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Abstract

Facial soft tissue deformation following osteotomy is associated with the corresponding 

biomechanical characteristics of bone and soft tissues. However, none of the methods devised to 

predict soft tissue deformation after osteotomy incorporates population-based statistical data. The 

aim of this study is to establish a statistical model to describe the relationship between 

biomechanical characteristics and soft tissue deformation after osteotomy. We proposed an 

incremental kernel ridge regression (IKRR) model to accomplish this goal. The input of the model 

is the biomechanical information computed by the Finite Element Method (FEM). The output is 

the soft tissue deformation generated from the paired pre-operative and post-operative 3D images. 

The model is adjusted incrementally with each new patient’s biomechanical information. 

Therefore, the IKRR model enables us to predict potential soft tissue deformations for new patient 

by using both biomechanical and statistical information. The integration of these two types of data 

is critically important for accurate simulations of soft-tissue changes after surgery. The proposed 

method was evaluated by leave-one-out cross-validation using data from 11 patients. The average 

prediction error of our model (0.9103 mm) was lower than some state-of-the-art algorithms. This 

model is promising as a reliable way to prevent the risk of facial distortion after 

craniomaxillofacial surgery.
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1. Introduction

Human facial appearance plays an important role in individuals’ quality of life. In many 

patients with craniomaxillofacial (CMF) deformities, both bones and facial soft tissues are 

involved, and patients undergo surgery to rectify such deformities. The success of CMF 

surgery depends not only on the technical aspects of the operation, but also on a precise 

presurgical plan [1–4]. Currently, surgeons can accurately plan osteotomies (surgical 

procedures on bone), but cannot accurately predict soft-tissue deformation after osteotomy 

despite multiple attempts at presurgical planning.

Facial soft tissue deformation following osteotomy is associated with biomechanical 

characteristics of bone and soft tissues [5, 6]. Currently, there are three main methods to 

simulate soft-tissue deformation utilizing biomechanics. The first is the mass spring 

modeling (MSM) method [7, 8]. This model represents the face as a collection of assembled 

mass-spring entities. This model has an easy architecture, which benefits computational 

speed. However, it is less biomechanically relevant because it does not incorporate the 

biomechanical characteristics [9]. The second is the finite element modeling (FEM) method 

[10–12]. This method is based on biomechanics to characterize the relationship between 

tissue deformations and biomechanical properties, and thus is more biomechanically 

relevant. FEM can be categorized into two classes: linear and nonlinear [13]. Linear FEM 

results from linear elasticity with isotropic, linear, and elastic material. When the materials 

are modeled as non-isotropic or non-elastic, a nonlinear FEM result occurs. The difference 

in the prediction of soft-tissue deformation between linear and nonlinear FEM is 

controversial. One study reported only that there was a difference between prediction results 

using linear and nonlinear FEM [13], while another reported that linear FEM outperformed 

the nonlinear FEM method [9]. However, FEM has the disadvantage of being 

computationally costly. The third method is the mass tensor modeling (MTM) method [14, 

15], which is a mixture of the FEM and MSM approaches. It has the easy architecture of 

MSM, and at the same time keeps the biomechanical relevance of FEM. MTM can achieve 

accuracies comparable to those of linear FEM, while reducing the computational cost [9].

Unfortunately, none of the above methods includes population-based statistical information. 

Since we can collect patients’ preoperative and postoperative 3D images, it should be 

possible to establish a statistical model to yield statistical dependencies from the 

individualized soft tissue deformations. Meller et al. proposed the statistical deformable 

model (SDM) to capture the variety of preoperative facial morphologies in a group of 

patients, and their compared their corresponding postoperative deformations from 3D 

surface scans [16]. After fitting preoperative data for a new patient into the model, the 

postoperative morphology could be extracted. One drawback of this method was that it did 

To address this need, we reported a preliminary two-step algorithm, in which FEM was first 
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performed to extract the nodal displacement features, and SDM was then used to learn the 

statistics of the nodal displacement over patients’ preoperative data [17]. However, this 

approach was an unsupervised method, in which real postoperative data were not used. This 

could be a source of inaccuracy.

There are different types of CMF deformities, and even within the same deformity (i.e. 

Angle’s Class III), many variations exist. An ideal set of training data would include every 

deformity and its variations to simulate soft tissue change. However, none of the currently 

available training data sets includes such variations. To remedy this limitation, deformities of 

new patients should be included into the statistical model. We conjecture that new patients’ 

biomechanical properties will help make prediction of postoperative soft tissue changes 

more accurate.

The goal of this paper is to establish a statistical model to describe the relationship between 

biomechanical characteristics and soft tissue deformations. We develop an incremental 

version of the kernel ridge regression (KRR) model, which not only builds nonlinear 

relations between biomechanical information and soft tissue deformations, but also is 

incrementally adjusted by incorporating the new patients’ biomechanical characteristics. The 

proposed model, called the incremental kernel ridge regression (IKRR) model, first trains a 

KRR model from a set of paired preoperative and postoperative 3D data, then adds 

biomechanical data from new patients into the KRR model. Prediction of IKRR is the 

convex combination 2 of the predictions of KRR and FEM, where the combination 

coefficients are controlled by the trade-off parameter of KRR. Compared to [12], our model 

makes use of new patients’ information, and more importantly, also utilizes the supervised 

information (postoperative 3D data). The proposed method was validated in 11 patients. The 

IKRR model achieved lower prediction errors than other evaluated methods, which are 

Linear Finite Element Modeling (LFEM) [9], Statistical Deformable Model (SDM) [17], and 

Ridge Regression (RR). And it produced more faithful visualizations of the predicted 

images. Furthermore, the IKRR model was experimentally more efficient than the KRR 

model, and updated the model with new data.

The notations used in the paper were described. Vectors were denoted by bold lower case 

letters, and matrices by upper case ones. Vectors are denoted by bold lower-case letters, and 

matrices by upper-case ones. The transposes of a vector a and a matrix A are represented by 

aT and AT, respectively. The inverse and the determinant of a square matrix A are denoted 

by A−1 and det A, respectively. We use In to denote the n by n identity matrix. The 

Euclidean norm of a vector a is denoted by .

This paper completes our conference paper [18] by including more details of our methods 

and additional experiments.

2A convex combination is a linear combination of points where all coefficients are non-negative and sum up to 1.
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2. Materials and methods

Fig. 1 showed the preoperative and postoperative surface scans of a patient. To improve his 

facial appearance and to reduce the prominence of his chin, this patient underwent surgery to 

set back the mandible (bilateral sagittal split osteotomies) and advance the maxilla (Le Fort I 

osteotomy). We left the osteosynthesis material. The postoperative surface scan was 

acquired 6 months after surgery to avoid surgical swelling.

The FEM method was used to extract biomechanical information from the CT images. Then 

a regression model was used to establish the statistical relationships. As a new patient’s data 

arrived, the learned regression model was employed to predict the resulting soft tissue 

changes. The whole procedure was divided into two phases. In the first phase, named the 

training phase, we established regression models. The second phase, named the test phase, 

involved predictions of soft tissue deformations of new patients. Fig. 2 presents a flowchart 

of the two phases.

In the training phase, we collected a set of preoperative and postoperative 3D images. The 

features were extracted from the preoperative images with FEM. The details of feature 

extraction are shown in Fig. 3. First, an detailed anatomic template was generated to be 

applicable to all data. The template helped to automatically generate the anatomic detailed 

mesh for each patient, which substantially reduced the workload. The displacement 

boundary condition (surgical plan) could be determined from the paired preoperative and 

postoperative skulls. After obtaining the mesh and displacement boundary conditions, we 

employed FEM to extract biomechanical information of individuals. The extracted features 

were then imported as the input in the regression model. The output in the regression model 

represented the true displacements of the corresponding nodes in the preoperative and 

postoperative meshes. As data from a new patient became available, we adjusted the model 

to incorporate his/her biomechanical information. The displacements of mesh nodes of the 

new patient were predicted from the adjusted model. Predictions of postoperative 

appearance were visualized by using interpolation techniques.

2.1. Data Acquisition and Pre-processing

This study was approved by the Institutional Review Board of Wake Forest Baptist Medical 

Center (IRB00028345). All research data were based on existing image data for CMF 

surgery at Wake Forest Baptist Medical Center. Following data collection, patient-

identifying information was destroyed, consistent with data validation and study design, 

producing an anonymous analytical data set. A pilot study designed for 11 random 

participants are followed prospectively and subsequent status evaluations with respect to the 

craniomaxillofacial deformity. As the study is conducted, outcome from participants is 

measured and relationships with specific characteristics determined in our model. We 

collected from 11 patients consisting of preoperative and postoperative CT scans and facial 

surface scans. The facial surface scans were acquired from a 3D surface camera operated by 

a physician. We use a calibrated laser surface scanner (Cyberware 3030 Head & Face Color 

Scanner; Cyberware, Monterey, CA) to capture both the 3D geometry and the absolute 

orientation of the human face. During the surface scanning, the patient’s facial expression 

was kept neutral. Facial surface scans were used to prevent any unintended soft tissue strain 
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caused by CT scanning. In the following computation, the facial skin of the CT images was 

replaced with facial surface scans. All the images were rigidly registered to the preoperative 

CT images with Mimics software (Materialise, Leuven, Belgium). We segmented the bones 

of preoperative and postoperative CT images for further determination of surgical plans.

2.2. Feature Extraction

We used linear FEM (LFEM) methods to extract an individual’s biomechanical 

characteristics, including stress, strain and displacement. Stress can be calculated from strain 

and displacement with soft tissue material properties. Therefore, we used stress as a 

biomechanical feature in our work.

In the FEM procedures, deformation behaviors of soft tissues could be characterized with 

the mechanical equations of linear elasticity [9], described in Section 2.2.4. To solve the 

equations, LFEM was used. The 3D object was first discretized into small elements. The 

discretization of the object was called the mesh. In each element, the displacement was 

assumed in simple forms to obtain element equations. The equations obtained for each 

element were then assembled together with adjoining elements to form the global equation 

for the whole object. The displacement boundary condition was determined based on the 

skull structures of preoperative and postoperative CT images. Then the global equation was 

solved by incorporating the displacement boundary condition.

To implement the LFEM model, both the mesh and the displacement boundary conditions 

are required.

2.2.1 Generation of Detailed Anatomic Template—Next, the anatomic details were 

incorporated into the mesh. The facial muscles that contributed to facial soft tissue 

deformation were considered, i.e. Buccinator, Depressor anguli oris, Depressor labii, Levator 

anguli oris, Levator labii, Levator labii alaeque nasi, Masseter, Mentalis, Orbicularis oris, 

and Zygomaticus major and minor [19]. However, it is difficult to segment these muscles 

from patients’ CT data, and manual segmentation is onerous. We proposed a method to 

automatically locate muscles for each patient in the following paragraph and subsection 

2.2.2.

We created a template of an anatomic detailed mesh using a Visible Human Female Dataset. 

The desired muscles were segmented from this dataset. Since the images of the dataset have 

multiple colors (24 bits of color) and are of high resolution (2048 pixels by 1216 pixels), 

muscles can be easily distinguished. Fig. 4 shows the segmented muscles. Apart from the 

bone and muscle, the remaining soft tissues were considered as a homogenous material. 

Thus, we classify the tissues into three kinds: bone, muscle, and other tissues. Each kind of 

tissues is considered as homogeneous and isotropic. We set the Young’s modulus to 1.2E+10 

Pa and the Poisson ratio to 0.3 for bone. For muscle, the Young’s modulus and the Poisson 

ratio were set to 1.1E+5 Pa and 0.3, respectively. For other tissues, we set the Young’s 

modulus to 1.5E+4 Pa and the Poisson ratio to 0.49 [20]. All the segmented tissues were 

exported as stereolithography (STL) files and then imported into TrueGrid (XYZ Scientific 

Applications, Inc., Livermore, CA). An anatomic detailed mesh was generated as a 
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hexahedral block mesh in TrueGrid. This mesh was further used to map anatomic structures 

into the CT images of patients.

2.2.2 Mesh Generation from the Template—Once the template was generated, 

detailed anatomic structures can be mapped from this model to data from patients. The 

deformation algorithm was created with the surface projection techniques implemented in 

TrueGrid. The 3D surface scan of each patient was imported into TrueGrid as a set facial 

geometries. The anatomic landmarks were manually labeled at first. Then the landmarks of 

the patient mesh were projected to those of the model mesh. Finally, the whole mesh was 

altered according to the projected landmarks. All anatomic details were mapped from the 

template to the patient. The muscles were then automatically located with the help of the 

landmarks.

Deformation algorithms can be used for both pre-operative and post-operative data without 

any changes in the numbers of finite elements or nodes. A natural correspondence between 

different mesh nodes was established, which was a precondition for statistical analysis. To 

limit the number of elements and to reduce computational complexity, we restricted the 

mesh to the zone below the eyes, with the zone above the nose was considered unchanged 

during surgery. The resulting mesh contained 29632 hexahedral elements and 33770 nodes, 

shown in Fig. 5.

Only some specific areas undergo large deformations. These deformations distort the finite 

element mesh, and unable to provide accurate results. In such simulations it is necessary to 

use adaptive meshing tools to periodically minimize the distortion in the mesh. ABAQUS 

provides a very general and robust adaptive meshing capability for highly nonlinear 

problems. We refine the mesh template by using Element Distortion Control (EDC) in 

ABAQUS.

2.2.3 Determination of Displacement Boundary Condition—We classified the 

mesh nodes into boundary nodes and free nodes. Boundary nodes were located in skull parts 

which would be repositioned during surgery. In free nodes, displacement resulted from the 

displacement of boundary points. The displacement boundary condition consisted of the 

displacements of all the boundary nodes.

We first manually registered the post-operative skull to the pre-operative one based on an 

unaltered part, usually the part above the nose, using Mimics software. Afterwards, the pre-

operative skull was cut into parts according to the post-operative one. Then, the skull parts 

were separately matched by manual alignment to the post-operative counterparts. The skull 

parts before and after displacements were exported as STL files which were further imported 

into Matlab (The MathWorks, Inc., Natick, Massachusetts). The Iterative Closest Point (ICP) 

algorithm [21] was used to compute the rotation transformation R and the translation 

transformation t between the pre-operative and post-operative skull parts. We assumed the 

coordinate of a boundary node was p, and its displacement was u. Then the displacement of 

this node was calculated as u = (R·p + t)− p. After the computation of all the boundary 

nodes, we derived the displacement boundary condition. Fig. 6 shows the skull structures 

before and after surgery.
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2.2.4 Calculation of Stress with FEM—The displacement, body force, stress, and strain 

of each mesh node were respectively denoted by:

The aim was to calculate the stress of the node. Linear elasticity was used to characterize the 

deformation behavior of soft tissues, which contained the following 15 equations and one 

displacement boundary condition [9].

The first 3 equations were the static equilibrium equations which stated that the sum of 

external forces and moments on a body was zero:

The next 6 equations were the geometric equations which related the strain and 

displacement:

The last 6 equations were the constitutive equations which used Hooke’s law to describe the 

relation between stress and strain [20]:

with the material properties Young’s modulus E and Poisson ratio ν. The displacement 

boundary condition was the displacement calculated for the boundary nodes.

The FEM was employed to solve the above 15 equations associated with the displacement 

boundary condition. After determining the nodal displacement, we then can calculate the 

nodal stress.

To predict changes in facial appearance, we only need the nodes lying on the outer skin. 

There were a total of 2652 nodes, and each was associated with a stress vector. All the stress 
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vectors were stacked together, resulting in a vector of length 2652*6=15912, denoted by σi 

for the ith patient, i = 1, 2, …, n. The vector σi was the feature extracted from the ith patient.

2.3. Training the Kernel Ridge Regression Model

A regression model was trained to determine the statistical relationships between 

biomechanical features and facial skin deformations. The input of the model was the feature 

computed in Section 2.2. The facial skin displacement was calculated from preoperative and 

postoperative meshes. Only 2652 nodes were needed for computation, as illustrated in 

Section 2.2. Then these 2652 nodal displacements were stacked together to form a vector ui 

of length 7956, which served as the output. The statistical relationships were learned for the 

input and the output. Specifically, we used the input-output pairs (σi,ui) ∈ ℜ15912×ℜ7956, i = 

1, …, n. The aim was to learn a function f such that f (σi) ≈ ui for each i.

The ridge regression (RR) model is a widely used algorithm which models linear 

dependencies between inputs and outputs [22]. It assumed that the prediction function was 

of the form

where W stood for called regression coefficients. The RR model gave an objective function 

consisting of a square loss term and a regularization term

(1)

where the trade-off parameter λ>0 was added to control the overfitting of the model. We 

minimized the objective function to obtain regression coefficients. Then for any new input σ, 

we can predict its output by using fRR. Details of the RR method have been published [22].

However, the relationship between stress and displacement was complex, and empirical 

results showed that RR did not fit well for our data. We thus used the nonlinear version of 

RR model [23]. To learn nonlinear relations, the input was first mapped into a higher 

dimensional space H via a nonlinear mapping ϕ. Then we performed RR in H rather than in 

the input space. Performing linear regression in H is equivalent to performing nonlinear 

regression in the input space.

The dimensionality of H could be very high, even infinite. Direct computations in H would 

be computationally infeasible. One strategy to avoid expensive computation is to employ the 

kernel function. The idea was to replace the inner product in H with the kernel function, 

which could be calculated much more efficiently. Given x and y in the input space and 

kernel function k, we have the relation [18]
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(2)

Performing the RR model in H and replacing the inner product with the kernel function, we 

obtained the Kernel Ridge Regression (KRR) model. Fig. 7 shows the relationship between 

the RR and KRR models.

Different kernel functions corresponded to different values for H, and thus lead to different 

KRR models. An empirical choice of kernel function was the widely used Gaussian kernel

with the width α>0 . This kernel has been extensively validated for many types of data.

The prediction function of KRR was assumed to be the following form

We then minimize the square loss with a regularization term:

(3)

where the trade-off parameter λ>0. Taking derivatives and equating them to zero gave the 

solution

(4)

where Φ = (ϕ(σ1), …, ϕ(σn)) and U = (u1, …, un)T.

For any σ, the prediction of the KRR model could be expressed in terms of kernel function

(5)

where k(σ) = (k(σ1, σ), …, k(σn, σ))T K = (k(σi, σj))i,j, i, j = 1, …, n.

The crucial observation about (5) was that the prediction only involved kernel function. 

Therefore, it was not necessary to define the nonlinear mapping ϕ.
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2.4. Prediction of Soft-Tissue Deformations with the Incremental KRR Model

The KRR model learned from the training data was viewed as a general relationship. We 

would like to incorporate individual information for new patients into the KRR model, 

making the model more appropriate for this new patient.

Thus, the KRR model was adjusted by making use of new patients’ biomechanical 

information. The feature σ̃ and the predicted displacement of LFEM ũFEM were computed 

from new patients’ data. We added the pair (σ̃,ũFEM) to the training set to update the KRR 

model. For efficient computation, the updated KRR model was computed incrementally by 

using the existing model. The result is called the incremental KRR (IKRR) model.

As shown in (5), the prediction of the updated KRR was computed as follows:

where

Making simplification for the above equation, we obtained

(6)

where ũKRR = UT(K + λIn)−1k(σ̃) was the prediction of KRR, t = (e − λ)/e and e = d−1. We 

would show that t ∈ [0,1) . Equivalently, we would prove e − λ>0 .

We introduced a matrix

The Schur complement of K + λI6 in K̃ was e − λ. The following Lemma about the Schur 

complement stated [24]:

Pan et al. Page 10

Comput Biol Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lemma 1: Let G be a symmetric matrix partitioned as

in which G11 is square and nonsingular. Then G is positive definite if and only if both G11 

and  are positive definite.

By using the positive semi-definiteness of the kernel matrix upon the data {σ1, …, σn, σ̃} 

[25], we know that K̃ is positive definite. From Lemma 1, e − λ > 0.

Equation (6) shows that prediction of IKRR was a convex combination of the predictions of 

KRR and LFEM. IKRR included KRR as a special case by setting t=0. When t approached 

1, the prediction of IKRR was similar to that of LFEM. Therefore, IKRR was more flexible. 

By adjusting t, we could control the contributions of KRR and LFEM. Equation (6) also 

revealed that IKRR was more efficient than KRR. Training n+1 data in KRR scaled O(n3) . 

In contrast, IKRR scaled O(n2) by updating the results of KRR.

2.5. Implementation Issues

A natural correspondence between all the meshes was established because the meshes were 

generated from the same template. Each feature was normalized to have zero mean and unit 

standard deviation in order to eliminate the scale effect. The experiments were implemented 

with Matlab on a 64 bit Windows PC with 1.6GHz CPU and 24GB RAM. Two parameters, 

namely the trade-off parameter λ and the width of Gaussian kernel α, were tuned via grid 

search. We selected the values of the parameters which produced the best performance.

3. Results

In this validation, we illustrated three points. The first point was that the prediction result of 

IKRR could be improved as more training data were available. The second was the 

usefulness of IKRR model in the prediction of soft-tissue deformations by comparing it to 

other algorithms, quantitatively and visually. The final point was to demonstrate that IKRR 

was efficient. It was achieved by comparing the running time of IKKR with that of KRR.

3.1. Predictions with Different Amounts of Training Data

The prediction accuracy of IKRR changed with different amounts of training data. Five 

IKRR models were generated using 6 to 10 training data sets, respectively. For each model, 

the prediction error was defined as

(7)
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where di was the true displacement of the ith node, and d̃
i was the predicted displacement of 

the ith node. The prediction errors for different amounts of training data are shown in Table 

1. Errors were reduced as more training data were utilized, showing that the statistical 

information learned from the training data was helpful for predicting soft tissue changes.

3.2. Empirical Comparisons

We applied leave-one-out cross-validation, which involved using data from 1 of the 11 

patients as the validation data, and the remaining patients’ data as the training data. This 

procedure was repeated such that each patient’s data was used once as validation data. The 

evaluated algorithms were LFEM [9], SDM [17], KRR, and IKRR. The prediction errors, 

defined in (7), were recorded in Table 2.

As stated in [17], the accuracy of SDM critically relied on the number of available data. The 

relative low accuracy of SDM may have resulted from the lack of training data. By using 

supervised information (i.e. the post-operative images), KRR improved performance 

compared with SDM. Without using new patients’ biomechanical data, KRR was less 

accurate than LFEM. SDM also did not take into account biomechanical data from new 

patients. In contrast, LFEM produced smaller prediction errors. IKRR was the most accurate 

method, since it achieved the smallest prediction errors for each patient. Incorporation of 

new patients’ biomechanical data into the statistical model was critical to prediction 

performance.

Fig. 8 summarizes the outcomes of statistical analysis for the four models. The standard 

deviation, the maximum and the median of the prediction difference are reported. These 

results also indicate that the IKRR model achieved the best performance.

We used inverse distance weighted interpolation [26] for visualization of 3D images. Fig. 9 

depicts a preoperative image, a postoperative image, the prediction using LFEM, and the 

prediction using IKRR. Both predictions could provide reasonable visualizations, but the 

results using IKRR were more accurate. Both the lip and facial contours in the IKRR 

prediction were more faithful to the postoperative image.

We also show the visual results for other patients in Fig. 10. IKRR predictions were faithful 

regarding the facial surface compared to the postoperative results.

3.3. Computation Time

We compared the running times of IKRR and KRR analyses. KRR re-trained the model as 

new data were available. The running time of KRR involved the computation of (5) by 

replacing n with n+1, whereas IKRR updated the existing results using (6). The elapsed time 

of IKRR was the time required for the computation of (6). Results are listed in Table 3. In 

the case of 1000 training data, IKRR was 96 times faster to compute than KRR.

When the amount of training data increases, the gains in computational cost for IKRR over 

KRR also increase. For 5000 sets of training data, IKRR is about 360 times faster than KRR. 

Therefore, IKRR required much less time than KRR for large amounts of training data.
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4. Discussion and Conclusion

The success of CMF surgery depends not only on the surgical techniques, but also upon an 

accurate surgical plan. The simulation methods should be accurate and fast for surgical plan. 

Attaining both is difficult because these attributes are inversely related, the more accurate 

the model is, the longer it takes to prepare and run. Current approaches do not meet the 

clinical needs because they are either too inaccurate or too slow. To remove this critical 

barrier we are proposing to develop an innovative approach. The goal is to develop a model 

for clinicians to accurately simulate the facial soft-tissue changes that is resulted from virtual 

skeletal reconstruction. In current practice, doctors only plan osteotomies (improving hard 

tissue functions) and hope for the best for optimal facial soft tissue. By using our model, 

doctors will be able to accurately simulate soft tissue changes following the virtual 

osteotomies. Most importantly, instead of imagining soft-tissue-change “blindly” following 

the osteotomies, doctors will be able to accurately determine the amount of skeletal over- or 

under correction for camouflaging the soft-tissue defect. If any unwanted soft-tissue-change 

occurs during the planning, doctors will be able to revise the osteotomies and movements, or 

camouflage the deformities by adding bones (bone grafting) or trimming off bones 

(ostectomy), to ensure the ideal appearance of the soft tissue envelope. Patients will also be 

able to foresee their realistic facial appearance preoperatively. This is very important to 

patients that they always outweigh the facial soft tissue changes over the underlying skeletal 

correction. In this paper, an integrated biomechanical and statistical learning model was 

proposed to extract prior knowledge of soft tissue deformation from the training dataset. The 

results empirically showed our method can accurately simulate soft-tissue deformation.

The proposed model confirmed our belief that statistical information is important for 

prediction of soft-tissue deformation. We conjectured that the statistical model would be 

superior to the individual-based model, and that the prior knowledge learnt from the 

preoperative and postoperative data would be helpful in predicting soft-tissue deformation. 

However, other statistical models could be further investigated for more accurate simulation.

The IKRR approach is still in the experimental stage. In the future, we will include more 

preoperative and postoperative data in the training model. The acquisition of postoperative 

data is expensive. However, preoperative data can be collected relatively inexpensively. To 

this end, future studies will use a semi-supervised method well-suited to the training set, 

consisting of a large amount of preoperative data and a small amount of postoperative data.

Acknowledgments

This work is funded by NIH/NIDCR grant R01DE021863 (Xia & Zhou). We also acknowledge the editorial 
assistance of Karen Klein, MA, in the Wake Forest Clinical and Translational Science Institute (UL1 TR001420; PI: 
Li).

References

1. Kim H, Jurgens P, Nolte LP, Reyes M. Anatomically-driven soft-tissue simulation strategy for 
cranio-maxillofacial surgery using facial muscle template model. Med Image Comput Comput 
Assist Intern: MICCAI. 2010; 13:61–68.

Pan et al. Page 13

Comput Biol Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Kim H, Jurgens P, Weber S, Nolte LP, Reyes M. A new soft-tissue simulation strategy for cranio-
maxillofacial surgery using facial muscle template model. Prig Biopsy’s Mol Boil. 2010; 103:284–
291.

3. Shari K, Gospel O, Jurgens P, Reyes M. Accuracy improvement in Crania-Maxillofacial soft tissue 
simulation using a muscle embedded meshing approach. Conf Proc IEEE Eng Med Boil Soc. 2013; 
2013:7156–7159.

4. Shari K, Jurgens P, Catkin PC, Nolte LP, Reyes M. Prediction of cranio-maxillofacial surgical 
planning using an inverse soft tissue modeling approach. Med Image Comput Comput Assist Intern: 
MICCAI. 2013; 16:18–25.

5. Bianchi A, Muyldermans L, Di Martino M, Lancelot L, Amatory S, Sari A, Marchetti C. Facial soft 
tissue esthetic predictions: validation in craniomaxillofacial surgery with cone beam computed 
tomography data. J Oral Maxillofac Surg. 2010; 68:1471–1479. [PubMed: 20561464] 

6. Marchetti C, Bianchi A, Muyldermans L, Di Martino M, Lancelot L, Sarti A. Validation of new soft 
tissue software in orthognathic surgery planning. Int J Oral Maxillofac Surg. 2011; 40:26–32. 
[PubMed: 21030211] 

7. Keeve E, Girod S, Kikinis R, Girod B. Deformable modeling of facial tissue for craniofacial surgery 
simulation. Comput Aided Surg. 1998; 3:228–238. [PubMed: 10207647] 

8. Mollemans W, Schutyser F, Van Cleynenbreugel J, Suetens P. Tetrahedral mass spring model for fast 
soft tissue deformation. Lect Notes Comput Sc. 2003; 2673:145–154.

9. Mollemans W, Schutyser F, Nadjmi N, Maes F, Suetens P. Predicting soft tissue deformations for a 
maxillofacial surgery planning system: From computational strategies to a complete clinical 
validation. Med Image Anal. 2007; 11:282–301. [PubMed: 17493864] 

10. Zachow S, Gladiline E, Hege H, Deuflhard P. Finite-element simulation of soft tissue deformation. 
Computer Assisted Radiology and Surgery (CARS). 2000; 16:23–28.

11. Marchetti C, Bianchi A, Bassi M, Gori R, Lamberti C, Sarti A. Mathematical modeling and 
numerical simulation in maxillo-facial virtual surgery (VISU). J Craniofac Surg. 2006; 17:661–
667. discussion 668. [PubMed: 16877910] 

12. Barbarino GG, Jabareen M, Trzewik J, Nkengne A, Stamatas G, Mazza E. Development and 
validation of a three-dimensional finite element model of the face. J Biomech Eng. 2009; 
131:041006 1–11. [PubMed: 19275435] 

13. Chabanas M, Payan Y, Marecaux C, Swider P, Boutault F. Comparison of linear and non-linear soft 
tissue models with post-operative CT scan in maxillofacial surgery. Lect Notes Comput Sc. 2004; 
3078:19–27.

14. Cotin S, Delingette H, Ayache N. A hybrid elastic model for real-time cutting, deformations, and 
force feedback for surgery training and simulation. Visual Comput. 2000; 16:437–452.

15. Schwartz JM, Denninger M, Rancourt D, Moisan C, Laurendeau D. Modeling liver tissue 
properties using a non-linear visco-elastic model for surgery simulation. Med Image Anal. 2005; 
9:103–112. [PubMed: 15721226] 

16. Meller S, Nkenke E, Kalender WA. Statistical face models for the prediction of soft-tissue 
deformations after orthognathic osteotomies. Med Image Comput Comput Assist Intern: MICCAI. 
2005; 3750:443–450.

17. He Q, Feng J, Ip HHS, Xia JJ. Br-SDM: a fast and accurate method for bone-related soft tissue 
prediction in orthognathic surgery planning based on the integration of SDM and FEM. Int J Funct 
Inform Personal Med. 2009; 2:217–230.

18. Pan B, Xia JJ, Yuan P, Gateno J, Ip HH, He Q, Lee PK, Chow B, Zhou X. Incremental kernel ridge 
regression for the prediction of soft tissue deformations. Med Image Comput Comput Assist 
Intern: MICCAI. 2012; 15:99–106.

19. Schünke, M., Schulte, E., Schumacher, U., Voll, M., Wesker, K. Prometheus Lernatlas der 
Anatomie. Georg Thieme Verlag; 2009. 

20. Fung, Y-C. Biomechanics mechanical properties of living tissues. 2. Springer; New York etc: 1993. 

21. De Groeve P, Schutyser F, Van Cleynenbreugel J, Suetens P. Registration of 3D photographs with 
spiral CT images for soft tissue simulation in maxillofacial surgery. Med Image Comput Comput 
Assist Intern: MICCAI. 2001; 4:991–996.

Pan et al. Page 14

Comput Biol Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Hoerl AE, Kennard RW. Ridge regression: Biased estimation for nonorthogonal problems. 
Technometrics. 1970:55–67.

23. Bishop, CM. Pattern recognition and machine learning. Springer; New York: 2006. 

24. Zhang, F. The Schur complement and its applications. Springer; 2005. 

25. Shawe-Taylor, J., Cristianini, N. Kernel methods for pattern analysis. Cambridge University Press; 
Cambridge ; New York: 2004. 

26. Watson DF, Philip GM. A Refinement of Inverse Distance Weighted Interpolation. Geo-Processing. 
1985; 2:315–327.

Pan et al. Page 15

Comput Biol Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• An anatomic detailed mesh template was developed based on a Visible 

Human Female Dataset.

• A three dimensional finite element method was constructed to extract 

biomechanical stress information based on bone displacement calculated from 

pre-operative and post-operative CT data.

• The incremental kernel ridge regression method was established to 

characterize the relationship between the biomechanical stress information 

and the soft tissue deformation.
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Fig. 1. 
(a) The preoperative surface scan; (b) The postoperative surface scan.
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Fig. 2. 
In the training phase, the statistical model was generated. During the test phase, the model 

was adjusted incrementally by incorporating biomechanical information from new patients. 

The predictions were then acquired from the adjusted model.
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Fig. 3. 
Feature extraction with FEM methods in the training phase. The stress computed is utilized 

as the input of the KRR model.
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Fig. 4. 
The segmented muscles from the Visual Human Female Dataset.

Pan et al. Page 20

Comput Biol Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Generated mesh from the template. The right subfigure shows the shape of one element in 

the left subfigure (cut the tip of nose, which is not deformation after surgery).
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Fig. 6. 
(a) Skull structure before surgery, (b) Skull structure after surgery. The skull of (a) was cut 

into a number of parts, shown in different colors. The displaced counterparts were shown in 

(b) with the same color. Note that for this patient, all the parts were repositioned except the 

upper skull in white color.
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Fig. 7. 
The RR approach performs linear regression in an input space, while the KRR approach 

creates a linear model in H.
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Fig. 8. 
Results of statistical analyses of the LFEM, SDM, KRR, and IKRR models.
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Fig. 9. 
(a) preoperative image, (b) postoperative image, (c) prediction using LFEM, (d) prediction 

using IKRR.
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Fig. 10. 
Upper row: prediction of IKRR. Lower row: postoperative images.
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