction of the candidates for the different
lesions, description of all the features and the binary classifiers for the le-
sions. Section 3 presents the experimental results on several medical data
sets prepared by the experts. Then, the paper ends with a discussion of the
results and some conclusions in Section 4.

2.MAs, HEMs and BLs Detectors
In this section we present the detailed description of the method for the

detection of the different lesions. The procedure relies on four major math-
ematical techniques (i- wavelets, ii- multiscale analysis of the image Hessian
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matrix, iii- variational image segmentation, iv- cartoon and texture image
decomposition) which are appropriately and sequentially applied and com-
bined. Firstly we outline these 4 techniques in an abstract framework for
a scalar image. Then we proceed with the description of the first step of
the method: the pre-processing step and the optic disk detection in retinal
fundus images. Finally we give a detailed explanation of the three lesion
detectors: microaneurysms (MAs), hemorrhages (HEMs) and bright lesions
(BLs). Once these feature detectors are extracted, the decision criteria, on
whether a frame has or does not have one of these type of lesions, are based
on simple thresholding approaches.

2.1. The Isotropic Undecimated Wavelet Transform. The Isotropic
Undecimated Wavelet Transform (IUWT) [26] is characterized by a simple
implementation of its direct and inverse transform. Denoting by C0 = I a
scalar input image, at each subsequent iteration j, the scaling coefficients Cj
are computed by lowpass filtering (where filtering is applied by convolution
and separably along each dimension), and the wavelet coefficients Wj (here-
after called wavelet levels) are defined just by scaling coefficient subtraction,
i.e, Wj+1 := Cj+1−Cj. Starting with the filter h0 = [1/16, 1/4, 3/8, 1/4, 1/16],
which is derived from the cubic B-spline, at each scale j ≥ 2 the filter hj
is augmented by inserting 2j − 1 zeros between each pair of adjacent co-
efficients of h0. The scaling coefficient Cj+1 is defined from the previous
coefficient Cj using separable convolution with hj in each dimension. The
reproduction of the original image I is achieved just by adding all the wavelet
coefficients and the final computed scaling coefficient in the following way:
I := Cm +

∑m
j=1Wj. In addition we denote by In a partial reconstruction of

I defined by

In =
n∑
j=2

Wj, n = 2, 3, 4, 5, (1)

with Wj the wavelet level at iteration j.

2.2. Multiscale Analysis of the Image Hessian Matrix. For looking
for blob structures in a scalar image, we use herein a strategy based on the
eigenvalues of the image Hessian matrix and multiscale image analysis. For
a scalar image I : Ω ⊆ R2 → R, where Ω is the pixel domain, we first define
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the Hessian matrix of one point (x, y) ∈ Ω, and at a scale s, by

Hs(x, y) :=

(
Isxx(x, y) Isxy(x, y)

Isxy(x, y) Isyy(x, y)

)
.

Here Isxx, I
s
xy and Isyy are the second-order partial derivatives of I and the

scale s is involved in the calculation of these derivatives (for instance using
Gaussian convolution). Suppose λs,1 and λs,2 are the two eigenvalues of the
Hessian matrix Hs. Note that in a blob region, these two eigenvalues have
the same sign and similar magnitudes (see [17]). Without loss of generality
we assume that |λs,1| ≤ |λs,2|. Then, setting Fs := λ2

s,1 + λ2
s,2

f1 := exp
(
−βF 2

s

)
and f2 := 1− exp

(
−α
(
λs,1
λs,2

)2
)
,

and motivated by [17, 14], we define the blob (Bs) detector (at each point
of the domain) by

Bs :=

{
0, if λs,1λs,2 < 0 or |λs,2 − λs,1| > δ
(1− f1)f2, otherwise.

Here α and β are parameters which control the sensitivity of the function
Bs and δ a user chosen threshold. The values of α, β and δ are considered
to be 1, 1 and 10−4, respectively. In order to automatically detect blobs
of different sizes, a multiscale approach is necessary. The response of the
detector function Bs will be maximum at a scale that approximately matches
the size of the blob to be detected. Hence, at each point of the domain, we
define the function

B := max
smin≤s≤smax

(Bs.I) , (2)

where smin and smax are the minimum and maximum scales at which the blobs
are expected to be found. Finally, in the subsequent Sections we consider
the maximum of the function B as an input to our binary (blob) classifier

Bmax := max
i,j

Bi,j, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, (3)

where Nx and Ny are the width and height of the image in pixels.

2.3. Variational Image Segmentation. The segmentation scheme, we
have applied, relies on a reformulation of the Chan and Vese variational
model [6, 9], and is described as follows: We first compute the constants
c1 and c2 (representing the averages of a scalar image I : Ω ⊆ R2 → R,
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in a two-region image partition). We then solve the following minimization
problem

min
u,v

{
TVg(u) +

1

2θ
‖u− v‖2

L2(Ω) +

∫
Ω

(
λ r(I, c1, c2) v + α ν(v)

)
dx dy

}
(4)

where TVg(u) :=
∫

Ω g(x, y)|∇u| dx dy is the total variation norm of the func-

tion u, weighted by a positive function g; r(I, c1, c2)(x, y) :=
(
c1−I(x, y)

)2−(
c2− I(x, y)

)2
is the fitting term, θ > 0 is a fixed small parameter, λ > 0 is a

constant parameter weighting the fitting term, and α ν(v) is a term resulting
from a reformulation of the model as a convex unconstrained minimization
problem (see [6, Theorem 3]). Here, u represents the two-phase segmentation
and v is an auxiliary unknown. The segmentation curve, which divides the
image into two disjoint parts, is a level set of u, {(x, y) ∈ Ω : u(x, y) = µ},
where in general µ = 0.5 (but µ can be any number between 0 and 1, with-
out changing the segmentation result, because u is very close to a binary
function).

The above minimization problem is solved by minimizing u and v sepa-
rately, and iterated until convergence. In short we consider the following two
steps:
1. v being fixed, we look for u that solves

min
u

{
TVg(u) +

1

2θ
‖u− v‖2

L2(Ω)

}
. (5)

2. u being fixed, we look for v that solves

min
v

{ 1

2θ
‖u− v‖2

L2(Ω) +

∫
Ω

(
λ r(I, c1, c2) v + α ν(v)

)
dx dy

}
. (6)

We refer to [6, Propositions 3, 4] for the solution of (5)-(6). For our exper-
iments g is considered to be the edge indicator function g(∇u) := 1

1+β‖∇u‖2

with β = 10−3 (‖.‖ denotes the Euclidean norm). The values of θ and λ are
considered to be 1 and 0.01, respectively.

2.4. Cartoon and Texture Image Decomposition. Given a scalar image
I : Ω ⊆ R2 → R, we decompose it into the cartoon (geometric) part C and
the texture (oscillatory) part T using an algorithm of Buades et al. [7]. This
algorithm is briefly described as follows. We define the local total variation
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(LTV) for each pixel x in Ω, by the convolution (denoted by ’∗’)

LTVσ(I)(x) := Gσ ∗ |∇I|(x)

where Gσ is a Gaussian kernel of variance σ. The main characteristic of a
textural region is its high total variation (due to its oscillations) and the
property of decreasing very fast under low-pass filtering (as opposed to car-
toon, or equivalently, non-oscillatory regions). We then compute the relative
reduction rate of LTV by

λ(x) :=
LTVσ(I)(x)− LTVσ(Rσ ∗ I)(x)

LTVσ(I)(x)
,

where Rσ is a low pass filter. λ is a local indicator of the oscillations in I:
if λ(x) ≈ 0 there is little reduction of LTV with the low-pass filter, but if
λ(x) ≈ 1, this means the reduction is strong, and consequently the pixel x
belongs to a textured region.

Depending on the relative reduction of LTV, taking the weighted average
of I and Rσ ∗ I, we get the cartoon part C, and hence the texture part T ,

C(x) := w
(
λ(x)

)(
Rσ ∗ I

)
(x) +

(
1− w

(
λ(x)

))
I(x),

T (x) := I(x)− C(x).
(7)

The weight w : [0, 1] → [0, 1] is a nondecreasing piecewise affine function
that is constant and equal to zero, near zero, and constant and equal to 1,
near 1. If λ(x) is very small, then I is non oscillatory around x and therefore
w ≈ 0, so C ≈ I, that is the image is cartoon. If instead λ(x) is big, then
the image I is locally oscillatory in the neighborhood of x.

2.5. Pre-processing and Optic Disk Detection. Retinal fundus images
normally contain a main region at the center of the image, which is called the
field of view (FOV), surrounded by dark background pixels. For automated
detection of lesions we only need to process the main region, so we separate it
from the background, in a preprocessing step. The separation is performed by
eroding the green channel of the image, using a square structuring element.

It is also needed to extract the optic disc (OD) from each image to eliminate
any spurious and false regions caused by their similarities with bright lesions.
The segmentation of the OD is done in two steps. We first localize the OD
using its geometric features and then use the circular Hough transform (CHT)
in the localized region to detect the OD boundary. The herein proposed



8 I.N. FIGUEIREDO, S. KUMAR, C.M. OLIVEIRA, J.D. RAMOS AND B. ENGQUIST

approach for the OD detection was presented by the authors in a conference
paper in [11], and it is summarized here for convenience of the reader.

It is well known that the OD appears most contrasted in the green channel
compared to the red and blue channels of the RGB image. More importantly,
it appears as a concave region (protrusion) in the green channel. Motivated
from [13, 15], we define

ODloc := −Kmin(H, 0),

where K and H are, respectively, the Gaussian and mean curvatures of the
green channel image. This geometrical function was introduced in [13, 15] as
a protrusion measure for detecting colonic polyps (which are round-shaped
protusion objects) in wireless capsule endoscopy images. Mathematically, the
value of the ODloc function is closely related to the size of the protrusions in
the images. Therefore, the optic disc location in the frame can be inferred by
identifying the locations where ODloc is higher. Hence, applying a threshold
we can separate the candidate region(s) for the location of the optic disc.
We extract the highest 15% of pixels of ODloc. The entire thresholded image
is scanned to count the number of connected components. The connected
components are found using an algorithm by Haralick and Shapiro [18]. For
each connected component, in the thresholded image, we compute the area
and the ODloc mean pixel intensity. The component corresponding to the
maximum of the product between the area and theODloc mean pixel intensity
is considered to be the location of the OD. We then compute the centroid of
the same component, which is identified with the estimated OD center and
consequently the OD location.

Afterwards, the detection of the OD boundary is done based on the CHT
[20, 19], which relies on equations for circles. The parametric representation
of a circle is x := a+ r ∗ cos(θ), y := b+ r ∗ sin(θ), where a and b represent
the coordinates for the center, θ ∈ [0, 2π] and r is the circle radius. We
consider r between rmin and rmax which are, respectively, one-tenth and one-
fifth of the image (as these measurements are estimated to be the average OD
diameter) divided by two. The minimum value makes sure that the OD cup
(an internal circular object in the OD) is not considered, while the maximum
value is such that too wide areas are eliminated. The CHT transforms a set
of feature points in the image space into a set of accumulated votes in a
parameter space. Then, for each feature point, votes are accumulated in an
accumulator array for all parameter combinations. The array elements that
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Figure 1. Two pairs of ODloc function in the green channel and
the corresponding optic disk boundary determined by CHT.

contains the highest number of votes indicate the presence of the desired
shape, i.e. the OD in our case. Based on our previous optic disc localization
(the above mentioned computed centroid), we define a region of interest
(ROI) of size m×n, where m and n are one-ninth of the respective dimensions
of the image multiplied by two. Finally to segment the OD boundary from
the retinal image we apply the CHT to the edges of the ROI, which are
computed using Canny edge detector [8].

The OD detection for a disease and a non-disease image (exhibiting BLs)
is shown in Figure 1.

2.6. Microaneurysm Detection. A microaneurysm is a round dark-red
structure (a very small spot whose size is approximately less than 125 mi-
crons in its longest dimension) caused by thickening of capillary basement
membranes within the retina. We have observed that MAs are visible and
enhanced at wavelet level W2, or at the sum of wavelets levels W2 and W3,
of the green channel of the input fundus image. These facts have motivated
us to devise a MAs detector, based on circular blob detection in these two
wavelet images, as described in the sequel of the current Section.

For each image we take I := IG (in Section 2.1), with IG the green channel
of the input fundus image, and we compute (1), i.e. In =

∑n
j=2Wj, n = 2, 3.

Then, we extract the 20% darkest pixels within the FOV of In to identify
the MA candidates. We then take the product of this thresholded image
with In, and remove the pixels corresponding to the vessels and OD. The
resulting image is denoted by Tn. The segmentation of the vessels is done by
using an approach similar to [5] [briefly it includes the following procedure
described in points i) to iii) : i) We compute the sum of the wavelet levels
W2 and W3 of the green channel of the image and extract the darkest 10%
of the pixels within the FOV of the same. ii) The vasculature can be seen
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Figure 2. Visualization of the main steps of MAs Detector. (a)
and (b) Retinal fundus images having MAs. (c) and (d) Pair of
wavelet level W2 and sum of wavelet levels W2 and W3, for (a)
and (b), respectively. (e) and (f) Pair of blob functions MA2 and
MA3, for (a) and (b), respectively.

as a large connected structure in the binary image, along with some isolated
small objects, which are removed from the binary image. In a similar way we
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fill small holes present within the thresholded regions. iii) We remove objects
of size less than 150 pixels and fill holes of size greater than 20 pixels]. After
removing the vessels from Tn we also apply to Tn the adaptive Wiener filter,
using neighborhoods of size [15, 15], for smoothing and enhancing. We have
observed that there are still some elongated structures left in Tn. To remove
them we apply a technique similar to the vessel segmentation. We take the
sum of the wavelet levels W1, W2 and W3 of Tn and extract the darkest 10%
of the pixels within the FOV of the same. From the same binary image we
remove objects of size less than 75 pixels and fill holes of size greater than
20 pixels. The pixels corresponding to the resulting binary image are then
removed from Tn and the corresponding image is denoted by Fn. Finally, we
perform the inversion of the image in the following way

Mn :=
(

max
i,j

Fn;i,j

)
− Fn;i,j, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, (8)

where Nx and Ny are the width and height of the image Fn in pixels. We then
look for blob structures in each image Mn (n = 2, 3), using the eigenvalues
of the Hessian matrix of Mn and multiscale image analysis (as described in
Section 2.2, with I := Mn). Hence, at each point of the domain we define
the functions, see (2),

MAn := max
smin≤s≤smax

(Bs.Mn) ,

where smin and smax are the minimum and maximum scales at which the
MAs are expected to be found. For our experiments we consider scale s to
vary between 2 and 8.

Finally, we consider the maximum of each function MAn as an input to our
MA binary classifier (or equivalently the Mas detector), see (3)

MAmax
n := max

i,j
MAn;i,j, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.

Consequently, if for a frame

(MAmax
2 ≥ MAL

2 ) ∧ (MAmax
3 ≥ MAL

3 ) (9)

then it is classified as a frame containing a MA, otherwise the frame is consid-
ered to be a normal frame. Here the pair of lower bounds (MAL

2 ,MAL
3 ) filters

out frames that are unlikely to have MAs (in the experiments we consider
the values (3.5, 5.5), see Table 2 in Section 3).
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The previous functions, I2, I3, MA2, MA3, involved in the definition of
the MA detector are illustrated in Figure 2 for two retinal fundus images
exhibiting MAs.

2.7. Hemorrhage Detection. Due to the difficulty of identifying HEMs,
resulting of their diversity and variability in appearance (shape, size, texture)
we have devised 3 criteria, where the third is based directly on 3 different
HEMs sizes. Therefore there is a total of five criteria for HEMs. Then a
frame is considered as containing an HEM if it satisfies at least one of these
five criteria. The motivation for the definition of each criterion (that relies
essentially on the hemorrhage visible information) is justified for each case.
The input for each HEM criterion is always the green channel of the retinal
fundus image, because it exhibits the best contrast for visual HEM detection
in wavelets bands.

2.7.1.HEM Criterion 1. This first criterion is quite similar to the detection
of MAs. The main difference is that because hemorrhages have a bigger size
than MAs, and as we know that larger features are visible with improved
contrast on higher wavelet levels, we use I4 =

∑4
j=2Wj (see (1), where now

the input scalar image is the green channel of the fundus image), instead of
I2 or I3 as for MAs. To identify the hemorrhage regions we extract the 20%
darkest pixels, which we call Rh. Hemorrhages are know be medium size dark
red spots, so we create a binary mask by extracting objects of size between
40 and 500 pixels from Rh and call this mask Mh. Finally, we consider the
product of I4, Rh, Mh, and remove the pixels corresponding to the OD. To
the resulting image we apply the adaptive Wiener filter using neighborhoods
of size [15, 15] and do the inversion similar to (8) to get the image Hh. As
a result of these thresholding and smoothing operations, the HEM lesions
appear as isolated bright patches or blobs outstanding to their surroundings
in Hh. We then look for blob structures in Hh, using the technique described
previously in Section 2.2 (with I := Hh), and where now smin and smax are
the minimum and maximum scales at which the HEMs are expected to be
found. From that we get the measure HEMmax for our binary classifier (see
(3)). If the frame passes the criterion

HEMmax ≥ HEML1 (10)

then the frame is labelled as a hemorrhage frame. The threshold HEML1 is
chosen very high (12 in the experiments, see Table 2 in Section 3) so that
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Figure 3. Illustration of HEM Criterion 2 (and also HEM Cri-
terion 1 in subfigure (d)). (a) Original image with HEMs. (b)
Sum of wavelet levels W2, W3 and W4. (c) Image Hh. (d) Com-
puted blob function in image Hh. (e) Binary segmentation image
S (via thresholding). (f) Image Hh in the regions of S.

we can detect HEM with marginal false positives. In Figure 3, the subfigure
(c) depicts the blob function, and there we can see that HEMmax attains a
higher value than 12.

2.7.2. HEM Criterion 2. One of the most frequent features of some hemor-
rhages is that it appears as a red spot, with uneven density and surrounding
a smaller punctuate lesion considered to be a MA. Thus this second criterion
is a procedure that intends to quantify this property.

In this case we compute essentially other measures from Hh and also use
HEMmax (both defined in HEM Criterion 1). We use a binary segmentation
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via thresholding, such that for a pixel x

S(x) := H(Hh(x)− θ)
where H is the Heaviside function taken pixel-wise

H(x) :=

{
0, if x < 0,
1, if x ≥ 0,

and the scalar threshold θ is defined by

θ :=
1

2
max
i,j

Hh;i,j 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.

We find the connected components of S using an algorithm by Haralick and
Shapiro [18]. For each connected component we compute the mean pixel
intensity in Hh. We consider the maximum of the mean intensities for our
binary classification and denote it by Hmean. This maximum value is consid-
ered since we expect the mean of the pixels to be high corresponding to the
selected HEM region. We also compute the eccentricity of the component
corresponding to the maximum mean and denote it by Hecc. This information
is useful since we expect the selected HEM region to be round in shape after
thresholding and smoothing operations. Thus criterion 2 is

(HEMmax ≥ HEML2) ∧ (Hmean ≥ HL
mean) ∧ (Hecc ≤ HU

ecc). (11)

The frame is checked for this criterion. If it passes, then it is classified as
a HEM frame, otherwise we continue to the next criterion of our HEMs
classification. The lower bounds HEML2, HL

mean and the upper bound HU
ecc

discard frames without HEMs (the chosen values in the experiments are 6, 9
and 0.7, respectively, see Table 2 in Section 3).

The main steps of this HEM Criterion 2 are illustrated in Figure 3.

2.7.3. HEM Criterion 3. This final criterion includes 3 subcriteria denoted
by 3-a, 3-b and 3-c. It is based on different sizes of HEMs. Essentially we
look for three sizes of hemorrhages regardless of their shapes : between 100
and 500 pixels, or between 500 and 1100 pixels, or big objects but less than
1500 pixels.

To this end, and for each size class, we essentially perform, firstly, a suit-
able segmentation of the HEM regions in the frame, then select (with an
appropriate procedure that involves the cartoon part of the image) the best
candidate hemorrhage region and finally quantify same features in this se-
lected candidate for the binary HEM classification. We explain with all the
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details criterion 3-a, and shorten the descriptions of criteria 3-b and 3-c,
which are similar.
HEM Criterion 3-a. To achieve a better segmentation, we first enhance and
smooth the hemorrhages, and consequently they will have a more roundish
shape. To this end we compute the Laplacian of Hh (defined in HEM Cri-
terion 1, but using the adaptive Wiener filter with neighborhoods of size
[25, 25]). We set

Ls := −s2∆Gs ∗Hh, (12)

where Gs is a Gaussian kernel of variance s, ∆ is the Laplacian operator and
∗ represents the convolution. Taking the maximum with respect to the scales
we get

L := max
smin≤s≤smax

Ls. (13)

We then normalize the pixel intensity values of L and Hh in the range 0
to 255 and to emphasize the hemorrhage regions we consider Dh := L +
Hh. Secondly, we apply the blob detection algorithm described previously
in Section 2.2 to Dh and denote the resulting image by Ph (that is in (2)
I := Dh, B is denoted by Ph and the scale vector s = [10 12 14 16]). We now
perform the two-phase variational segmentation, described in Section 2.3, on
the scalar image Ph, aiming at separating the hemorrhage regions, from the
other parts: the segmentation mask is denoted by u, and contains the HEM
candidates.

Decomposing I4 = Ch + Th, into the cartoon (geometric) part Ch and the
texture (oscillatory) part Th, using the algorithm of Section 2.4, we set then
Sh = Ch.Rh.u, for discarding some superfluous segments from the segmen-
tation mask u. In fact, because HEM regions appear as medium/large size
geometric objects in I4 they go to the cartoon part Ch (rather than to Th),
which is relevant for the procedure described in the next sentence. After-
wards, for each connected component in Sh we compute the area and the
mean intensity of the pixels. We consider at most five components corre-
sponding to the higher values of the product between the area and the mean
intensity for the location of the HEMs. The resulting group of candidates is
denoted by C.

Then, within the FOV of the sum of the wavelet levels W2 and W3, we com-
pute the darkest 10% of the pixels. From the resulting image a binary image
is created and the objects of size less than 150 pixels are removed and the
holes of size greater than 20 pixels are filled. We denote the resulting binary
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image by Qh. We shall compute some measures for hemorrhage classification
from Qh.

In this first criterion we quantify some properties related to HEMs of size
between 100 and 500 pixels from a binary image Mh (created in a similar
way as the image also called Mh in HEM Criterion 1, for objects between
40 and 500 pixels). Then to the product I4.Rh.Mh we proceed exactly as in
HEM Criterion 1 to generate an image Hh for which we compute HEMmax

a

(following the technique of Section 2.2, with I := Hh, and the subscript letter
a symbolizes criterion 3-a).

If the location of the previous value HEMmax
a matches with the location

of a candidate region in C, then based on the location of the centroid of the
latter we define a region of interest (ROI) of size 60 × 60 pixels in Qh. If
there is no match found then we continue to the next step, HEM criterion
3-b. In the ROI we look for the object which is at the minimum Euclidian
distance from the centroid of the matched component. For the same object
we compute the solidity (a scalar value specifying the proportion of the pixels
in the convex hull that are also in the object) and denote it by S. If for the
frame the following condition is satisfied

(HEMmax
a ≥ HEML3) ∧ (S ≥ SL), (14)

(where HEML3 and SL are pre-defined values) then the frame is a HEM
frame, else we continue to look for the objects of other sizes.
HEM Criterion 3-b. This criterion is similar to the previous HEM criterion
3-a (including formulas (12), (13) and the group of candidates C, obtained
via I4). The only difference now is that we extract the 20% darkest pixels
from the sum of wavelet levels up to level 5, i.e. I5 =

∑5
j=2Wj, and then from

there we select the objects of size between 500 and 1100 pixels, to create the
binary image Mh. Again we get an image Hh (as in the previous criterion)
and applying the blob detection technique of Section 2.2 to Hh we obtain
the scalar value HEMmax

b (the subscript letter b symbolizes criterion 3-b). If
the location of HEMmax

b matches with the location of a candidate region in
C (as defined exactly in HEM Criterion 3-a) then based on the location of
the centroid of the latter we apply the previously described procedure for
checking the matching in Qh (as defined in HEM Criterion 3-a) and obtain
the solidity measure S. If there is no match found then we continue to the
next step, HEM Criterion 3-c. If for the frame

(HEMmax
b ≥ HEML4) ∧ (S ≥ SL), (15)
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Figure 4. Visualization of the main steps of HEM Criterion 3-a.
(a) Original image with HEMs. (b) sum of wavelet levels W2, W3

and W4. (c) Image Ph for segmentation. (d) Final segmentation
superimposed on the original image. (e) Blob function related to
objects of size between 100 and 500 pixels. (f) Image Qh in the
ROI for computing the solidity.

(where HEML4 and SL are pre-defined values) then the frame is a HEM
frame, else we move to our final HEM step.
HEM Criterion 3-c. This criterion is again analogous to the previous HEM
criteria (including formulas (12), (13) and the group of candidates C, obtained
via I4). The main alteration is that the binary mask Mh is now created from
the extraction of the 20% darkest pixels of I5 and by removing objects of size
less than 1500 pixels (in this process we also fill the holes of size greater than
20 pixels). Again we consider the product of I5, Mh and the 20% darkest
pixels of I5, remove from it the OD, and the resulting image is smoothed
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(a) (b) (c)

(d) (e) (f)

Figure 5. Illustration of the main steps for HEM Criterion 3-b.
(a) Original image with HEMs. (b) Sum of wavelet levels W2, W3

and W4. (c) Image Ph for segmentation. (d) Final segmentation
C superimposed on the original image. (e) Blob function related
to objects of size between 500 and 1100 pixels. (f) Image Qh in
the ROI for computing the solidity.

using the adaptive Wiener filter of neighborhoods of size [15, 15]. After that
the inversion is performed similar to (8) to obtain Hh. We again apply the
blob detection technique of Section 2.2 to Hh, to get a scalar value HEMmax

c

(the subscript letter c symbolizes criterion 3-c), whose location is used to
obtain the solidity measure S (in a similar way to the previous two criteria).
If no match is found in the procedure then the frame is considered to be a
normal frame. Our final criterion is

(HEMmax
c ≥ HEML5) ∧ (S ≥ SL). (16)
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Figure 6. Visual representation of the relevant parts of HEM
Criterion 3-c. (a) Original image with HEMs. (b) Sum of wavelet
levels W2, W3 and W4. (c) Image Ph for segmentation. (d) Final
segmentation C superimposed on the original image. (e) Blob
function related to objects of size up to 1500 pixels. (f) Image
Qh in the ROI for computing the solidity.

If the frame satisfies this criterion then it is considered to be a HEM frame,
otherwise a normal frame.

Again in these criteria 3-a, 3-b, 3-c, the pairs of lower bounds (HEML3,SL),
(HEML4,SL), (HEML5,SL) filter out frames that are unlikely to have HEMs.
In the experiments we consider the values (6, 0.7), (7, 0.7) and (8, 0.7), re-
spectively (see Table 2 in Section 3).

The segmentation of the HEM candidates as well the main steps of HEM
Criteria 3-a, 3-b and 3-c, for retinal images with HEMs, are displayed in
Figures 4, 5 and 6, respectively.
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2.8. Bright Lesion Detection. For the BLs detection a preprocessing step
is essential to algorithm success, aimed at reducing the intra- and inter-
image variability. We employ the technique proposed in [10, 16] to normalize
luminosity and contrast in fundus images based on a statistical model of
the image. In this section we always work with the corresponding enhanced
images.

The herein proposed technique for the BLs detection is an improved and
extended version of the approach presented by the authors in a conference
paper in [12]. To detect BLs our strategy is based on identifying separately
small and medium/large BL lesion regions. We propose three criteria. The
first is similar to the MAs detection, and aims at identifying small dotted
BLs. After that, for the other two criteria we utilize the high wavelet levels
and also the texture and cartoon decomposition of the image. In fact, doing
the texture+cartoon decomposition of the wavelet levels of the green channel
of the enhanced image, we have observed that clusters of small dotted BLs,
that are spread across the image, are more prominent in the texture part.
On the other hand, large/medium BL regions, that are more homogeneous,
go to the cartoon part and, in general, create void regions in the texture
part. These facts are also in good agreement with the comments reported in
Section 2.4

2.8.1. BL Criterion 1. We start by computing W2, the wavelet level at
iteration 2 of the green channel of the enhanced image. Extracting the 20%
highest pixels in W2 we consider the product of the thresholded image with
W2 and remove the pixels corresponding to the OD. The resulting image
denoted by Fb contains the small dotted BLs. To smooth and enhance these
lesions, we apply the adaptive Wiener filter to Fb using neighborhoods of size
[15, 15]. Consequently, the small dotted BLs appear as isolated bright patches
or blobs outstanding to their surroundings. We then apply the previously
described blob detection technique (of Section 2.2) to the scalar image Fb
and obtain the measure BLmax (see (2)) for the binary classification. If

BLmax ≥ BLL1 (17)

then the frame is classified as containing a BL (the lower bound BLL1 discards
frames without BL and its value is 11, see Table 2 in Section 3).

The approach for BLs detection in [12] utilized only a criterion similar to
(17). Our next two BL criteria are different from [12]. Now we look for small
dotted BLs that are more spread in the images and large/medium BLs that
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are more homogeneous. To describe them we consider Ib =
∑4

j=2Wj, where
Wj is the wavelet level at iteration j of the green channel of the enhanced
image, see (1). Let I tb denote the image corresponding to the 20% highest
pixels in Ib. We decompose Ib into Ib = Cb + Tb, where Cb and Tb represent
the cartoon and texture decomposition of Ib according to the algorithm of
Section 2.4.

2.8.2.BL Criterion 2. To extract the candidate regions corresponding to the
clusters of dotted BLs spread regions, we perform the nonlinear convolution-
type transform of I tb.Tb in the following way

χt = Ls(|I tb.Tb|τ),

where Ls is a linear operator convolving the image with a Gaussian kernel
with variance s, and the positive scalar τ < 1 de-emphasizes very small re-
gions with strong texture (see [21], where we have used a similar argument).
Here, the convolution is performed separably along each dimension. After
computing χt we apply a two-phase segmentation on χt as described in Sec-
tion 2.3. As a result of this we obtain the segmentation mask containing the
candidate regions. After removing the pixels corresponding to the OD, we
look for the region in the segmented mask that matches the location of the
value BLmax in (17). The selected candidate is denoted by Mt. To sharpen
the lesions we apply the unsharp masking. The sharpening process works by
utilizing a slightly blurred version of the image. We compute

Ub = I tb.Tb + (I tb.Tb − χt).

From Ub we get the feature Nt = 1
|Mt|||∇Ub||L2(Mt), where |Mt| is the sum of

the pixels in Mt (and L2(Mt) is the space of square-integrable functions in
Mt). A high value for Nt indicates that Mt is a high textured (oscillatory)
region.

Our next feature, in this criterion, is based on the observation that clus-
ters of small dotted BLs, that are more spread, create holes in the vessels
segmentation. We obtain the segmentation of the vessels from the sum of
the wavelet levels W2 and W3 of the green channel image using the method
described in Section 2.6. Then in the region resulting from the intersection
of Mt with the detected vessels we compute the feature E , which is the dif-
ference between the number of components to the number of holes in the
region.
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Figure 7. Depiction of the several main procedures for BL Cri-
terion 2 (and also for BL Criterion 1 in subfigure (c)). (a) Origi-
nal image with a cluster of dotted BLs. (b) Sum of wavelet levels
W2, W3 and W4. (c) Computed blob function in wavelet level
W2. (d) Texture Tb (e) Convolution type transform χt. (f) Seg-
mentation of χt superimposed on the original image. (g) Selected
segmented candidate maskMt superimposed on the original im-
age. (h) Sharped image Ub in the final region (for computing
feature Nt). (i) Intersection of the maskMt with the vessels (for
computing feature E).
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Finally the criterion for the detection of clusters of small dotted BLs is

(BLmax ≥ BLL2) ∧ (Nt ≥ N L
t ) ∧ (E ≤ EU). (18)

If the frame satisfies this criterion, then it is a BL frame, otherwise we con-
tinue to our final criterion of the BLs classification. In the experiments (see
Table 2 in Section 3) the lower bounds BLL2 and N L

t are 6 and 1.3 and the
upper bound EU is 0.

Figure 7 illustrates the main computations, described in this BL Criterion
2, for one frame, with very bad quality, but clearly exhibiting a cluster of
dotted BLs.

2.8.3. BL Criterion 3. In our final criterion we look for the large/medium
BLs that are more homogeneous. Such regions are missed by the previous
BL criteria. Firstly, we consider Ib.I

t
b and remove the pixels corresponding

to the OD. We also apply the adaptive Wiener filter using neighborhoods
of size [15, 15]. Similarly to the procedure described in BL Criterion 1, for
the wavelet level W2, we apply the blob detection technique, starting from
Ib.I

t
b (and not W2), and obtain the feature BLmax2:4 (as in Section 2.2, (3),

and the subscript 2:4 means that in Ib the sum of wavelet levels from 2 up
to 4 is used). Secondly, we extract the candidate regions corresponding
to the large/medium BLs. For that (and similarly to the clusters of small
dotted BL), we compute the nonlinear convolution-type transform of I tb.Cb
Afterwards we perform a two-phase segmentation on χc (as described in
Section 2.3) to get the segmentation mask containing the candidates. We
then remove the pixels corresponding to the OD and search for the segmented
region that matches the location of the BLmax2:4 , determined above, to get the
selected candidate region Mc. Then we compute the maximum value in the
image region Mc ∩

(
Cb.I

t
b

)
and denote it by Cmax. We also compute the

feature Nc = 1
|Mc|||∇(I tb.Tb)||L2(Mc), where |Mc| is the sum of the pixels in

Mc. As opposed to Nt in BL Criterion 2, a low value of Nc indicates that
Mc is a cartoon region (and not a textured region). Our final criterion is

(BL ≤ BLmax2:4 ≤ BU) ∧ (N L
c ≤ Nc ≤ N U

c ) ∧ (CL ≤ Cmax ≤ CU). (19)

If the frame satisfies this criterion, then it considered to be a BL frame,
otherwise it is considered to be a normal frame. The values for the lower
and upper bounds are indicated in Table 2 in Section 3. The upper bounds
BU , CU are imposed for deleting fames with artifacts and [N L

c ,N U
c ] is an

estimated low valued interval for the feature Nc.
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Figure 8 displays the computations of this BL Criterion 3, for one frame
which has medium/large BL lesions.

3. Experiments
We now assess the performance of the proposed methodology for automated

detection and diagnosis of DR. We have done two different evaluations: first
by applying each detector individually and then by considering the detectors
in a collective way (that is, a patient is considered a DR patient if he is a
positive patient for at least one detector).

3.1. Data sets. For evaluating the performance of the MAs, HEMs and
BLs detectors, individually, three data sets, named DMA, DHEM and DBL

were prepared by the experts: DMA contains 484 frames out of which 316
are normal and 168 frames contain MAs, DHEM contains 492 frames out of
which 309 are normal and 183 frames contain HEMs and DBL contains 607
frames out of which 396 are normal and 211 frames contain the BLs.

Secondly for using the proposed detectors as a system for automated di-
agnosis of diabetic retinopathy (DR), and test the system performance, we
consider four data sets prepared by the experts, named DR1, DR2, DR3 and
DR4 (see Table 1).

All these images are provided by the company Retmarker
(http://www.retmarker.com/), and were obtained from patients screened ac-
cording to the Diabetic Retinopathy Screening Program of Portugal. The
screening includes the acquisition of 2 images per eye and per patient (ex-
cept in DR3 and DR4, where a few of the normal patients have less than 4
images) without pupil dilation. The images corresponding to the data sets
DR1 and DR2 are taken by the Topcon TRC NW-100 non-mydrictic retinal
camera, and for the data sets DR3 and DR4 by a nonmydriatic 45-degree
fixed Canon CR6-45NM fundus camera attached to a Sony Power HD 3CCD
digital color camera. The images were stored in jpeg files (no compression)
with resolutions of 1024 × 682, 768 × 584, and 768 × 768 pixels. The true
classification of the disease patients, with DR, and normal patients is shown
in Table 1. The classification is done on a per patient basis. This means
that if at least one image of a patient contains any type of lesion related to
the definition of DR, it is considered as a disease (DR) patient. This ground
truth classification is also provided by the company Retmarker and is the
human grading at the Diabetic Retinopathy Screening Program.
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Figure 8. Pictures of the principal stages of BL Criterion 3. (a)
Original image with medium/large BLs. (b) Sum Ib of wavelet
levels W2,W3 and W4. (c) Computed blob function in the sum
Ib. (d) Cartoon Cb. (e) Convolution type transform χc. (f)
Segmentation of χc superimposed on the original image. (g) Final
segmentation regionMc superimposed on the original image. (h)
Cartoon Cb in restricted to the selected segmented candidateMc.
(i) Texture Tb in the final region (for computing Nc).
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Table 1. Expert Classification of DR Data sets

Data sets DR Patients (Images) Normal Patients (Images) Total Patients (Images)

DR1 11 (44) 345 (1351) 356 (1395)

DR2 18 (72) 341 (1364) 359 (1436)

DR3 466 (1854) 4961 (19651) 5427 (21505)

DR4 225 (900) 5144 (20534) 5369 (21434)

3.2. Results. We use sensitivity and specificity to assess the performance of
our methodology, which are widely used measures in the medical community.
Their definitions are illustrated in the following formulas

sensitivity =
number of TP

number of TP + number of FN
, (20)

specificity =
number of TN

number of TN + number of FP
, (21)

where TP, FN, FP and TN represent the number of true positives, false
negatives, false positives and true negatives frames, respectively. If the frame
belongs to the class of disease (DR) frames and it is classified by the algorithm
as negative, it is counted as a false negative; if it is classified as positive, it
is counted as a true positive. If the frame belongs to the class of non-disease
(i.e. normal) frames and it is classified as positive, it is counted as a false
positive; if it is classified as negative, it is counted as a true negative.

Sensitivity represents the ability of the method to correctly classify the
frame containing a lesion (in our case MAs, HEMs and BLs) as lesion frame,
while specificity represents the ability of the method to correctly classify a
non lesion frame as normal frame. The above definitions are on a per frame
basis, and are used to assess the performance of each individual detector
(MAs or HEMs or BLs). The performance of the MAs detector, HEMs
detector and BLs detector in terms of sensitivity and specificity is shown in
Table 3 (with respect to the previous mentioned data sets DMA, DHEM and
DBL, respectively).

Our binary classifier, for each detector, depends on certain parameters
which are listed in Table 2 along with their values. These parameters are
thresholds for the binary classifiers. Their values were chosen based on the
intrinsic definitions of the associated criteria: see the qualitative justification
of these values for MAs in (9), for HEMs in (10)-(11) and after in (16), and
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Table 2. Values of the parameters used in the classifier

Detector Parameter Value Equation Section

MAL
2 3.5 9 2.6

MAs MAL
3 5.5 9 2.6

HEML1 12 10 2.7

HEML2 6 11 2.7

HL
mean 9 11 2.7

HU
ecc 0.7 11 2.7

HEMs HEML3 6 14 2.7

SL 0.7 14 2.7

HEML4 7 15 2.7

SL 0.7 15 2.7

HEML5 8 16 2.7

SL 0.7 16 2.7

BLL1 11 17 2.8

BLL2 6 18 2.8

NL
t 1.3 18 2.8

EU 0 18 2.8

BLs BL 18 19 2.8

BU 40 19 2.8

NL
c 0.01 19 2.8

NU
c 0.2 19 2.8

CL 35 19 2.8

CU 60 19 2.8

finally for BLs in (17)-(18)-(19). The values were selected from the common
sense considerations, not from the goal of improving the performance for any
particular data set that we used. In fact we utilized several big datasets and
images acquired with different devices, and it can be seen from the tables
displayed in this section that the detectors have a consistent performance.
Moreover, we would like to stress that the generality of these thresholds were
set by analysing the ROC (receiver operating characteristic) curves for each
individual criterion, in large data sets.
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Table 3. Performance evaluation of each detector (per frame)

Detector Sensitivity Specificity

MAs 93.45 88.92

HEMs 86.34 90.19

BLs 89.81 97.47

Next we evaluate the performance of the methods in a collective way as
a system for the detection and diagnosis of DR. Since here we have the
classification that is on a per patient basis, the assessment of the performance
of our system was done on a per patient basis. For this purpose we use a
modified definition of sensitivity and specificity, in (20) and (21), where there
TP, FN, FP and TN are considered on a per patient basis instead of a per
frame basis. A patient is labelled to be a positive patient (i.e. belonging to
the class of DR) if at least one frame of the patient is classified as a positive
frame by our methodology, i.e. if it is a positive for at least one of the three
detectors (MAs, HEMs or BLs). Accordingly we compute the number of TP,
FN, FP and TN, and hence the sensitivity and specificity.

Table 4. Performance evaluation of the proposed system for DR
detection (per patient)

Data sets Sensitivity Specificity

DR1 100 70.7

DR2 100 73

DR3 89.3 58.9

DR4 92 57.6

The evaluation of the proposed system in terms of sensitivity and specificity
is given in Table 4. This Table shows that the sensitivity and specificity
values in data sets DR3 and DR4 are worse than in DR1 and DR2. This
is because the two latter datasets contain images with very bad quality and
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artifacts (in fact these images are nonmydriatic photographs without pupil
dilation, which originates lower quality images). This leads to an increase of
false positives and some false negatives (some examples are shown in Figure
9).

Figure 9. Some examples of bad quality DR retinal fundus im-
ages, not detected by the proposed system, from the data sets
DR3 and DR4.

4. Discussion and Conclusions
We developed a system for automated detection and diagnosis of DR,

through the processing of retinal fundus images, by devising appropriate
MAs, HEMs and BLs binary classifier detectors. The preprocessing phase
involves the extraction of the background pixels that enables further compu-
tations on the foreground pixels only, as well as the removal of main image
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structures, such as the optic disk and blood vessels, so that they cannot inter-
fere in the detection of the lesions. The extraction of the candidates for differ-
ent types of lesions (MAs, HEM and BLs) is done by analysing different sub-
band wavelet images (resulting from the isotropic undecimated wavelet trans-
form decomposition of the green channel of the retinal image), and applying
Hessian multiscale analysis, variational segmentation, cartoon+texture de-
composition. These techniques are combined in a sequential and suitable
way and this combination depends on the visual information transmitted by
the different lesions (that by nature are very diverse in shape, size, texture
and color). After that some novel contextual features are derived and quan-
tified, for each lesion depending on their properties. Then the correspondent
numerical feature values are used to obtain a binary classification method.
Firstly, the testing of the proposed methods for the MAs, HEMs and BLs
detection is done individually. Secondly, we consider the proposed methods
as a system for DR detection and performed a thorough testing of the sys-
tem on rich data sets to ensure its good performance in realistic situations.
Standard performance measures such as sensitivity and specificity are used
for its evaluation.

For general use of an automated system, high sensitivity is a safety issue
and is therefore more important than high specificity, which is an efficacy is-
sue [1]. The main function of any automated system is to decrease the amount
of frames that require manual inspection. The proposed system achieves a
very high sensitivity (between 90% and 100%), and equally importantly, a
very good specificity (approximately 70%, in datasets with an average good
quality images).
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[1] M. D. Abràmoff, J. M. Reinhardt, S. R. Russell, J. C. Folk, V. B. Mahajan, M. Niemeijer,

and G. Quellec. Automated early detection of diabetic retinopathy. Ophthalmology, 117:1147
– 1154, 2010.

[2] M. U. Akram, S. Khalid, A. Tariq, S. A. Khan, and F. Azam. Detection and classification of
retinal lesions for grading of diabetic retinopathy. Computers in Biology and Medicine, 45:161
– 171, 2014.

[3] M. U. Akram, A. Tariq, S. A. Khan, and M. Y. Javed. Automated detection of exudates
and macula for grading of diabetic macular edema. Computer Methods and Programs in
Biomedicine, 114:141 – 152, 2014.

[4] B. Antal and A. Hajdu. An ensemble-based system for microaneurysm detection and diabetic
retinopathy grading. IEEE Transactions on Biomedical Engineering, 59:1720–1726, 2012.

[5] P. Bankhead, C. N. Scholfield, J.G. McGeown, and T. M. Curtis. Fast retinal vessel detection
and measurement using wavelets and edge location refinement. PloS one, 7(3):e32435, 2012.

[6] X. Bresson, S. Esedoglu, P. Vandergheynst, J.-P. Thiran, and S. Osher. Fast global minimiza-
tion of the active contour/snake model. J Math. Imaging Vis., 28:151–167, 2007.

[7] A. Buades, T. M. Le, J. M. Morel, and L. A Vese. Fast cartoon + texture image filters. IEEE
Transactions on Image Processing, 19:1978–1986, 2010.

[8] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 8:679–698, 1986.

[9] T. F. Chan and L. A. Vese. Active contours without edges. IEEE Transactions on Image
Processing, 10:266–277, 2001.

[10] J. Ferreira, R. Bernardes, P. Baptista, and J. Cunha-Vaz. Earmarking retinal changes in a
sequence of digital color fundus photographs. In IFMBE Proc, volume 11, pages 1727 – 1983,
2005.

[11] I. N. Figueiredo and S. Kumar. Automatic optic disc detection in retinal fundus images based
on geometric features. In Image Analysis and Recognition, International Conference ICIAR
2014. Aurelio Campilho and Mohamed Kamel, 2014.

[12] I. N. Figueiredo and S. Kumar. Wavelet-based computer-aided detection of bright lesions in
retinal fundus images. In CompIMAGE 2014, LNCS 8641, pages 234–240, 2014.

[13] I. N. Figueiredo, S. Kumar, and P. N. Figueiredo. An intelligent system for polyp detection in
wireless capsule endoscopy images. In Computational Vision and Medical Image Processing,
VIPIMAGE 2013, pages 229–235. João Tavares & Natal Jorge (eds), 2014 Taylor & Francis
Group, London, ISBN 978-1-138-00081-0 (ECCOMAS Thematic Conference on Computa-
tional Vision and Medical Image Processing).

[14] I. N. Figueiredo, S. Kumar, C. Leal, and Pedro N. Figueiredo. Computer-assisted bleed-
ing detection in wireless capsule endoscopy images. Computer Methods in Biomechanics and
Biomedical Engineering: Imaging & Visualization, 1:198–210, 2013.

[15] P. N. Figueiredo, I. N. Figueiredo, S. Prasath, and R. Tsai. Automatic polyp detection in
pillcam colon 2 capsule images and videos: preliminary feasibility report. Diagnostic and
Therapeutic Endoscopy, pages 1–7, 2011.

[16] M. Foracchia, E. Grisan, and A. Ruggeri. Luminosity and contrast normalization in retinal
images. Medical Image Analysis, 9(3):179 –190, 2005.

[17] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever. Multiscale vessel enhance-
ment filtering. In Medical Image Computing and Computer-Assisted Intervention, pages 130–
137, Springer, Berlin, 1998.

[18] R. M. Haralock and L. G. Shapiro. Computer and Robot Vision. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1991.



32 I.N. FIGUEIREDO, S. KUMAR, C.M. OLIVEIRA, J.D. RAMOS AND B. ENGQUIST

[19] P. V. C. Hough. Methods and means for recognizing complex patterns. U.S. Patent 3 069 654,
Dec. 1962.

[20] C. Kimme, D. Ballard, and J. Sklansky. Finding circles by an array of accumulators. Commun.
ACM, 18:120–122, 1975.

[21] A. Mamonov, I. N. Figueiredo, P. N. Figueiredo, and R. Tsai. Automated polyp detection in
colon capsule endoscopy. IEEE Transactions on Medical Imaging, 33(7):1488–1502, 2014.

[22] A Osareh, B. Shadgar, and R. Markham. A computational-intelligence-based approach for de-
tection of exudates in diabetic retinopathy images. IEEE Transactions on Information Tech-
nology in Biomedicine, 13:535–545, 2009.

[23] R. Pires, H. F. Jelinek, J. Wainer, S. Goldenstein, E. Valle, and A. Rocha. Assessing the need
for referral in automatic diabetic retinopathy detection. IEEE Transactions on Biomedical
Engineering, 60:3391–3398, 2013.

[24] G. Quellec, M. Lamard, P.M. Josselin, G. Cazuguel, B. Cochener, and C. Roux. Optimal
wavelet transform for the detection of microaneurysms in retina photographs. IEEE Transac-
tions on Medical Imaging, 27:1230–1241, 2008.

[25] C. Sinthanayothin, J. F. Boyce, T. H. Williamson, H. L. Cook, E. Mensah, S. Lal, and
D. Usher. Automated detection of diabetic retinopathy on digital fundus images. Diabetic
Medicine, 19:105–112, 2002.

[26] J.-L. Starck, J. Fadili, and F. Murtagh. The undecimated wavelet decomposition and its
reconstruction. IEEE Transactions on Image Processing, 16:297–309, 2007.

[27] L. Tang, M. Niemeijer, J. M. Reinhardt, M. K. Garvin, and M.D. Abràmoff. Splat feature
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