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Abstract

During mammographic image acquisition, a compression paddle is used to even the breast thickness in order to obtain optimal image
quality. Clinical observation has indicated that some mammograms may exhibit abrupt intensity change and low visibility of tissue
structures in the breast peripheral areas. Such appearance discrepancies can affect image interpretation and may not be desirable
for computer aided mammography, leading to incorrect diagnosis and/or detection which can have a negative impact on sensitivity
and specificity of screening mammography. This paper describes a novel mammographic image pre-processing method to improve
image quality for analysis. An image selection process is incorporated to better target problematic images. The processed images
show improved mammographic appearances not only in the breast periphery but also across the mammograms. Mammographic
segmentation and risk/density classification were performed to facilitate a quantitative and qualitative evaluation. When using the
processed images, the results indicated more anatomically correct segmentation in tissue specific areas, and subsequently better
classification accuracies were achieved. Visual assessments were conducted in a clinical environment to determine the quality of
the processed images and the resultant segmentation. The developed method has shown promising results. It is expected to be
useful in early breast cancer detection, risk-stratified screening, and aiding radiologists in the process of decision making prior to
surgery and/or treatment.

Keywords: mammographic segmentation, risk assessment, density classification, peripheral enhancement, BI-RADS, Tabár.

1. Introduction

Breast cancer is the most frequently diagnosed cancer in
women [1]. To date, the most effective way to overcome the dis-
ease is through early detection, precise identification of women
at risk, and application of appropriate disease prevention mea-
sures [2]. Mammography is the gold standard method in detec-
tion of early stage breast cancer before abnormalities become
clinically palpable. Within screening mammography, full field
digital mammography (FFDM) has become more popular and
is gradually replacing screen film mammography (SFM). Many
digital mammography units produce images in two forms; ‘raw’
and ‘processed’ images. Raw data is often not archived in clin-
ical practice, whilst the appearances of processed (for presen-
tation) images may vary due to different post-processing algo-
rithms applied by mammography manufacturers. A significant
amount of dynamic range provided by FFDM systems is redun-
dant after these logarithmic based post-processing. This may
result in lower visibility of breast parenchyma in peripheral ar-
eas, and large intensity discrepancy between thicker tissue near
the chest wall and peripheral areas; see examples in Figure 1.
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Figure 1: A compression paddle is used to even out the breast tissue during
imaging, however, the peripheral areas may not be fully compressed due to
a reduction of breast thickness. This results in air gaps above and beneath
the uncompressed areas, leading to a non-uniform exposure and degradation in
contrast in these areas.

With such processed images, abnormalities near peripheral ar-
eas with less visible structures may be missed during a mammo-
gram examination. When used in computer aided mammogra-
phy, processed images can lead to less satisfactory breast tissue
segmentation, due to inter-fatty/dense tissue intensity variation
across the mammograms which jeopardises subsequent analy-
sis in the workflow.

A mammographic pre-processing technique can be devel-
oped to enhance the visibility of peripheral areas and improve
intensity distribution, in order to facilitate interpretation and
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benefit follow up analysis. Existing methods in the litera-
ture can be categorised into two groups; non-parametric (e.g.
[3, 4, 5, 6]) and parametric (e.g. [7] and [8]) approaches. Most
existing methods are intended to be used on 2D mammographic
projections. As technology advances, more breast thickness
equalisation/correction methods have emerged for 3D volumet-
ric breast density analysis (e.g. [9, 10, 11]). The proposed ap-
proach is in the application domain of 2D mammograms.

An early non-parametric method [3] focused on balancing
the mammographic intensity between the breast centre and its
peripheral areas, so that the two areas have ‘matching’ aver-
age greylevel values. A log-like-intensity characteristic curve is
created based on the average greylevel values that are within the
same distances to the skinline, from which a reversal fitted en-
hancement curve is obtained using a polynomial fit. This fitted
enhancement curve defines the necessary correction value for
each pixel, which is added to the original pixel value to create
the intensity balanced (‘equalised’) image. Such an approach
applies the thickness correction to the entire breast. It works
well with a homogeneous fatty/dense breast but localised arte-
facts can be seen when a breast exhibits large density variation
across the mammogram. To better identify breast peripheral
areas requiring correction, a large Gaussian filter can be used
to blur a mammographic image isotropically first [4], before
obtaining a representation of tissue thickness differences with
smoother variations, assuming that the breast thickness varia-
tions are smoother than tissue density variations. The thickness
correction is only applied in the breast periphery determined
by a local threshold at the boundary of the compressed and un-
compressed part of the breast. To ensure intensity continuity,
a locally determined correction factor is used to multiply with
the original pixel values, to derive the corrected pixel values in
the breast periphery. It is an effective method to correct pixels
in the peripheral areas using neighbouring pixels, however, the
corrections can be over emphasised with breasts, which have
intricate parencymal structures in the periphery areas, and less
desirable corrections can be associated with ringing artefacts.
To better reflect breast thickness differences, a mammogram is
iteratively segmented into fatty and dense areas prior to the cor-
rection, and followed by a linear interpolation to replace all
the dense tissue with nearby fatty tissue [5]. An alternative
anisotropic diffusion filter based approach (direction parallel to
the skin edge) was investigated to facilitate the breast thickness
estimation. The method processes the entire breast but only
adds correction terms to the pixel values in the peripheral areas.
Results showed improved peripheral texture appearances for
those structural texture with orientations (e.g. blood vessels),
however, the interior part of the breast may display higher con-
trast after correction. The method critically depends on accurate
iterative segmentation of the dense breast tissue, which can be
problematic when the breast exhibits heterogeneous dense tis-
sue. The aforementioned studies used pixel intensity values as
correlation factors to estimate the breast thickness, which may
not be an accurate estimation/close approximation. Note that
true breast thickness may not be attainable retrospectively.

A parametric method as proposed in [7] used a geometric
model of the three-dimensional shape of the breast. The breast

interior is modelled by two non-parametric planes which re-
quires three degrees of freedom; one for the onset and two for
the slopes. The peripheral area is modelled by bands of semi-
circles, determined by the breast outline and interior model.
Once the parameters of the geometric model are obtained, dense
tissue is separated and interpolated with fatty tissue, similar to
[5]. Therefore, the breast can be modelled with the original and
interpolated fatty tissue. The subsequent correction process is
performed by adding a fatty tissue component in the periphery
which fills in the air gap between the fitted planes and breast.
As in [5], the approach is critically dependent on the accuracy
of iterative dense breast tissue segmentation and fatty tissue in-
terpolation. Note that the approach is designed for unprocessed
digital mammograms with a linear relationship between expo-
sure and greylevel value, therefore, it cannot be applied to pro-
cessed FFDM nor SFM with unknown calibration data, which
has a non-linear relationship between exposure and greylevel
value.

We propose a mammographic pre-processing technique
which has the following key novelty aspects: 1) modelling a
breast thickness based on its shape outline derived from Medi-
olateral Oblique (MLO) and Cranio-Caudal (CC) views, instead
of using an assumed correlation between smoothed pixels and
breast thickness; 2) using a selective approach to target specific
mammograms more accurately; and 3) both breast interior and
exterior are enhanced simultaneously, in order to achieve inten-
sity balancing across the mammogram and increasing breast tis-
sue visibility in the peripheral areas. Mammographic segmenta-
tion and risk/density classification were conducted to determine
the usefulness of the developed approach and the results were
evaluated in a clinical environment.

With respect to mammoraphic risk assessment, Tabár et
al.[12] proposed a model based on a mixture of four mam-
mographic building blocks representing the normal breast
anatomy, five mammographic risk categorises were identified
based on these building blocks (i.e. [nodular%, linear%, homo-
geneous%, radiolucent%]); TI [25%, 15%, 35%, 25%], TII/III

[2%, 14%, 2%, 82%], TIV [49%, 19%, 15%, 17%], and TV

[2%, 2%, 89%, 7%] [12]. Alternatively, the American Col-
lege of Radiology’s Breast Imaging Reporting and Data System
(BI-RADS) [13] was developed, with four breast dense tissue
compositions categorised as; B1 the breast is almost entirely
fat (< 25% glandular), B2 the breast has scattered fibroglandu-
lar densities (25% − 50%), B3 the breast consists of heteroge-
neously dense breast tissue (51% − 75%), and B4 the breast is
extremely dense (> 75% glandular).

2. Data and Method

A Hologic Selenia Dimensions 2D FFDM system was used
to obtain a total of 360 digital mammograms (i.e. 180 CC and
180 MLO views), processed for optimal visual appearance for
radiologists. Two consultant radiologists1 provided Tabár risk

1One radiologist has over 5 years mammographic reading experience, the
other has over 10 years mammographic reading experience.
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Figure 2: From left to right, showing mammographic patches containing tissue examples for nodular, linear, homogeneous, and radiolucent tissue.

classifications and BI-RADS density ratings for all the mam-
mograms as ‘ground truth’. To model mammographic build-
ing blocks (breast tissue), a collection of patches were cropped
from randomly selected images from the dataset, consisting of
examples of (139) nodular, (224) linear structure, (87) homoge-
neous, and (89) radiolucent tissue; see Figure 2 for examples.

An overall workflow of the developed approach can be found
in Figure 3.

2.1. Automatic Image Selection

Image acquisition parameters used during screening have di-
rect influences on mammographic appearances. Many factors
may cause contrast degradation in breast peripheral areas; such
as organ dose, entrance dose, exposure, relative X-ray expo-
sure, compression force, body part thickness, and kVp (peak
kilovoltage). Empirical observations showed that no single pa-
rameter can be used to determine which image requires pre-
processing, although some parameter combinations may pro-
vide a better indication than others. Machine learning tech-
niques were employed to build a probability model based on
the calibration parameters to determine which mammographic
images are more problematic than others. In addition to the cali-
bration parameters obtained from DICOM headers, three image
based attributes were calculated from breast peripheral areas,
which were segmented automatically using the Otsu algorithm
[14]; see Section 2.2.1 for details. The attributes were incor-
porated as part of multiple variables for each image, including
percent peripheral area (PPA), percent pectoral coverage (PPC)
of the image rows, and percent skinline coverage (PSC) of the
image rows. When calculating the PPC and PSC row coverage
within the breast area, a row is valid and counted if a least 15%
of the pixels in that row are segmented by the Otsu algorithm.
The threshold value was empirically defined based on its abil-
ity to correctly determine an image requiring pre-processing;
see Figure 4 for examples. Therefore, for each image, a total
of ten attributes were collected as features for analysis. Note
that extensive PPC or a small amount of PSC is an indication of
less abrupt intensity changes and the original image already has
a balanced intensity distribution and may not need peripheral
correction. The probability model was trained in Weka [15] us-
ing 72 images. Note that the training data has two subsets; 50%
were randomly selected from images requiring pre-processing,
and the other 50% were randomly selected from ‘normal’ (not
problematic) images. The distributions for the two subsets of
images labelled with B1 to B4 are in line with the entire dataset.
All available classifiers (see full list in [15]) were evaluated and

validated by averaging over 10 repeats. A classifier built using
the random forest algorithm performed the best and was chosen
for the experiment. Table 1 shows statistics for the calibration
parameters and the three image based parameters based on the
entire dataset.

2.2. Pre-processing
Image pre-processing consists of four stages; 1) breast pe-

riphery separation, 2) intensity ratio propagation, 3) breast
thickness estimation, and 4) intensity balancing.

2.2.1. Breast Periphery Separation
To separate the breast peripheral area (BPA), Otsu thresh-

olding [14] is employed and only applied to the breast region.
Breast masks were provided as part of the dataset; there are well
established automatic methods to extract breast regions which
can be found in the literature. The correctness of the initial seg-
mentation (BPAOtsu) may not be accurate as the algorithm can
miss certain peripheral areas (i.e. the bottom half area in Fig-
ure 6 (b)). To improve the binary segmentation, the original
image (Img) is further thresholded (BPAthreshold). The thresh-
old value (T ) is determined as the mean pixel greylevel value
for BPAOtsu, where BPAthreshold = Img ≤ T . Therefore, the
final BPA = BPAOtsu ∪ BPAthreshold, e.g. Figure 6 (c). Morpho-
logical filling 2 is applied to BPA to fill small holes, followed
by morphological dilation to connect close neighbouring pix-
els. Note that both morphological operations used a small 3 ×
3 structuring element. The BPA is refined by only keeping the
single biggest connected component; this is done by iteratively
labelling connected neighbouring pixels, e.g. Figure 6 (d). Fig-
ure 5 shows the workflow of the described process. The pe-
ripheral boundary (PB) which separates the breast interior from
exterior (BPA) is extracted to facilitate intensity balancing, see
Section 2.2.4 for details. To extract the PB, edge detection is
firstly applied on the BPA. Then, for each image row, only the
pixels closest to the breast interior are kept to form the bound-
ary, e.g. Figure 6 (e).

2.2.2. Intensity Ratio Propagation
Once the optimal BPA is obtained, tissue appearance in the

BPA is improved by multiplying the original pixel greylevel
value with a local intensity ratio calculated as a correction fac-
tor. A distance map (e.g. Figure 7 (c)) is firstly generated by

2Region filling is a form of mathematical morphology operator, which uses
dilation as the basis, combined with logical operators.
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Figure 3: Illustration of overall workflow.

(a) (b) (c)

Figure 4: The top row shows the original images, the bottom row (a) shows superimposed white peripheral areas after Otsu binary segmentation, (b) shows 90%
(60% + 30%) pectoral coverage of the image rows, and (c) shows 75% skinline coverage of the image rows.
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ID Attributes Minimum Maximum Mean Standard deviation
A0 patient’s age 42 91 60 10
A1 organ dose (dGy) 0.008 0.0476 0.0184 0.0064
A2 entrance dose (mGy) 3.2 31.2 10.7 4.4
A3 exposure (mAs) 34 272 87.5 36.2
A4 relative X-ray exposure (mAs) 279 580 419.8 61.6
A5 compression force (Newtons) 44.5 249.1 103.5 34.5
A6 body part thickness (mm) 29 104 61.7 14.8
A7 kVp 24 35 30.4 2.3
A8 percent peripheral area % 0.0 0.99 0.33 0.20
A9 percent skinline coverage % 0.0 1.00 0.21 0.28
A10 percent pectoral coverage % 0.0 0.96 0.23 0.22

Table 1: Statistics calculated for all the calibrated parameters and three additional image based parameters.

Figure 5: The workflow illustrates the BPA generation process.

(a) (b) (c) (d) (e)

Figure 6: From left to right showing; (a) the original image, (b) initial Otsu segmentation, (c) improved segmentation, (d) final breast peripheral area, and (e)
peripheral boundary.
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calculating the shortest distance from each pixel Img(x, y) to the
skinline. Within the BPA (e.g. white area in Figure 7 (b)), the
pixel corrections start from the pixels closest to the breast inte-
rior with the greatest distances to the skinline. For each pixel
P(x, y) with the distance to the skinline D(x, y), the greylevel
value is altered (P′(x, y)) by multiplying a propagation ratio
(pr) calculated within an empirically defined 17 × 17 neigh-
bourhood for efficiency and robustness as:

IavgP2 =

∑N
i=0 Pi(x, y)

N
,∀Pi(x, y) = Di(x, y) + 2,

IavgP1 =

∑M
j=0 P j(x, y)

M
,∀P j(x, y) = D j(x, y) + 1,

pr =
IavgP2

IavgP1

,

P′(x, y) = pr × P(x, y),

where D(x, y) + 1 and D(x, y) + 2 are pixel distances to the skin-
line 1 and 2 steps further away from P(x, y). Figure 7 (d) shows
an example image after intensity ratio propagation. The tissue
structures in the BPA are noticeably improved when compared
with the original image shown in Figure 7 (a).

2.2.3. Breast Thickness Estimation
The X-ray penetration strength has a direct correlation with

breast thickness. Other physical properties (e.g. dosage, filter,
and anode), unknown combination factors in the X-ray beam
spectrum, and breast tissue composition may also affect mam-
mographic appearance. In this work, these elements are encom-
passed in a ‘black box’ approach, and a non-linear relationship
is assumed between tissue thickness and log-exposure (Beer’s
law of attenuation [16]).

To compensate the intensity variation due to breast thickness
and tissue composition differences, a pair of CC and MLO is
required to approximate the breast shape and estimate the rel-
ative breast thickness ratios. For example, for a CC view, the
relative breast thickness ratio (r) can be estimated based on the
projected physical contour of the compressed breast as seen on
the MLO view. The skinline is extracted from the MLO view
and split in two at the furthest pixel (at/near the nipple) to the
chest wall to form the upper and lower skinlines (e.g. the blue
and green lines in Figure 8 (b)). A chain code is generated
for each skinline giving a sequence of pixels from start to end
where the blue line meets the green line. For each pixel Pi(x, y)
in the top skinline, a corresponding pixel P j(x, y) is sought in
the lower skinline, to form a parallel line (pLine) to the chest
wall by linking the two pixels to form the longest line (e.g. red
line in Figure 8 (c)). The slope (m) of the longest line is calcu-
lated as:

m =
yi − y j

xi − x j
.

The pixel linking process is repeated using the calculated m for
all the pixels in the chain code for the top skinline, resulting
in a series of parallel lines (e.g. Figure 8 (c)-(e), all parallel to
the longest line. For the CC view, the ratio r at a given point

P (e.g. ‘A’ in Figure 8 (a)) is calculated based on the reference
boundary pixel Pre f (e.g. ‘B’ in Figure 8 (a)) as:

r =
pLine(P)

pLine(Pre f )
.

Both pixels ‘A’ and ‘B’ in Figure 8 (a) are on the thickest pro-
jected section on the CC view (e.g. on the blue line in Figure 8
(a)). For the remaining pixels on the thickest projected section,
the ratios are assigned in the same way. The calculated ratios
are propagated to pixels with the same distance to the skinline
(e.g. pixels on the yellow lines in Figure 8 (a) have the same
distance to the skinline).

2.2.4. Intensity Balancing
The breast thickness ratios (R(x, y)) are log normalised based

on the assumption of a non-linear relationship made between
tissue thickness and log-exposure. The dotted red (L1) line
shown in Figure 9 is for compressed breast thickness, and the
solid blue (L2) line in Figure 9 is for log normalised breast
thickness. To compensate intensity distribution variation based
on R(x, y), a global thickness reference (Rre f ) is required and is
the basis for all the corrections. Rre f (e.g. intersection point be-
tween the solid blue (L2) and vertical cyan (L4) line in Figure
9) is defined as the mean thickness for all peripheral boundary
pixels (e.g. cyan pixels in Figure 7 (b)). Once Rre f is calcu-
lated, for each pixel P′(x, y) within the BPA the greylevel value
is altered as:

RPre f =
Rre f − Rmin

Rmax − Rmin
,

RP(x, y) =
R(x, y) − Rmin

Rmax − Rmin
,

P′′(x, y) = P′(x, y)(1 + (RPre f − RP(x, y))),

where RPre f is the relative proportion of Rre f to the overall
breast thickness, RP(x, y) is the relative proportion of breast
thickness at P′(x, y) to the overall breast thickness, and P′′(x, y)
is the corrected pixel greylevel value. A higher or lower
greylevel value is assigned if the relative breast thickness pro-
portion is less or greater than RPre f , respectively. Therefore, af-
ter correction, lower greylevel values within BPA increase (left
to the vertical cyan (L4) line in Figure 9) and higher greylevel
values outside BPA decrease (right to the vertical cyan (L4) line
in Figure 9). The solid blue (L2) line (see Figure 9) move to-
ward the ‘balanced’ breast thickness (e.g. the green (L3) line in
Figure 9) to achieve intensity balancing with smooth intensity
continuity. Figure 7 (a), (d), and (e) show an example image,
the result after intensity ratio propagation, and the final result
after intensity balancing, respectively. When comparing Fig-
ure 7 (d) with (e), (e) shows less ‘over exposed’ intensity in the
centre of the breast. It should be noted that the example shown
in Figure 7 is one of the most challenging images in the dataset,
as it suffers from multiple issues; less visibility in the BPA and
intensity imbalance across the image.

2.3. Mammographic Segmentation and Classification
All the processed mammographic images were segmented,

followed by Tabár risk and BI-RADS density classification.
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(a) (b) (c) (d) (e)

Figure 7: From left to right showing; (a) original image, (b) breast interior, peripheral boundary (cyan), and BPA (white), (c) distance map, (d) after intensity
propagation, and (e) after intensity balancing.

(a) (b) (c) (d) (e)

Figure 8: From left to right showing; (a) CC view, (b) paired MLO view, (c)-(e) parallel lines proximal to pectoral muscle, breast centre, and nipple.

Figure 9: Approximated breast thickness (x-axis) when its compressed (dotted red L1), and log normalised (solid blue L2). The vertical cyan line (L4) indicates
the boundary between BPA (dark red area in the left thumbnail) and breast interior (dark red area in the right thumbnail), based on the distances from the skinline
(y-axis). The green (L3) line is the ‘idea’ balanced (even) breast thickness.
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Previously investigated greylevel histogram [17] and geomet-
ric moments [18] based features were extracted from four sets
of mammographic patches, containing samples of (139) nodu-
lar, (224) linear, (87) homogeneous, and (89) radiolucent tis-
sue. A total of 23 features were used which are expected to
contain not only texture primitives but also geometric informa-
tion. A feature and classifier selection process was incorporated
using a collection of attribute selection algorithms and classi-
fiers available in Weka (see full list in [15]). In particular, a
set of neighbourhoods (i.e. {7, 17, 27, 37}) covering small to
large anatomical structures were used in the feature extraction.
The derived feature vectors were subjected to all available fil-
tering methods in Weka for feature selection and dimensional-
ity reduction, in order to select the most discriminative subset
of the features. All available classifiers in Weka were used to
perform (10-fold) cross-validation based evaluation over the se-
lected features based on half a million randomly selected pix-
els from the 539 patches. Emperical testing indicated that the
highest classification results can be achieved using the random
committee algorithm with an average accuracy ∼79% (based on
5 iterations), which was used in conjunction with the selected
features for Tabár tissue modelling.

A model driven pixel based segmentation was performed us-
ing the selected classifier. The derived breast tissue composi-
tion was compared with Tabár and BI-RADS schemes (empir-
ical clinical models) in order to find the closest matches in the
Euclidean space using a nearest neighbour classifier, as a means
of mammographic risk/density classification.

Tabár’s scheme was used to facilitate the evaluation due to
its models being quantitatively defined. The closely related BI-
RADS scheme is chosen as a means of performing comparisons
between different risk/density assessment schemes. It should
be noted that Tabár/BI-RADS based four-class tissue segmen-
tation might not directly translate to other breast density mea-
sures; e.g. Cumulus [19], VolparaTM [20], and QuantraTM [21],
see recent work on the reliability of automated breast density
measurements [22].

3. Results and Discussion

This section presents evaluation results, including: 1) the
accuracies in selecting problematic images for pre-processing
prior to analysis; 2) mammographic segmentation when using
the processed images; 3) and subsequent risk/density classifi-
cation. In addition, clinical evaluations were conducted which
visually assessed the quality of the processed and segmented
mammographic images.

3.1. Automatic Image Selection

Automatic image selection was able to correctly identify
93% of images requiring pre-processing. Most misclassified
images have appearances somewhere between ‘good as it is’
(GAII) and ‘requiring per-processing’ (RPP). Table 2 shows the
classification confusion matrix, the derived Kappa statistic (κ =

0.86) indicates an almost perfect agreement. Figure 10 shows
plots of all feature pairs for the attributes shown in Table 1. Blue

GAII RPP
GAII 169 13
RPP 13 165

Table 2: Classification confusion matrix; ‘good as it is’ (GAII) (] images =

182) and ‘requiring per-processing’ (RPP) (] images = 178) images.

category A category B category C
] images 25 88 65

Accuracies 14% 49% 37%

Table 3: Image quality evaluation for the processed images when compared
with the original images before pre-processing. Note that there are 178 (49%)
images requiring processing.

and red dots represent images as GAII and RPP, respectively.
Based on the separation between these two groups, attributes
such as compression force (A6), kVp (A7), PPC (A9), and PSC
(A10) may provide more discriminating power in identifying
problematic images. On the other hand, patient’s age (A0), PPA
(A8), relative X-ray exposure (A4), and compression force (A5)
seems to be less robust in separating the two groups. Using kVp
can lead to a better separation in the feature space, this is in line
with the observation made in the related studies [23, 24]. It was
expected that compression force may have a more direct im-
pact in image quality, but this is not clearly demonstrated in the
scatter plots in Figure 10.

3.2. Image Pre-processing

Each processed image was rated as ‘interfere with image in-
terpretation’ (category A), ‘the same interpretation’ (category
B), or ‘improvement in image interpretation’ (category C). It
should be noted that category B can mean that the processed im-
ages have no apparent visual concerns/improvements in image
interpretation. It should be noted that there is no image quality
evaluation standard exist in a clinical environment. The cate-
gories were defined based on the difficulty of mammographic
image interpretation by the standard of consultant radiologists.
Each image was rated using visual assessment by the radiolo-
gists. Table 3 shows the rating results when compared with the
original images before pre-processing, and indicates a relatively
small negative impact (i.e. 14% of images in category A) after
pre-processing. In most cases (i.e. 86% of images in categories
B and C) the processed images can be interpreted the same as
using the original ones or have improved interpretation. Figure
11 (a)-(c) shows example processed images of categories A-C,
respectively. Intensity ratio propagation was able to improve
the BPA visibility for most of the cases, see Figure 11 (a) for
example. It performed less satisfactorily for images exhibiting
extensive BPA, in some cases the BPA can occupy almost half
of the breast and the correction may not work consistently, for
example Figure 11 (b) shows better corrected BPA in the top
half of the breast but not as well for the bottom half of it. Inten-
sity balancing may be less robust in correcting greylevel values
of areas near the axillary tail, when compared with that in the
central breast region, see Figure 11 (b) for example. Figure
11 (c) shows an example where enhancement may not be nec-
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Figure 10: Attributes plot matrix. A0 to A10 (see Table 1) are patient’s age, organ dose (dGy), entrance dose (mGy), exposure (mAs), relative X-ray exposure (mAs),
compression force (Newtons), body part thickness (mm), kVp, percent peripheral area (PPA) %, percent skinline coverage (PSC) %, percent pectoral coverage (PPC)
%, respectively. Blue and red dots represent images as ‘good as it is’ (GAII) and ‘requiring per-processing’ (RPP), respectively.
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(a) (b) (c)

Figure 11: Example processed images; the top and bottom rows show the original and processed images, respectively; from left to right the correction process has a
positive, neutral, and negative effect. Images from left to right were rated B1/TI , B1/TII , and B2/TI , respectively. Note that most of the problematic images belong
to B1, B2, TI , and TII/III .

essary, in this case the process caused distortions to the origi-
nal image’s appearance. The correction process has the ability
to improve mammographic appearances but one potential issue
can be seen; the process may distort abnormalities (e.g. spicu-
lated mass and circumscribed lesion) and contrast of underlying
anatomical structures. This can affect screening interpretation
but may not be an issue for certain image processing tasks (e.g.
segmentation). Intensity ratio propagation can introduce ring-
ing artefacts in the BPA, however, this is less noticeable with
the used parameter configurations. It should be noted that when
compared to early development in [23, 24], the current imple-
mentation is substantially different; it has fewer stages and is
more robust in ensuring the intensity continuation during the
correction.

3.3. Segmentation

Figure 12 shows example mammographic segmentation.
When using the processed images, results show that there are
less missegmented pixels near the chest wall (thicker part of
breast), at the same time more linear structures (e.g. blood ves-
sels) were segmented in the peripheral area (e.g. Figure 12 (4)-
(a-d)). In some cases missegmentation can be seen near the
skinline (e.g. Figure 12 (a)-(b)) due to the artefacts (brighter
skinline) created after intensity propagation. Overall, when us-
ing the processed images, results show more detailed segmen-
tation for nodular and homogeneous tissue, and missegmented
linear density (e.g. Figure 12 (4)-(b)). Note that linear struc-
tures can be hard to segment because this type of tissue is of-
ten subtly embedded in other types of tissue. Tabár’s mammo-

graphic building blocks; radiolucent, linear, nodular, and ho-
mogeneous tissue can be loosely mapped to BI-RADS density
categories as fatty, semi-fatty, dense, and semi-dense, respec-
tively. All the segmented images were clinically rated based on
the correctness of the segmented density categories correspond-
ing to the BI-RADS density categories. The clinical evaluation
was conducted based only on the BI-RADS scheme because
this scheme has been widely used in the US and some European
countries, whilst the Tabár scheme has not (yet) been adopted
in a clinical environment. Therefore, clinical evaluation with
respect to the Tabár scheme is not included in the current study.
During the evaluation, three ratings were considered; ‘Unac-
ceptable/Poor’ (U/P), ‘Acceptable’ (A), and ‘Good/Excellent’
(G/E). Tables 4 (a) and (b) show the results for the entire dataset
(] images = 360) before and after pre-processing. Table 4 (a)
and (b) indicate that there is a 27% improvement in the A and
G/E categories. Table 4 (c)-(f) show rating results with respect
to the BI-RADS density categorises after pre-processing. We
observed a 99% correct fatty segmentation within A (8%) and
G/E (91%) categories in Table 4 (c). A good fatty segmentation
is expected as this tissue type is relatively easy to be identi-
fied. Table 4 (d) shows a 60% correct semi-fatty segmentation
within the A (37%) and G/E (23%) categories. The decrease
in segmentation accuracies for this type of tissue can be related
to the fact that it is difficult to correctly identify tissue during
its transitional stage (e.g. during hormone replacement therapy
and tissue change due to natural ageing). Table 4 (e) shows a
73% correct semi-dense segmentation within the A (20%) and
G/E (53%) categories. Table 4 (f) shows a 91% correct dense
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U/P A G/E
B1 133 (78%) 22 (13%) 15 (9%)
B2 37 (30%) 37 (30%) 49 (40%)
B2 11 (25%) 14 (33%) 18 (42%)
B3 13 (54%) 10 (42%) 1 (4%)

Total 194 (54%) 83 (23%) 83 (23%)
(a) before pre-processing

U/P A G/E
B1 78 (46%) 59 (35%) 33 (19%)
B2 17 (14%) 43 (35%) 63 (51%)
B3 3 (7%) 8 (19%) 32 (74%)
B4 0 (0%) 13 (54%) 11 (46%)

Total 98 (27%) 123 (34%) 139 (39%)
(b) after pre-processing

U/P A G/E
B1 4 (2%) 18 (11%) 148 (87%)
B2 1 (1%) 9 (7%) 113 (92%)
B3 0 (0%) 0 (0%) 43 (100%)
B4 0 (0%) 0 (0%) 24 (100%)

Total 5 (1%) 27 (8%) 328 (91%)
(c) fatty tissue

U/P A G/E
B1 99 (58%) 47 (28%) 24 (14%)
B2 33 (27%) 55 (45%) 35 (28%)
B3 6 (14%) 18 (42%) 19 (44%)
B4 7 (29%) 14 (58%) 3 (13%)

Total 145 (40%) 134 (37%) 81 (23%)
(d) semi-fatty

U/P A G/E
B1 85 (50%) 40 (24%) 45 (26%)
B2 13 (10%) 25 (20%) 85 (70%)
B3 0 (0%) 4 (10%) 39 (90%)
B4 0 (0%) 1 (4%) 23 (96%)

Total 98 (27%) 70 (20%) 192 (53%)
(e) semi-dense tissue

U/P A G/E
B1 11 (7%) 79 (46%) 80 (47%)
B2 12 (10%) 61 (50%) 50 (40%)
B3 7 (16%) 16 (37%) 20 (47%)
B4 2 (8%) 20 (83%) 2 (9%)

Total 32 (9%) 176 (49%) 152 (42%)
(f) dense tissue

Table 4: Clinical ratings for the quality of the segmented mammographic images using the full dataset (] images = 360). ‘U/P’, ‘A’, and ‘G/E’ denote ‘Unaccept-
able/Poor’, ‘Acceptable’, and ‘Good/Excellent’, respectively. Note that (c)-(f) results are after pre-processing, and represent fatty, semi-fatty, semi-dense, and dense
tissue, respectively.

U/P A G/E
B1 95 (76%) 18 (14%) 12 (10%)
B2 21 (41%) 15 (29%) 15 (30%)
B2 2 (100%) 0 (0%) 0 (0%)
B3 0 (0%) 0 (0%) 0 (0%)

Total 118 (66%) 33 (19%) 27 (15%)
(a) before pre-processing

U/P A G/E
B1 65 (52%) 46 (37%) 14 (11%)
B2 9 (18%) 25 (49%) 17 (33%)
B3 0 (0%) 0 (0%) 2 (100%)
B4 0 (0%) 0 (0%) 0 (0%)

Total 74 (41%) 71 (40%) 33 (19%)
(b) after pre-processing

U/P A G/E
B1 2 (2%) 12 (10%) 111 (88%)
B2 1 (2%) 5 (10%) 45 (88%)
B3 0 (0%) 0 (0%) 2 (100%)
B4 0 (0%) 0 (0%) 0 (0%)

Total 3 (2%) 17 (10%) 158 (88%)
(c) fatty tissue

U/P A G/E
B1 90 (72%) 24 (19%) 11 (9%)
B2 24 (47%) 20 (39%) 7 (14%)
B3 0 (0%) 2 (100%) 0 (0%)
B4 0 (0%) 0 (0%) 0 (0%)

Total 114 (64%) 46 (26%) 18 (10%)
(d) semi-fatty

U/P A G/E
B1 68 (54%) 32 (26%) 25 (20%)
B2 7 (14%) 12 (24%) 32 (62%)
B3 0 (0%) 0 (0%) 2 (100%)
B4 0 (0%) 0 (0%) 0 (0%)

Total 75 (42%) 44 (25%) 59 (33%)
(e) semi-dense tissue

U/P A G/E
B1 5 (4%) 58 (46%) 62 (50%)
B2 5 (10%) 20 (40%) 26 (50%)
B3 0 (0%) 0 (0%) 2 (100%)
B4 0 (0%) 0 (0%) 0 (0%)

Total 10 (6%) 78 (44%) 90 (50%)
(f) dense tissue

Table 5: Clinical ratings for the quality of the segmented mammographic images using images ‘requiring pre-processing’ (] images = 178). ‘U/P’, ‘A’, and ‘G/E’
denote ‘Unacceptable/Poor’, ‘Acceptable’, and ‘Good/Excellent’, respectively. Note that (c)-(f) results are after pre-processing, and represent fatty, semi-fatty,
semi-dense, and dense tissue, respectively.
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(1)

(2)

(3)

(4)

(a) (b) (c) (d)

Figure 12: Example mammographic segmentation. From top to bottom showing the original images (1), its segmentation (2), the processed images (3), and the
corresponding segmentation (4). Note that images (a)-(d) were rated B1/TIII , B1/TIII , B1/TI , and B1/TIII , respectively.

TI TII/III TIV TV

TI 106 18 13 0
TII/III 22 131 4 1
TIV 18 4 32 0
TV 2 2 7 0

TI TII/III TIV TV

TI 45 15 7 0
TII/III 8 67 3 0
TIV 3 2 23 2
TV 0 1 1 3

TI TII/III TIV TV

TI 57 10 3 0
TII/III 9 71 0 0
TIV 12 3 7 2
TV 2 2 2 0

(MLO/CC) (CC) (MLO)

Table 6: Risk classification confusion matrices using the Tabár scheme. From left to right; images and the Kappa statistics are MLO/CC (κ = 0.60), CC (κ = 0.64),
and MLO (κ = 0.59) views, respectively.

12



B1 B2 B3 B4

B1 149 16 2 3
B2 23 90 10 0
B3 4 23 13 3
B4 3 3 1 17

B1 B2 B3 B4

B1 72 12 0 1
B2 13 43 5 1
B3 1 8 10 2
B4 0 4 1 7

B1 B2 B3 B4

B1 67 15 2 1
B2 8 43 8 2
B3 1 10 11 0
B4 2 2 1 7

(MLO/CC) (CC) (MLO)

Table 7: Density classification confusion matrices using the BI-RADS scheme. From left to right; images and the Kappa statistics are MLO/CC (κ = 0.60), CC
(κ = 0.58), and MLO (κ = 0.55) views, respectively.

segmentation within the A (49%) and G/E (42%) categories.
The break down results show overall satisfactory ratings for
fatty and dense tissue segmentation. However, the U/P results
in Tables 4 (e) and (f) indicate that the developed approach is
robust to identify semi-dense tissue, but a decision line between
semi-dense and dense tissue can be hard to determine as there
are more ‘acceptable’ ratings for dense tissue which indicate
the radiologists may have a neutral feeling about the segmen-
tation. Tables 5 (a) and (b) show rating results for the images
automatically identified as ‘requiring pre-processing’ (] images
= 178) before and after pre-processing, respectively. Results
are similar when compared with those derived from the full
dataset, however, it should be noted that automatically selected
images ‘requiring pre-processing’ mainly consisting of B1 and
B2. Clinical feedback with respect to the evaluation based on
the BI-RADS scheme indicated that problematic cases show
difficulty in differentiating between semi-fatty and semi-dense
tissue in the lateral and medial aspects of the breast; this is re-
flected in poor U/P results in Table 4 (d) and (e). Semi-dense
tissue at the lower back can be a little too prominent which was
reflected in over-segmentation near sub dermal (skin) and pos-
terior fatty breast areas. In some cases there was a lack of semi-
fatty tissue near the lateral back, and segmentation showed not
enough dense ‘islands’ due to semi-fatty inhomogeneous re-
gions. Medial vessel (linear tissue) caused ‘spilled’ over den-
sity and some fine fibrous structures may not be segmented pos-
teriorly.

3.4. Risk/Density Classification

Tables 6 and 7 show mammographic risk classification re-
sults when using the Tabár and BI-RADS schemes. The clas-
sification comparison before and after the pre-processing can
be found in Table 8. The total classification accuracies were
75% (CC/MLO), 77% (CC), and 75% (MLO) when the results
were evaluated using the Tabár’s scheme. There is an aver-
age 7% increase when compared with results obtained for the
original images. The total classification accuracies were 75%
(MLO/CC), 73% (CC), and 71% (MLO) when the results were
evaluated using the BI-RADS scheme. There is an average 5%
increase when compared with results obtained for the original
images. The results show lower accuracies for the MLO cases
after pre-processing. This may indicate that the developed pre-
processing can better estimate the breast thickness due to the
single concave breast outline in the CC view, while the estima-
tion is less precise over the more complicated concave and con-
vex breast outline in the MLO view. During breast thickness
estimation (see Section 2.2.3), a series of lines are generated

and parallel to the chest wall. The longest parallel line is used
as reference for the generation of the rest of the parallel lines. In
almost all CC view cases, the longest parallel line is vertical due
to the CC view orientation. However, it can be problematic for
MLO view cases, as the generated reference parallel lines are
not always accurate due to slightly ‘angled’ (e.g. leaning for-
ward) breast with varying degrees. This may produce incorrect
breast thickness estimation for the MLO view cases, leading
to negative effect in segmentation and decrease in classification
accuracy. As future work, a dedicated method can be intro-
duced as part of the process to correctly identify the chest wall
and check the parallel lines’ alignment. Mammographic images
in high risk/density categories seem to have more misclassifi-
cation (percentage wise), which may relate to the intensity over
balancing for structureless dense tissue (e.g. nodular and homo-
geneous). TIV is more likely to be classified into TI . This may
be due to the tissue distributions for these two patterns being
more similar than others. Whilst with the BI-RADS scheme,
dense tissue proportion increases with risk, therefore, most mis-
classification can be found in either a density category higher or
lower (e.g. B2 misclassified into B1 or B3). It should be noted
that Tabár low risk categories (i.e. TI and TII/III ) are not di-
rectly correlated with BI-RADS low density categories (i.e. B1
and B2) [25]. Table 9 shows risk classification accuracies based
on high and low risk categories. The results for the CC view
are more accurate than the CC/MLO combination. This may be
related to the more complicated concave and convex breast out-
line seen in the MLO view as discussed previously. The results
are close to the results achieved (i.e. on average > 80%) using
the state-of-the-art method [6]. It should be noted that different
segmentation (e.g. fatty/dense segmentation) and classification
(e.g. high/low risk classification) principle and datasets were
used in [6].

4. Conclusions

The developed mammographic image pre-processing tech-
nique showed the ability to improve the contrast of tissue struc-
tures in uncompressed breast peripheral areas, and at the same
time reduce intensity discrepancies across the mammograms.
The novel automatic selection approach was able to better tar-
get images requiring pre-processing in a systematic way. A
quantitative and qualitative evaluation was conducted to assess
the usefulness of the developed method. When using the pro-
cessed mammographic images for segmentation, there are more
anatomically accurate and consistent results over the breast
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MLO/CC CC MLO
Tabár 69% 68% 79%

BI-RADS 69% 67% 77%

MLO/CC CC MLO
Tabár 75% 77% 75%

BI-RADS 75% 73% 71%

Table 8: Tabár risk/BI-RADS density classification accuracies before (left) and after (right) pre-processing.

MLO/CC CC MLO
Tabár 88% 91% 88%

BI-RADS 87% 89% 84%

Table 9: Tabár risk/BI-RADS density classification accuracies based on high and low categories. High risks; TIV and TV . Low risks; TI and TII/III . High densities;
B3 and B4. Low densities; B1 and B2.

parenchyma, this in turn improved subsequent risk classifica-
tion accuracies. There are significant positive relationships be-
tween the radiologists manual and automatic mammographic
risk assessments for both Tabár (substantial agreement) and
BI-RADS (moderate agreement) schemes. Clinical evaluation
showed that pre-processing can have positive impacts on mam-
mographic segmentation, however, the processed images are
not ready to be used for interpretation. Further validation in a
clinical environment is required in order to extend the usage for
mammographic reading purposes; in addition, investigations
into multi-vendor evaluation and density estimation comparison
with other approaches should be considered. Utilising such an
image pre-processing technique in a mammographic segmen-
tation methodology can prove useful in quantifying change in
relative proportion of breast tissue, aiding radiologists’ estima-
tion in mammographic risk/density categories, and providing
risk-stratified screening for patients.
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