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a b s t r a c t

Epilepsy is a brain disorder that affects about 1% of the population in the world. Seizure detection is an
important component in both the diagnosis of epilepsy and seizure control. In this work a patient non-
specific strategy for seizure detection based on Stationary Wavelet Transform of EEG signals is developed.
A new set of features is proposed based on an average process. The seizure detection consisted in finding
the EEG segments with seizures and their onset and offset points. The proposed offline method was
tested in scalp EEG records of 24–48 h of duration of 18 epileptic patients. The method reached mean
values of specificity of 99.9%, sensitivity of 87.5% and a false positive rate per hour of 0.9.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Epilepsy is a brain disorder that affects about 1% of the world
population and is characterized by intermittent abnormal firing of
neurons in the brain, which may lead to recurrent and sponta-
neous seizures. Approximately 30% of the epileptic population is
not helped by medications [1]. An epileptic seizure is a transient
occurrence of signs and/or symptoms due to abnormal excessive
or synchronous neuronal activity in the brain [2,3].

Electroencephalography (EEG) is the standard technique to
record electrical brain activity in patients with neuro-pathologies.
When epileptic activity begins, synchronized and abnormal elec-
trical activity in a small area of the brain is observed [4]. Conse-
quently, this process is reflected in the EEG record as a seizure. The
seizure detection is an important component in the diagnosis of
epilepsy and for the seizures control, especially for those patients
with refractory (intractable) epilepsy.

On one hand, this detection basically involves visual scanning
of long electroencephalographic EEG recordings by the expert
physicians in clinical practice. This procedure is done to identify
and classify the seizure activity present in the EEG signal. Usually,
the records are multichannel ones, lasting 24 to 72 h, so their
inspection implies a very time-consuming task. Fig. 1 shows 30 s of
a multichannel EEG record, a 14 s seizure (marked by an expert) is
indicated with red lines.

On the other hand, an automatic seizure detection system can
considerably reduce the volume of data to be observed by the
physicians. Thus they could focus their attention on those parts of
the EEG records having seizures. Consequently a more precise,
swifter diagnosis can be made.

Onset seizure detection is a useful tool for treatments such as
timely drug delivery, electrical stimulation and seizure alert sys-
tems. Numerous processing techniques have been proposed for
automatic seizure detection, quantification and recognition [5].
Some researchers used chaotic features (such as entropies) to
evaluate the degree of disorder present in the epileptic signal [6].
Others proposed features from time–frequency domain [7].
Another technique used is the multi-way analysis, which is based
on feature tensors to identify seizures [8]. Wavelet Transform (WT)
has been widely used in the epilepsy detection [9,10]. In recent
years the Empirical Mode Decomposition (EMD) technique has
been implemented for epileptic seizure detection as well [11,12].
In Mohammad et al. [13] the EMD and other different transfor-
mation techniques like discrete cosine transformation, discrete
wavelet transformation and singular value decomposition are used
in the analysis of epileptic EEG signals. Zhu et al. [14] proposed a
fast weighted horizontal visibility graph constructing an algorithm
to identify seizures from EEG signals. A comprehensive review of
the majority of the techniques applied to epileptic seizure detec-
tion on EEG signals can be accessed in [15].

Long EEG records are visually analyzed by the specialists
searching for seizures. This task takes several hours. The aim of
this study is to automatically detect epileptic seizures in long EEG
records, in order to reduce the visual inspection time and addi-
tionally, to achieve an accurate diagnosis. For this purpose an
offline seizure detection strategy based on new energy features
extracted from Stationary Wavelet Transform (SWT) is developed.
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The onset and offset points of the seizures are also determined.
The strategy proposes a pediatric patient non-specific method
introducing a spatial average of features.

2. Materials

In this work the CHB-MIT scalp EEG database was used, which
is available free at http://physionet.org/physiobank/database/
chbmit/ [16]. This database, collected at the Children's Hospital
Boston, is composed of EEG recordings from pediatric subjects
with intractable seizures. Recordings were collected from 22
subjects (5 males, ages 3–22; and 17 females, ages 1.5–19),
grouped into 23 cases (case 21 belongs to case 1 1.5 years later).
Each case contains between 9 and 42 continuous files from a
single subject. In most cases, the files contain one hour of digitized
EEG signals, several files with seizures contain more than one
seizure. All signals were sampled at 256 Hz with 16-bit resolution.
Most files contain 23 EEG channels. The international 10–20 sys-
tem of EEG electrode positions and nomenclature was used for
these recordings. In the current study the cases with the same
bipolar configuration were used, corresponding to 18 patients. The
details of the analyzed EEG records are shown in Table 1.

3. Methods

In this section the detection method is detailed. It includes the
stages of filtering and segmentation, SWT computation, features
extraction, features selection and seizure detection. In Fig. 2a block
diagram of the process is shown. The patient non-specific valida-
tion is also described.

3.1. Filtering and segmentation

All EEG records were band-pass filtered with a second order,
bidirectional, Butterworth filter bandwidth of 0.5–30 Hz [17]. Then
each EEG file of 23 channels and 1 hour duration was divided into
segments of 2 seconds (series of 512 samples each). Thus, each
channel was segmented into 1800 segments.

Channels 15 and 23 present the same bipolar combination, so
channel 23 was discarded to avoid the introduction of redundant
information.

Fig. 1. Multichannel scalp EEG record with a 14 s seizure. (For interpretation of the reference to color in this figure, the reader is reffered to the web version of this article.)

Table 1
Details of the used EEG records.

#Patient Gender Age (years) Number of seizures

1 F 11 7
3 F 14 7
5 F 7 5
7 F 14, 5 1
8 M 3, 5 5
9 F 10 1
11 F 12 3
12 F 2 27
13 F 3 10
14 F 9 4
16 F 7 7
17 F 12 2
18 F 18 6
19 F 19 2
20 F 6 8
21 F 13 4
22 F 9 3
23 F 9 2

Fig. 2. Block diagram of the proposed detection method.
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3.2. Wavelet transform

After filtering and segmentation the SWT was computed. The
SWT is also known as time invariant orthonormal wavelet repre-
sentation; it can be obtained modifying the basic scheme of the
discrete wavelet transform (DWT) [18]. The time invariance in
SWT algorithm is achieved by removing the down sampling stages
of DWT and replacing them by up sampling the filter coefficients
at each stage. This process consists in interpolating zeros in the
output sequences of the low and high pass filters of the algorithm.
Thus, the output of each level of decomposition has the same
number of samples as the original signal [19].

In this study, the Wavelet mother used was Daubechies order
4 with 6 levels of decomposition. The SWT was calculated for each
segment of 2 s. Hence, for each channel 6 decomposition levels or
bands (D1, D2, D3, D4, D5, D6 and A6) were obtained. In Table 2
the bandwidth of Wavelet Filters for a sampling frequency of
256 Hz are shown. The levels of interest are D3, D4, D5, D6, due to
their frequency content that approximately matches brain
rhythms β: 13–30 Hz, α: 8–13 Hz, θ: 4–8 Hz and δ: 0.5–4 Hz [17].

3.3. Feature extraction

For each selected band and for each channel the spectral and
the energy features were computed.

The spectral features were calculated using the power spectral
density (PSD) of EEG signals. Hence, PSD of D3 to D6 series was
estimated by the Burg method order 16 [20]. Then, Mean and Peak
Frequencies (MF and PF) were calculated on the PSD. Thus
8 spectral feature series are obtained (4 levels�2 features).

For energy features computation first the energy of each level
Ei was calculated as in (1).

Ei ðmÞ ¼ 1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XmL

n ¼ ðm�1ÞLþ1

½Di ðnÞ�2
vuut i¼ 1; :::::;6 ð1Þ

where i is the decomposition level of the SWT, n is the sample
number, m is the analyzed segment and L¼ 512 samples (2 s) is
the segment length.

Then the relative band energy (Er) was computed as in (2) for
decomposition levels D3 (Er3) to D6 (Er6).

E ri ðmÞ ¼ EiðmÞ
P6
i ¼ 1

EiðmÞ
ð2Þ

Therefore, a total of 264 features are obtained for each 2 s EEG
segment, 176 (22ch�8 features) frequency features and 88
(22ch�4 features) energy features.

Based on the proximity of the electrodes a spatial average of
features is proposed. For this purpose the bipolar channels located
as shown in Fig. 3 were taken by zones: Left Anterior (LA) zone
(channels 1, 2, 5, 6, and 20); Right Anterior (RA) zone (channels 9,
10, 13, 14 and 22); Left Posterior (LP) zone (3, 4, 7, 8 and 19); Right
Posterior (RP) zone (channels 11, 12, 15 and 16); Central zone
(C) channels 17 and 18) and Channel 21 (C21). For example, for LA
zone the average between MF of channel 1, MF of channel 2, MF of
channel 5, MF of channel 6 and MF of channel 20 is obtained so the

new feature is called MF_LA. The same procedure was performed
for the other features and zones. Therefore, the new set has 72
features, much fewer than the original 264.

3.4. Feature selection

A stepwise analysis was implemented to find the minimal
vector of features that best classifies epileptic seizures. This
method is based on the statistical parameter Lambda of Wilks
(WL). In this case WL is applied considering features belonging to
2 groups: group of seizure segments and the non-seizure one.
Those features or discriminator variables are the 72 obtained in
Section 3.3.

WL measures the ratio of within-group variability respecting
the total variability on the discriminator variables, and is a mea-
surement of the importance of the functions. In this inverse
measurement scale, values close to 1 indicate that almost all of the
variability in the discriminator variables originates from within-
group differences (i.e., differences between cases in each group),
whereas values close to 0 indicate that almost all of the variability
in the discriminator variables is due to group differences [21].

The WL, in a p-dimensional space constructed with p variables
and with the matrixes Bp� p and Wp� p can be defined as the ratio
between their determinants [22] as can be seen in (3):

WL¼ jWj
BþWjj ð3Þ

where B and W are matrixes whose elements represent the square
sum and cross products within-groups and between groups,
respectively. Then, the value of WL is transformed into the general
multivariate statistical F, which allows contrasting significant dif-
ferences between groups [23]:

F ¼ n�g�s
g�1

1�Λsþ 1
Λs

Λsþ 1
Λs

0
@

1
A ð4Þ

where n, g and s are the number of cases, groups and selected
variables respectively; Λs is the WL before adding a new variable,
and Λsþ1 results after adding that variable. To accept a variable in

Table 2
Band width of wavelet filters.

Decomposition level Band width (Hz) Brain rhythms

D3 15.41–33.09 β

D4 7.69–16.56 α

D5 3.84–8.28 θ

D6 1.91–4.16 δ

Fig. 3. Distribution of channels and zones. The direction of the arrows indicates the
electrodes subtraction (i.e., Ch2¼F7-T7).
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the analysis, the F value must be higher than 3.84 (namely, “F to
enter”) and, once included, the variable is rejected if its F value is
smaller than 2.71 (namely, “F to exit”) [23]. This selection features
method was successfully applied in other areas such as brain–
computer interface [24].

Due to the fact that the quantity of seizure-free segments is
much higher than the seizure ones (unbalanced problem), 10
balanced sets of features were constructed and the stepwise
method was applied to each one. Then those common features (26
out of 72) to all the sets (selected by the method) were chosen to
be used in the classification stage and are listed in Table 3.

3.5. Seizure detection

Two detection methods are proposed, one based on linear
discriminant analysis (LDA) and other based on neural networks
(NNs). Therefore, using the selected features in the previous step
the seizures segments are detected.

3.5.1. Linear discriminant analysis
The linear discriminant analysis (LDA) is based on a linear

combination of the discriminant variables (selected features)
allowing to maximize the differences between groups and mini-
mize the differences within-group. Those linear combinations are
known as classification functions. In this case of study there are
two functions, one for the seizure class and the other for the non-
seizure class.

The discriminant variables are the 26 listed in Table 3. Since the
set of data constitutes an unbalanced problem, it was balanced.
The LDA was performed using 70% of the balanced data set as a
training group and the remaining 30% as a testing group. The cases
included in these proportions were randomly selected and the
complete procedure was carried out 10 times, obtaining the clas-
sification functions.

3.5.2. Neural networks
A pattern recognition neural network (PRNN) with Bayesian

regulation was selected for seizure detection. The architecture of this
NN is a feed forward multilayer perceptron. The features of Table 3
were the network inputs and the states of seizure (state 1) or non-
seizure (state 0) were the outputs of the system. In order to obtain
the best adjustment of the network weights, 70% of the balanced
data set were randomly selected as a training group and the

remaining 30% as testing group; this was carried out 10 times. The
best combination of weights was selected for the classification task.

3.6. Onset and offset points detection

The LDA and NN based classifiers were fed with the selected
features (corresponding to the signal segments) chronologically
ordered. Then the onset and offset points of the algorithm detec-
tions are determined as is explained in the section showing
results.

3.7. Patient non-specific validation

In order to evaluate the performance of the method as a patient
non-specific one; a new classification strategy is proposed. In this
case, the classifier was adjusted using all the EEG segments except
the EEG segments that belong to one specific patient. Then, the
classifier is evaluated over a new patient, thus the leave-one-
patient-out validation scheme is proposed.

This process is performed for all patients (18 times). Only the
LDA classifier was used because it achieved the higher results in
the previous stage (Section 3.5).

4. Results

The proposed method was applied to a total of 275,048 seg-
ments of 2 s of duration, 3267 of them are seizure segments,
corresponding to 18 pediatric patients with intractable epileptic
seizures.

To evaluate the performance of the proposed methods in
detecting seizures a set of indexes is defined.

The algorithm flags detections that last at least 10 s. A positive
detection (PD) is reported when flagged by the algorithm, but all
the detections within a 60 s period are grouped so that continuous
bursts of positive detections are not over represented [25].

True positives (TP): They are reported when a PD occurs within
the time marked as a seizure by human expert. Only one TP
per seizure is reported.
True negatives (TN): Those no seizures segments reported as
such by the algorithm.
False negatives (FN): All no detected seizures.
False positives (FP): Detections occurring out of the TP period.

With these indexes the parameters of sensitivity (SEN) and
specificity (SPE) are computed [26]. SEN represents the seizure
proportion correctly classified by the algorithm and SPE is the
percentage of no seizure cases identified by the method.

The indexes of latency and false positive rate are also used and
are defined as follows [25,27]:

Detection delay or Latency (Lat): Measures the time it takes for
a detector to identify a seizure after its electrographic onset. In
this way, positive values of latency denote algorithm detections
before the marks of specialist.
False positive rate (FPR/h): Gives information about the quan-
tity of FP per unit of time. This index is calculated as: FP/time
free of seizure.

The time limits of the detections are determined on the data
chronologically ordered. Then the first PD belonging to the TP
period is detected as the onset point. Similarly, the last PD
belonging to the TP period is detected as the offset point of the
seizure.

Table 3
Selected features (26).

Decomposition level Features

Spectral Relative energy

D3 MFD3_LA ErD3_LA
MFD3_RA ErD3_LP
MFD3_LP ErD3_RP
MFD3_C ErD3_C
PFD3_C
MFD3_C21

D4 MFD4_LA ErD4_LA
MFD4_LP ErD4_LP
MFD4_RP ErD4_C
MFD4_C

D5 MFD5_LP ErD5_LP
PFD5_LP ErD5_RP

ErD5_C21
D6 PFD6_LA ErD6_LA

MFD6_LP ErD6_C

MF: Mean frequency, PF: Peak frequency, Er: relative bands energy, LA: Left
anterior, RA: Right anterior, LP: Left posterior, RP: Right posterior, C: Central and
C21: Channel 21.
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Table 4 shows the values of the performance indexes for the
LDA and NN based detectors. The indexes are expressed as the
mean value of the 10 running times; additionally for the Lat the
maximum and minimum values are given. The LDA detector
reached average values of SPE¼99.99%, SEN¼92.6% and a FPR/
h¼0.3. For the NN detector the indexes were SPE¼99.7%,
SEN¼79.9% and a FPR/h¼3.9 in average. From the last row of
Table 4 it is clear that the LDA detector demonstrates superior
values of SPE and SEN than the NN one. The FPR/h is also better for
the LDA classifier, this index is less than 1 in almost all cases.

In Table 5 the performance for the patient non-specific vali-
dation is reported. Values of SPE, SEN and FPR/h for each patient of
validation stage are shown. The Lat is expressed as the mean value
of all the patient seizures, and the maximum and minimum values
are also reported. The performance indexes were calculated for
each individual patient in the validation step.

5. Discussion

This paper proposes an algorithm, which is a clinical tool that
aids in achieving more accurate and swifter diagnosis of the
patient. The capability of the detector to correctly identify an
epileptic seizure is measured by the SEN value; on the other hand,
the SPE value measures the proportion of negatives which are
correctly detected as such. Therefore, the best situation is detect-
ing seizures with a high SEN, i.e., the algorithm should detect all
the seizures. Moreover, a high SPE and a low FPR/h will reduce the
effort required from the physician in rejecting false detections.

With the aim of finding the best and most accurate method to
detect epileptic seizures two classifiers were proposed: one based
on linear discriminant analysis (LDA) and other based on neural
networks (NNs). Table 4 shows the values of the performance
indexes for both detectors. The mean value of SEN¼92.6% of the
LDA detector is higher than the mean SEN¼79.9% of the NN
classifier. Additionally, the first detector reaches a higher value of
SPE (99.9%) and a lower value of FPR/h (0.3) than the second one.
Therefore, the LDA classifier is more robust and reliable than the

NN classifier. Besides, the values of latency yield more accuracy
for LDA.

In epileptic seizure detection research, the performance is
evaluated according to the framework of the application. Hence,
the exact onset and offset time point detection of a seizure is
crucial for a system designed to stop a seizure once it has started,
as in timely drug delivery or electrical brain stimulation. In other
applications such as seizure alert systems, the desirable condition
is an early detection of the beginning of the seizure as well as its
culmination. Additionally, the ambiguity between the onset and
ending marks of a seizure, by human experts is known. In this
study, the onset/offset points are detected with a mean detection
delay of 0.2 s and �4 s, respectively, for LDA (Table 4). For the
patient non-specific validation the mean latency is 1.3 s for onset
and 3.7 s for the offset (Table 5). These values are comparable with
differences among human specialists.

In the epileptic seizure detection area, some authors have used
the CHB-MIT scalp EEG database for their research. Shoeb et al.
[17], proposed a method based on machine learning that has a
training stage for each patient obtaining mean values for SEN of
96%, a Lat of 4.6 s and a FPR of 2/24 h. Khan et al. [28,29], proposed
seizure detection based on features of kurtosis, skewness and
coefficient of variation from the decimate Discrete Wavelet
Decomposition of 5 and 10 patients. They reached mean values for
SEN of 83% and SPE of 100% and 100% of SEN in the second one
(SPE was not reported) respectively. Kim et al. [30], calculated the
entropies of 7 patients to detect seizures; showing a SEN¼100–
94%, FPR of 2/h–0.9/h and a Lat¼13 s–18 s. The method is also
patient-specific. Ahamad et al. [31], proposed a method of auto-
matic detection of epileptic seizure event and onset using deci-
mate Discrete Wavelet Decomposition and interquartile range and
mean absolute deviation without wavelet decomposition. For the
records of CHB-MIT, they reported a mean sensitivity of 98.5% with
an average latency of 1.76 s.

From the cited researchers it should be mentioned that all the
studies are patient specific, i.e. they trained a classifier for each
patient tested. This is a controversial point in automatic epilepsy
research. On the other hand, a patient non-specific detector is set
with certain fixed parameters and no extra training is needed for

Table 4
Performance Indexes for LDA and NN detectors.

# Patient LDA NN

SPE (%) SEN (%) FPR/h Lat (s) SPE (%) SEN (%) FPR/h Lat (s)

Onset Offset Onset Offset

1 100 74.3 0.4 �6.7 �14 99.9 85.7 1.5 �8.3 �7.3
3 100 100 0 �10.7 �2.4 99.9 100 2.4 1.7 10.9
5 100 100 0 �14.4 �22.6 99.3 80 8.6 91 �10.5
7 100 100 0.5 �2 2 99.9 100 1.5 0 �47.3
8 100 100 0.3 11.6 �13.3 99.7 40 3.9 75 �16
9 100 100 0 �5.6 0.5 99.1 0 10.2 56.7 �16.9
11 100 100 0.1 9.3 9.4 99.9 100 2.2 37.8 32.5
12 100 100 0.7 2 �0.6 99.8 88.8 2.6 27.1 �126
13 100 90 0.7 �8.2 �60.6 99.5 90 6.9 18.4 �61
14 100 80 0 �5.3 �7.6 99.7 75 5.1 �34 �46.7
16 100 34.3 0.4 �2 3.5 99.9 57.1 2.3 �20 �39
17 100 100 0.3 �7.2 �1.2 99.6 100 6.8 1.2 �51
18 100 100 0.2 28 13.7 99.8 83.3 3.5 0 �22
19 100 100 0 �3.4 24 100 50 0.8 21.3 �130
20 100 100 0.7 7.8 24.2 99.9 87.5 1.5 18.3 4
21 99.9 87.5 1.5 22 11.3 99.8 100 3.9 32.5 �21.3
22 100 100 0 �6.3 4.4 99.9 100 1.5 4 �168.2
23 100 100 0 �6.1 �43.3 99.7 100 5.7 9 �42.1
Mean 99.9 92.6 0.3 0.2 �4 99.7 79.9 3.9 18.4 �42.1
Max 1.5 28 24.2 10.2 91 32.5
Min 0 �14.4 �60.2 0.8 �34,0 �168.2
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new patients. In this sense there is a trade-off between perfor-
mance, simplicity and swiftness in the seizure detection. In the
current study a patient non-specific detection method was pro-
posed. The detector performance was evaluated with each new
testing patient (for the 18 patients). This validation stage obtained
mean values of SEN¼87.5%, SPE¼99.9%, FPR/h¼0.9 and a mean
onset and offset latency of 1.3 s and 3.7 s respectively. In Table 5
the values of performance of all patients are shown. For
patient#19 the SEN is 50% since this patient has only two seizures
and only one is detected. If this patient is left out the value of SEN
for the patient non-specific method increases to 89.7%. Therefore,
the current method correctly classifies almost the 90% of the sei-
zures. This value is comparable with those patient specific ones
[28–31]. Moreover, the values of FPR/h and Lat of the proposed
method are very similar to the others. Hence, the algorithm can
successfully detect seizures, its implementation is simple and swift
since it does not need training for every new patient. Therefore,
the current algorithm can be evaluated in other databases and its
performance should be suitable for clinical applications.

6. Conclusions

This paper presents an automatic algorithm that is able to
detect epileptic seizures in long-term EEG records for clinical
applications. The off line method is based on spectral and energy
features extracted from the SWT of pediatric EEG signals. The
current study proposed a spatial average of features which, on one
hand, enables reducing the number of variables in the analysis.
Conversely, it could allow the identification of seizures from dif-
ferent parts of the brain.

The detection strategy is able to discriminate EEG signals with
and without seizures reaching high values of SEN and SPE. Its
implementation is simple and swift because it does not require
training for every new patient. Before its clinical application, the
detector could be tested on another EEG database to continue
evaluating its performance.
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