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Abstract

Handling of missed data is one of the main tasks in data preprocessing es-

pecially in large public service datasets. We have analysed data from the

Trauma Audit and Research Network (TARN) database, the largest trauma

database in Europe. For the analysis we used 165,559 trauma cases. Among

them, there are 19,289 cases (13.19%) with unknown outcome. We have

demonstrated that these outcomes are not missed ‘completely at random’

and, hence, it is impossible just to exclude these cases from analysis de-

spite the large amount of available data. We have developed a system of

non-stationary Markov models for the handling of missed outcomes and val-

idated these models on the data of 15,437 patients which arrived into TARN

hospitals later than 24 hours but within 30 days from injury. We used these

Markov models for the analysis of mortality. In particular, we corrected the

observed fraction of death. Two näıve approaches give 7.20% (available case

study) or 6.36% (if we assume that all unknown outcomes are ‘alive’). The
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corrected value is 6.78%. Following the seminal paper of Trunkey (1983)

the multimodality of mortality curves has become a much discussed idea.

For the whole analysed TARN dataset the coefficient of mortality mono-

tonically decreases in time but the stratified analysis of the mortality gives

a different result: for lower severities the coefficient of mortality is a non-

monotonic function of the time after injury and may have maxima at the

second and third weeks. The approach developed here can be applied to var-

ious healthcare datasets which experience the problem of lost patients and

missed outcomes.

Keywords: Missed data, Big data, Data cleaning, Mortality, Markov

models, Risk evaluation

1. Introduction

Enthusiasm for the use of big data in the improvement of health service

is huge but there is a concern that without proper attention to some specific

challenges the mountain of big data efforts will bring forth a mouse [1]. Now,

there is no technical problem with “big” in healthcare. Electronic health

records include hundreds of millions of outpatient visits and tens of millions

of hospitalizations, and these numbers grow exponentially. The main problem

is in quality of data.

“Big data” very often means “dirty data” and the fraction of data inac-

curacies increases with data volume growth. Human inspection at the big

data scale is impossible and there is a desperate need for intelligent tools for

accuracy and believability control.

The second big challenge of big data in healthcare is missed information.
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There may be many reasons for data incompleteness. One of them is in

health service “fragmentation”. This problem can be solved partially by the

national and international unification of the electronic health records (see, for

example, Health Level Seven International (HL7) standards [2] or discussion

of the template for uniform reporting of trauma data [3]). However, some

fragmentation is unavoidable due to the diverse structure of the health ser-

vice. In particular, the modern tendency for personalization of medicine can

lead to highly individualized sets of attributes for different patients or patient

groups. There are several universal technologies for the handling of missing

data [4, 5, 6, 7, 8, 9, 10]. Nevertheless, the problem of handling missed values

in large healthcare datasets is certainly not completely solved. It continues

to attract the efforts of many researchers (see, for example, [11]) because the

popular universal tools can lead to bias or loss of statistical power [12, 13].

For each system, it is desirable to combine various existing approaches for

the handling of missing data (or to invent new ones) to minimize the damage

to the results of data analysis. For the best possible solution, we have to take

into account the peculiarities of each database and to specify the further use

of the cleaned data (it is desirable to understand in advance how we will use

the preprocessed data).

In our work we analyze missed values in the TARN database [14]. We

use the preprocessed data for:

• the evaluation of the risk of death,

• the identification of the patterns of mortality,

• approaching several old problems like the Trunkey hypothesis about
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the trimodal distribution of trauma mortality [15].

The ‘two stage lottery’ non-stationary Markov model developed in the

sequel can be used for the analysis of missing outcomes in a much wider

context than the TARN database and could be applied to the handling of

data gaps in healthcare datasets which experience the problem of transferred

and lost patients and missing outcomes.

In this paper we analyze the unknown outcomes. The next task will be

the analysis of missed data in the most common “input” attributes.

2. Data set

There are more than 200 hospitals which send information to TARN

(TARN hospitals). This network is gradually increasing. Participation in

TARN is recommended by the Royal College of Surgeons of England and

the Department of Health. More than 93% of hospitals across England and

Wales submit their data to TARN. TARN also receives data from Dublin,

Waterford (Eire), Copenhagen, and Bern.

We use TARN data collected from 01.01.2008 (start of treatment) to

05.05.2014 (date of discharge). The database contains 192,623 records and

more than 200 attributes. Sometimes several records correspond to the same

trauma case because the patients may be transferred between TARN hospi-

tals. We join these records. The resulting database includes data of 182,252

different trauma cases with various injuries.

16,693 records correspond to patients, who arrived (transferred from other

institutions) to TARN hospitals later than 24 hours after injury. This sample

is biased, for example the Fraction Of Dead outcomes (FOD) for this sample
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(Available W30D)
Age<65
95,514

(Available W30D)
Age 65+
50,756

(OUT30D)
Age<65
14,381

(OUT30D)
Age 65+

4,908

Transferred to TARN
>30 days after injury

1,256

Transferred to TARN
within 30 days (IN30)

15,437

30 day final destination
known (Available W30D)

146,270

Transferred from
TARN (OUT30)

19,289

Transferred to TARN
>24 hours after injury

16,693

Main
Group

165,559

Unique cases
of injury
182,252

Figure 1: The groups of the patients for analysis of mortality. FOD in the group ‘Available

W30D’ can be calculated from the data directly. Mortality in the group ‘OUT30’ will be

evaluated on the basis of the non-stationary Markov model. The group of 16,693 patients

which arrived (were transferred from other institutions) to TARN hospitals later than 24

hours after injury was excluded from the mortality analysis. Its subgroup ‘IN30’ of 15,437

patients is used for validation of the Markov model for ‘OUT30’ group. The subgroups

with age< 65 and age≥ 65 should be separated because for age≥ 65 the following traumas

are excluded from the database: Acetabulum fractures (AIS 8562xx), Pelvic/Acetabulum

fractures (AIS 8563xx), Pelvic ring fractures (AIS 8561xx), Pubic rami and Femoral neck

fractures (AIS 85316x).
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is 3.34% and FOD for all data is 6.05%. This difference is very significant for

such a big sample. (If all the outcomes in a group of the trauma cases are

known then we use the simple definition of FOD in the group: the ratio of

the number of registered deaths in this group to the total number of patients

there. Such a definition is not always applicable. The detailed and more

sophisticated analysis of this notion follows in the next section.) We remove

these 16,693 trauma cases from analysis but use them later for validation of

the “mortality after transfer” model. Among them, there are 15,437 patients

who arrived at a TARN hospital within 30 days after injury. We call this

group ‘IN30’ for short (Fig. 1).

As a result we have 165,559 records for analysis (‘Main group’). This main

group consists of two subgroups: 146,270 patients from this group approached

TARN during the first day of injury and remained in TARN hospitals or

discharged to a final destination during the first 30 days after injury. We

call this group the ‘Available within 30 days after injury’ cases (or ‘Available

W30D’ for short). The other 19,289 patients have been transferred within 30

days after injury to a hospital or institution (or unknown destination) who

did not return data to the TARN system. We call them ‘Transferred OUT

OF TARN within 30 days after injury’ or just ‘OUT30’ (Fig. 1).

The patients with the non-final discharge destinations ‘Other Acute hos-

pital’ and ‘Other institution’ were transferred from a TARN hospital to a

hospital (institution) outside TARN and did not return to the TARN hospi-

tals within 30 days after injury.

The database includes several indicators for evaluation of the severity

of the trauma case, in particular, Abbreviated Injury Scale (AIS), Injury
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Severity Score (ISS) and New Injury Severity Score (NISS). For a detailed

description and comparison of the scores we refer readers to reviews [16, 17].

The comparative study of predictive ability of different scores has a long

history [18, 19, 20, 21]. The scores are used for mortality predictions and are

tested on different datasets [22, 23, 24, 25]. In the database, there exist no

gaps in AIS (and hence ISS and NISS) values even for patients rapidly dying.

Most severely injured patients have a CT ‘pan-scan’ within the first hour or

two of injury which is likely to define all life-threatening injuries. In addition

the report from the post-mortem examination is used in the compilation of

an injuries list which is the basis of AIS, and hence ISS and NISS, scoring.

3. Definitions and distributions of outcomes

The widely used definition of the endpoint outcome in trauma research

is survival or death within 30 days after injury [26, 25, 27].

A substantial number of TARN in-hospital deaths following trauma occur

after 30 days: there are 957 such cases (or 8% of TARN in-hospital death)

among 11,900 cases with ‘Mortuary’ discharge destination. This proportion

is practically the same in the main group (165,559 cases): 894 deaths after

30 days in hospital (or 7.9%) among 11,347 cases with ‘Mortuary’ discharge

destination.

Death later than 30 days after injury may be considered as caused by

co-morbidity rather than the direct consequence of the injury [25]. These

later deaths are not very interesting from the perspective of an acute trauma

care system (as we cannot influence them), but they might be very interest-

ing from the perspective of a geriatric rehabilitation centre or of an injury
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prevention program for elderly patients.

On the other hand, when “end of acute care” is used as an outcome def-

inition then a significant portion of deaths remains unnoticed. For example,

in the 3332 trauma cases treated in the Ulleval University Hospital (Oslo,

Norway, 2000-2004) 18% of deaths occurred after discharge from the hospital

[27].

The question of whether it is possible to neglect trauma caused mortality

within 30 days after trauma for the patients with the discharge destination

‘Home’, ‘Rehabilitation’ and other ‘recovery’ outcomes is not trivial [27].

Moreover, here are two questions:

• How do we collect all the necessary data after discharge within 30 days

after trauma – a technical question?

• How do we classify the death cases after discharge within 30 days af-

ter trauma; are they consequences of the trauma or should they be

considered as comorbidity with some additional reasons?

The best possible answer to the first question requires the special combination

of technical and business process to integrate data from different sources. The

recent linkage from TARN to the Office for National Statistics (ONS) gives

the possibility to access the information about the dates of death in many

cases. It is expected that the further data integration process will recover

many gaps in the outcome data.

The last question is far beyond the scope of data management and analysis

and may be approached from different perspectives. Whether or not the late

deaths are important in a model depends on the question being asked. From
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Table 1: Distribution of outcomes in the main group (W30D means within 30 days after

injury).

Subgroup Alive W30D Dead W30D Unknown Total

Available W30D 135,733 10,537 0 146,270

OUT30 0∗ 0∗ 19,279 19,289

Total 135,733 10,537 19,289 165,559
∗No known survival or deaths.

the data management perspective, we have to give the formal definition of

the outcome in the terms of the available database fields. It is impossible to

use the standard definition as survival or death within 30 days after injury

because these data are absent. We define the outcome ‘Alive W30D’ for the

TARN database being as close to the standard definition as it is possible.

In the TARN database discharge destinations ‘Home (own)’, ‘Home (rel-

ative or other carer)’, ‘Nursing Home’, and ‘Rehabilitation’ are considered as

final. If we assume that these trauma cases have the outcome ‘Alive W30D’

then we loose some cases of death. From the acute care perspective these

cases can be considered as irrelevant. Let us accept this definition. There

still remain many cases with unknown outcome. For analysis of these cases

we introduce the outcome category ‘Transferred’. In this category we include

the cases which left the TARN registry to a hospital or other institution out-

side TARN, or to an unknown destination within 30 days. The relations

between the discharge destinations and these three outcomes are presented

in Table 1.

As we can see from Table 1, 19,289 trauma cases (or 11.35% of all cases)

have unknown outcome. The first standard question is: can we delete these
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data and apply available case analysis? For this purpose we have to consider

these outcome data as “Missing Completely at Random” (MCAR) [28, 4,

6, 7]. This is definitely not the case. The group with unknown outcomes

is exactly the ‘OUT30’ group. The probability of belonging to this group

depends, for example, on the severity of injury (which can be measured, by

the maximal severity, by NISS, by GCS or by another severity score). The

χ2 test of independence shows that transfer depends on the severity with

p-value p < 10−300 (this is the probability that such a strong dependence

might appear by chance). The most practical (or ‘purposefull’ [29]) idea is

to consider the missed outcome data as “Missed at Random” (MAR). The

assumption of MAR does not imply that the data are missing randomly, but

rather that the missing values are correlated with variables recorded in the

dataset [29].

One can consider all these cases as alive because these patients have been

alive at the point of discharge from TARN hospitals. If we consider all

transferred as alive then the FOD is 6.35%. If we delete all the transferred

patients (study only the Available W30D group) then the FOD is 7.2%. If

we test this hypothesis on 15,437 patients of the group ‘IN30’ transferred to

TARN hospitals from outside the network within 30 days after injury then

we find that the nonzero mortality for them (3.10%).

The data table with known outcomes is necessary for further machine

learning and the main goal is outcome prediction and risk evaluation.

We choose to remove the OUT30D group from data table but simulta-

neously to adjust the weights of the retained cases to compensate for the

removal. The information about the OUT30D cases will be used in the con-
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Figure 2: a) The basic Markov model of mortality (‘recovery/death lottery’) with two

absorbing states (states from which patients do not leave), ‘D’ (death) and ‘R’ (recovery).

b) The ‘lottery of transfer’ (from the TARN network) with one absorbing state ‘L’ (‘left’).

The transition probabilities α = α(t, s), ν = ν(t, s) and µ(t, s) depend on the time after

injury t and on the state of the patient on the first day after trauma presented by the

values of attributes s.

struction of the weights. It is necessary to evaluate the mortality of the

patients transferred from TARN before removing their records and reweight-

ing of the rest. In the next section we develop, identify and validate Markov

models for the analysis of the mortality of transferred patients.

Another method for handling missed outcomes is multiple imputation

of the outcomes (about multiple imputations see, for example, [9]). Both

methods use similar stochastic models of mortality and transfer. The large

number of cases allows us to use the reweighting approach. A significant

majority of the evaluated weights are between 0.9 and 1.1 (see Section 6).

4. Non-stationary Markov model for the analysis of missing out-

comes

4.1. Structure of model

We propose a system of Markov models for evaluation of mortality in

trauma datasets. In these models each day each patient can participate in

two ‘lotteries’ (Fig. 2). The first lottery (recovery/death), Fig. 2 a, has three

11
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Figure 3: The Markov model of mortality and transfer from TARN hospitals to hospitals

outside TARN for the limit case of ‘advanced transfer’, when the lottery of transfer (Fig. 2

b) occurs every day before the lottery of survival (Fig. 2 a). It has six states: ‘H’ (an alive

patient in a TARN hospital), ‘L’ (an alive patient in a hospital outside TARN), ‘D’ (death

in a TARN hospital), ‘DL’ (death in a hospital outside TARN), ‘R’ (recovery of a patient

in a TARN hospital) and ‘RL’ (recovery of a patient in a hospital outside TARN). Four of

them are absorbing: ‘D’, ‘DL’, ‘R’, and ‘RL’. The transitions from H to DL and RL are

superpositions of the same day transitions: H → L → DL and H → L → RL

H 

R D 

L 

RL DL 

(1–α–ν) (1–μ) 

ν α ν α 

μ(1–α–ν) 

1–α–ν 

Figure 4: The Markov model of mortality and transfer from TARN hospitals to hospitals

outside TARN for the limit case of ‘retarded transfer’, when the lottery of transfer (Fig. 2

b) occurs every day after the lottery of survival (Fig. 2 a). It has the same states as the

model with advanced transfer (Fig. 3) but different transition probabilities.
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outcomes: ‘R’ (recovery), ‘D’ (death), and ‘H’ (remains in a TARN hospital).

The second lottery (of transfer), Fig. 2 b, has two outcomes: ‘H’ (remains

in a TARN hospital) and ‘L’ (transfer from the TARN hospital to a hospital

or ‘other institution’ outside TARN). The probabilities of outcomes depend

on the time from the injury t and on the state of the patient after injury

s. It is important to stress that s in our models characterizes the state

of the patient on the first day after trauma and may include severity, type

of injury (blunt/penetrating), localization of traumas, age, gender, airway

status, systolic and diastolic blood pressure, etc, but cannot change in time.

The description of state s may vary in the level of detail depending on

the available information. We have fitted and tested two models based on

the severity of trauma: the maximal severity model and the (binned) NISS

model. In Section 5 we demostrate that it is necessary to refine the model

and to include the age group in s for low severities. For different purposes

the mortality model can include more detail.

The lotteries (Fig. 2) do not commute. We consider two limit cases: ‘ad-

vanced transfer’ (Fig. 3) and ‘retarded transfer’ (Fig. 4). In models with ad-

vanced transfer the lottery of transfer Fig. 2 b) each day precedes the lottery

of recovery/death (Fig. 2 a). In models with retarded transfer, conversely,

the lottery of recovery/death precedes the lottery of transfer.

These two models are important because many other much more gen-

eral Markov models are between them in the following exact sense. It is

a very strong assumption that every day there are two steps only: the re-

covery/death lottery and the transfer lottery. It may be more realistic to

assume that every day there are many ‘fractional steps’ of recovery/death
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and of transfer from TARN and the result of the day is the aggregate result

of all of these fractional steps. Assume that the events of recover, death and

transfer are sampled for every day after injury t from a number M consec-

utive random choices with probabilities αi, νi for recovery/death and µi for

transfer out of TARN (i = 1, . . . ,M), and this chain of choices is Markovian

(the choices for a patient do not depend on the previous choices directly but

only on the current state, H, R or L). It is non-stationary because the transi-

tion probabilities depend on time. They are different for different days after

injury.

This sequence of choices is displayed as a sequence of fractional steps:

recovery/death1 → transfer1 → . . .

→ recovery/deathM → transferM .

The probability of in-TARN death in the above model of sequential choice,

on a given day after trauma is

ν1 + ν2(1− α1 − ν1)(1− µ1) + . . .+ νM

M−1
∏

i=1

(1− αi − νi)(1− µi).

Similarly, the probability for recovery is

α1 + α2(1− α1 − ν1)(1− µ1) + . . .+ αM

M−1
∏

i=1

(1− αi − νi)(1− µi).

Finally, the probability of transfer to a hospital outside of TARN is

µ1(1− α1 − ν1) + µ2(1− µ1)(1− α1 − ν1)(1− α2 − ν2)

+ . . .+ µM

M−1
∏

i=1

(1− µi)
M
∏

j=1

(1− αj − νj).

14



The probabilities αi, νi for the fractional steps should be consistent with

the daily probabilities α, ν: if there is no transfer then the resulting proba-

bilities of recovery or death should be the same:

α1 + α2(1− α1 − ν1) + . . .+ αM

M−1
∏

i=1

(1− αi − νi) = α,

ν1 + ν2(1− α1 − ν1) + . . .+ νM

M−1
∏

i=1

(1− αi − νi) = ν.

Also,
M
∏

i=1

(1− αi − νi) = 1− α− ν.

(1)

Similarly, for µi we get the conditions

µ1 + µ2(1− µ1) + . . .+ µM

M−1
∏

i=1

(1− µi) = µ

and
M
∏

i=1

(1− µi) = 1− µ.

(2)

Proposition 1. The probability of in-TARN death in the described model

of sequential choice for every day after trauma is between the probabilities

for the Markovian model with advanced transfer (Fig. 3) and the Markovian

model with retarded transfer (Fig. 4):

ν(1− µ) ≤ ν1 + ν2(1− α1 − ν1)(1− µ1) + . . .

+ νM

M−1
∏

i=1

(1− αi − νi)(1− µi) ≤ ν.
(3)
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Proof. According to conditions (1), (2),

ν(1 − µ)

=

[

ν1 + ν2(1− α1 − ν1) + . . .+ νM

M−1
∏

i=1

(1− αi − νi)

]

×
M
∏

i=1

(1− µi).

(4)

Notice that for every j (1 ≤ j ≤ M),

M
∏

i=1

(1− µi) ≤

j
∏

i=1

(1− µi)

because 0 ≤ 1− µi ≤ 1 for all probabilities µi. Therefore,

νj

j
∏

i=1

(1− αi − νi)
M
∏

k=1

(1− µk) ≤ νj

j
∏

i=1

(1− αi − νi)(1− µi)

and the following inequality holds

[

ν1 + ν2(1− α1 − ν1) + . . .+ νM

M−1
∏

i=1

(1− αi − νi)

]

×
M
∏

i=1

(1− µi)

≤ ν1 + ν2(1− α1 − ν1) + . . .+ νM

M−1
∏

i=1

(1− αi − νi).

(5)

The left inequality in (3) is proven. The right inequality in (3) follows from

condition (1) because for every product

νj

j
∏

i=1

(1− αi − νi)(1− µi) ≤ νj

j
∏

i=1

(1− αi − νi).
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The proofs of the following propositions are very similar

Proposition 2. The probability of in-TARN recovery in the described model

of sequential choice for every day after trauma is between the probabilities

for the Markovian model with advanced transfer (Fig. 3) and the Markovian

model with retarded transfer (Fig. 4):

α(1− µ) ≤ α1 + α2(1− α1 − ν1)(1− µ1) + . . .

+ αM

M−1
∏

i=1

(1− αi − νi)(1− µi) ≤ α.
(6)

�

Proposition 3. The probability of transfer outside TARN in the described

model of sequential choice for every day after trauma is between the prob-

abilities for the Markovian model with advanced transfer (Fig. 3) and the

Markovian model with retarded transfer (Fig. 4):

µ(1− α− ν) ≤
M
∑

j=1

µj(1− αj − νj)

j−1
∏

i=1

(1− αi − νi)(1− µi) ≤ µ. (7)

�

4.2. Transition probabilities and their evaluation

In the above models (Figs. 3 and 4), death and recovery of the transferred

patients have the same probabilities as for the patients of TARN hospitals.

These probabilities are defined by the state of the patient s and by the time

after injury. Of course, in reality there is often a hope that the transfer will

improve the situation and the probability of death will decrease for the same

state of the patient. Nevertheless, in this paper we will neglect the changes
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of probabilities after transfer (just because we have no sufficient reason for

such a change). Of course, these models could be extended to include the

changes of mortality for transferred patients, if necessary.

Another question is the definition of s. Which attributes should be in-

cluded in the ‘state’ for the models (Figs. 3, 4)? To motivate this choice, we

should take into account two considerations:

1. The models will be used to analyse data with unknown outcomes.

Trauma cases with missed outcomes make up 10-12% of the dataset.

Therefore, an error of 10% in mortality for data with unknown out-

comes will cause an error of ∼1% in mortality for the whole dataset

and it is possible to use relatively coarse models (see below).

2. The description of the state s should include attributes whose values

are known for a significant majority of cases. This is especially impor-

tant because for cases with unknown outcomes many of the attributes

are often also unknown (a more detailed analysis of data with missed

attributes is presented in the next section).

Formally, there are many possibilities for defining s. It could include

the initial state after trauma (characteristics of injury and coma status, for

example), age, gender, the current state (t days after trauma), fragments

of history, etc. The set of the auxiliary variables which may be selected as

potential sources of information could be much larger. For example, for cre-

ation of the model for imputing missing physiological data in the National

Trauma Data Bank (NTDB), USA, the following variables were used: gender,

age, components of Glasgow Coma Status, the maximum AIS or ICISS (and,

separately, the maximum AIS or ICISS for head injuries), injury type (pen-

18



etrating, blunt), prehospital intubation, duration of mechanical ventilation,

tests for alcohol and drugs, etc. [30]. Nevertheless, even the simple models

identified in our paper solve the problem of mortality correction quite well.

The extention of the set of variables will not include essential methodological

novelty and may be performed easily for sufficiently large datasets. For our

purposes, we select, identify and compare three coarse models:

Model 1 (The coarsest model). s = ∅.

Model 2 (The maximal severity model). s =the maximal severity score (an

integer from 1 to 6).

Model 3 (The binned NISS model ). We use seven bins: NISS=1-3, 4-

8, 9, 10-16, 17-24, 25-35, 36+; s is the bin number (7 values). The bins

for s = 2, . . . , 7 have approximately equal depth whereas the bin with s = 1

(NISS=1-3) is much smaller. (For this first bin we found that the model

should be supplemented by age.)

We observe that the cases with maximal severity 1 (or NISS=1-3, which is

the same) are very special. First of all, the age distributions in this group for

the ‘Available W30D’ and the ‘OUT30’ subgroups are very different (Fig. 5).

If we do not take into account this difference then we overestimate mortality

in this group. The necessary refinement of the model with isolation of elderly

patients with low severity of trauma is presented in Section 5.

Our approach may be combined with any stochastic model for early out-

come prediction (see, for example, [23, 31, 39]).

For the finite set of s values, evaluation of all the coefficients α(t, s),

ν(t, s), and µ(t, s) is a particular case of a standard statistical problem of
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Figure 5: Age distributions for two groups of low severity cases (NISS bin 1-3). The age

distribution for the low severity patients in TARN (‘Available W30D’ AND NISS=1-3) for

age binned in five bins (0-5.5; 5.5-15.5; 15.5-54.5; 54.5-74.5; >74.5) has clear maximum

for elderly patients (age >74.5), whereas the absolute majority of the the low severity

patients which left TARN without registered outcome (‘OUT30’ AND NISS=1-3) belong

to the group with age 15.5-54.5.

proportion estimate for each given value of s; we use the Wilson score interval

(CI) [32]:

1

1 + z2

n

[

p̂+
z2

2n
± z

√

p̂(1− p̂)

n
+

z2

4n2

]

, (8)

where p̂ is the coefficient estimate, z is the error percentile (z = 1.96 for the

95% confidence interval), and n is the number of degrees of freedom (for a

dataset without weights this is just the sample size).

For the coarsest model (Model 1) the fraction of patients transferred

outside TARN is 11.65%. This is just the fraction of patients transferred

(within 30 days after injury) in Table 1. The 95% CI (8) for this fraction is

11.5–11.8%. For the maximal severity (Table 2) (Model 2) and the binned

NISS (Table 3) ((Model 3) models the fraction of patients transferred outside

TARN depends on s (bins) and the CI in each bin is larger than for the total

fraction in the coarsest models (Model 1). Nevertheless, the CIs for different

bins in these models do not intersect (the only exclusion is the CI for the
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Table 2: Sizes of bins and fractions of transfer out of TARN (within 30 days after injury)

for the maximal severity models.

Max severity OUT30 Total Fraction of OUT30 95% CI

1 1,905 3,005 63.39% 61.66–65.10%

2 3,094 35,109 8.81% 8.52–9.11%

3 6,203 77,518 8.00% 7.81–8.20%

4 4,535 29,603 15.32% 14.91–15.73%

5 3,542 20,175 17.56% 17.04–18.09%

6 10 149 6.71% 3.88–11.72%

smallest bin, maximal severity 6, in the maximal severity model (Model 2),

Table 2). In particular, this means that the probability of transfer outside

TARN hospitals depends strongly on the trauma severity.

For each value of s and time after injury t the following quantities are

found for the analysed dataset:

• H(t, s) – the number of patients in state s registered as alive in a

TARN hospital at any time during day t after injury (in this number

we include the patients which have stayed at a TARN hospital during

day t after injury, the patients who have died on this day in a TARN

hospital, have been discharged, or have been transferred outside TARN

on this day);

• ∆D(t, s) – the number of patients in state s who died in TARN hospi-

tals on day t after injury;

• ∆R(t, s) – the number of patients in state s who recovered (discharged

to one of the final recovery destinations) in TARN hospitals on day t
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Table 3: Sizes of bins and fractions of patients transferred to a hospital or institution (or

unknown destination) (within 30 days after injury) for the binned NISS Models 3 .

NISS bin OUT30 Total Fraction of OUT30 95% CI

1-3 1,905 3,005 63.39% 61.66–65.10%

4-8 2,078 24,982 8.32% 7.98–8.67%

9 2,159 36,722 5.88% 5.64–6.12%

10-16 2,710 29,237 9.27% 8.94–9.61%

17-24 2,882 25,074 11.49% 11.11–11.89%

25-35 3,603 23,557 15.29% 14.84–15.76%

36+ 3,952 22,982 17.20% 16.71–17.69%

after injury;

• ∆L(t, s) – the number of patients in state s who transferred out of

TARN hospitals to other hospitals, institutions or unknown destina-

tions on day t after injury.

Just for control, the following identity should hold: H(t + 1, s) = H(t, s)−

∆D(t, s)−∆R(t, s)−∆L(t, s) because state s in our models does not change

in time.

For the model with advanced transfer from TARN hospitals the coeffi-

cients are defined following the scheme presented in Fig. 3:

µ(t, s) =
∆L(t, s)

H(t, s)
; ν(t, s) =

∆D(t, s)

(1− µ(t, s))H(t, s)
;

α(t, s) =
∆R(t, s)

(1− µ(t, s))H(t, s)
.

(9)

For the model with retarded transfer from TARN hospitals the coefficients
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are defined following the scheme presented in Fig. 4:

ν(t, s) =
∆D(t, s)

H(t, s)
; α(t, s) =

∆R(t, s)

H(t, s)
;

µ(t, s) =
∆L(t, s)

(1− α(t, s)− ν(t, s))H(t, s)
.

(10)

4.3. Evaluation of FOD

Each model provides us with the corrected FOD. We use the basic as-

sumption that the probability of dying at time t after injury depends on s

but is the same inside and outside TARN. For each t and s we define the

specific cumulative FOD (scFOD(t, s)) as the fraction of patients with state

s who died during the time interval [1, t]:

scFOD(t, s) = ν(1, s) + ν(2, s)(1− α(1, s)− ν(1, s)) + . . .

+ ν(t, s)

t−1
∏

i=1

(1− α(i, s)− ν(i, s)).
(11)

The cumulative FOD at time t (cFOD(t)) for the whole model (for all s

together) is

cFOD(t) =

∑

s scFOD(t, s)H(1, s)

H0

, (12)

where H0 =
∑

s H(1, s) is the total number of patients in our dataset (in our

case study, H0 = 165, 559).

The functions cFOD(t) and scFOD(t, s) for all s, grow monotonically with

t.

If we define the final outcome as survival or death within 30 days after

injury then the target value is FOD= cFOD(30).

Let us compare two following näıve approaches to the handling of missing

outcomes with the Markov models we have created.
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• Available case analysis. Just delete all of the 19,289 cases with the

outcome ‘Transferred OUT OF TARN within 30 days after injury’ from

the dataset. In the remaining cases all outcomes are known and the

FOD is the ratio
Dead (W30D)

Total
in the reduced dataset.

• Consider all transferred patients as alive. In this case, the total number

of patients does not change and the FOD is the ratio
Dead (W30D)

Total
,

where the number ‘Dead (W30D)’ is the same but the number ‘Total’

is calculated for the whole original dataset (Table 1).

Remark 1. If we apply available case analysis then none of the numbers

∆D(t, s) and ∆R(t, s) change but the numbers H(t, s) of the patients in

TARN will decrease for all t and s (or do not change if there is nothing

to delete). The corresponding mortality coefficients ν(t, s) will be larger

than the coefficients (9), (10) for all the Markov models considered before.

This means that the MCAR (Missing Completely At Random) approach to

missed outcomes always overestimates mortality, while the second näıve ap-

proach (‘Consider all transferred patients as alive’) always underestimates

mortality.

We have created six Markov models for mortality of transferred patients.

They differ by the state variable s (the coarsest model without s, Model 1, the

maximal severity model with six states, Model 2 and the binned NISS model

with seven states, Model 3) and by the order of the ‘recovery/death’ and

‘transfer’ lotteries (Fig. 2). In Table 4 we compare the mortality evaluated

by these models, and by the two näıve models. We can see that the difference

between all of our Markov models is not significant; we cannot reject the
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Table 4: FOD for different models. Here, the p-value is the probability of observing

‘by chance’ equal or greater deviation of FOD from the value FOD=6.85% given by the

coarsest advanced model’, under the condition that the expectations of FOD is 6.85%.

Model Alive Dead FOD p-value

Available case study 135,733 10,537 7.20% 1.3× 10−8

All transferred are alive 155,022 10,537 6.36% 5.0× 10−15

Coarsest advanced 154,217 11,342 6.85% 1.00

Coarsest retarded 154,350 11,209 6.77% 0.20

Max severity, advanced 154,120 11,439 6.91% 0.34

Max severity, retarded 154,266 11,293 6.82% 0.41

NISS binned, advanced 154,145 11,414 6.89% 0.48

NISS binned, retarded 154,292 11,267 6.81% 0.57

hypothesis that they coincide with any one of them (p-value is between 0.20

and 0.56). Both of the näıve models differ significantly from all of the six

Markov models. The difference between the näıve models is also significant.

All the values of mortality predicted by the Markov models belong to the

interval (6.77%, 6.91%). The average of the six Markovian predictions is

6.84%. None of the Markov model predictions differ significantly from this

average. Both of the näıve predictions are significantly different.

4.4. Validation of the models on the excluded trauma cases: patients trans-

ferred to TARN (‘IN30’)

For each type of model the coefficients µ, α and ν are evaluated using the

dataset of 165,559 patients entering TARN in the first day of injury (Fig 1,

Main Group). Let us test the models with evaluated coefficients we have

described here on data we have not used before. These data consist of the
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16,693 cases who came to TARN hospitals more than one day after injury,

which we deleted from the original set before modelling. This is a special

and biased sample, ‘IN30’ (see Fig. 1). We now apply the models developed

and identified in the previous subsections to analyse this sample. We expect

that there should be some similarity between the groups of patients trans-

ferred from TARN (‘OUT30’) and the patients transferred to TARN (‘IN30’)

(Fig. 1). We do not expect quantitative coincidence of the results for the

groups ‘OUT30’ and ‘IN30’ because there is no precise symmetry between

the patients moved to TARN and the patients moved from TARN. The hos-

pitals in TARN are those with a special interest in trauma - in particular

the large major trauma centers, so the transfers in (mainly for acute special-

ist care) will not be the same as those transferred out (mainly for complex

rehabilitation, or special geriatric care, etc.).

Therefore, the estimated behavior of the mortality of the group trans-

ferred from TARN can be qualitatively validated using the observed mortality

in the group who moved to TARN.

We consider survival during the first 30 days. Hence we have to use the

records which correspond to this period only. There are 15,437 such records

among the 16,693 in ‘IN30’.

In these estimates of the FOD we explicitly use the empirical fluxes into

and from TARN hospitals. For each t, s we have the following quantities:

• Lin(t, s) – the number of patients in state s which came to TARN on

day t after injury;

• Lout(t, s) – the number of patients in state s from ‘IN30’ which were

transferred from TARN on day t after injury.
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• hIN30(t, s) – the number of patients in IN30 in state s on day t after

injury.

• DIN30(t, s) – the number of deaths in TARN of the patients from IN30

in state s by day t after injury (cumulative).

• RIN30(t, s) – the number of patients in ‘IN30’ in state s who recovered

by day t after injury (cumulative).

We use the values Lin(t, s) and Lout(t, s) from the database, evaluate hIN30(t, s),

DIN30(t, s), and RIN30(t, s) for every model and then compare the resulting

outcomes (evaluated numbers of death in TARN of the patients from ‘IN30’

within 30 days of injury,
∑

s DIN30(30, s)) to empirical data from TARN

records.

For each model with advanced transfer the variables hIN30(t, s),DIN30(t, s),

and RIN30(t, s) are evaluated by recurrence formulas:

hIN30(t + 1, s) = [hIN30(t, s) + Lin(t+ 1, s)

−Lout(t + 1, s)][1− α(t+ 1, s)− ν(t + 1, s)];

RIN30(t + 1, s) = RIN30(t, s) + α(t+ 1, s)

×[hIN30(t, s) + Lin(t + 1, s)− Lout(t+ 1, s)];

DIN30(t + 1, s) = DIN30(t, s) + ν(t + 1, s)

×[hIN30(t, s) + Lin(t + 1, s)− Lout(t+ 1, s)],

(13)

with initial condition

hIN30(0, s) = RIN30(0, s) = DIN30(0, s) = 0.
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Table 5: Comparison of the models with the empirical data about patients from ‘IN30’.

Model Alive Dead Total FOD CI 95

Empirical data 13,038.00 417.00 13,455.00 3.10% 2.82–3.41%

Coarsest advanced 12,834.55 620.45 13,455.00 4.61% 4.27–4.98%

Coarsest retarded 12,933.67 521.33 13,455.00 3.87% 3.56–4.21%

Max severity, advanced 12,824.90 630.10 13,455.00 4.68% 4.34–5.05%

Max severity, retarded 12,920.71 534.29 13,455.00 3.97% 3.65–4.31%

NISS binned, advanced 12,885.93 569.07 13,455.00 4.23% 3.90–4.58%

NISS binned, retarded 12,971.22 483.78 13,455.00 3.60% 3.29–3.92%

For each model with retarded transfer the variables hIN30(t, s), DIN30(t, s),

and RIN30(t, s) are evaluated by recurrence formulas:

hIN30(t+ 1, s) =hIN30(t, s)[1− α(t+ 1, s)− ν(t+ 1, s)]

+ Lin(t + 1, s)− Lout(t + 1, s);

RIN30(t+ 1, s) =RIN30(t, s) + α(t+ 1, s)hIN30(t, s);

DIN30(t+ 1, s) =DIN30(t, s) + ν(t + 1, s)hIN30(t, s),

(14)

with initial condition

hIN30(0, s) = RIN30(0, s) = DIN30(0, s) = 0.

For each model, the coefficients α(t, s) and ν(t, s) are evaluated using the

previously analysed dataset (without IN30) by formulas (9) and (10). The

results are presented in Table 5.

We can see that all the models overestimate mortality in ‘IN30’. The

available case analysis demonstrates the worst performance (the relative error

exceeds 100% of empirical mortality). Models with retarded transfer perform
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better in this test than the models with advanced transfer. The NISS binned

model with retarded transfer is the best (the relative error in prediction of

FOD is 16% of the empirical data and, at least, the 95% confidence intervals

for the result of this model and for the empirical data intersect). There exist

further possibilities for improving the models presented but already the rela-

tive error of 16% for ‘IN30’ in the estimation for the total database will give

the input in the relative error in the FOD .1% (or absolute error .0.07%).

That is much better than the errors of the available case evaluations or of the

approach ‘all are alive’ to the evaluation of mortality of transferred patients.

4.5. Validation of the model for the mortality prediction in the ‘Available

W30D’ group of TARN patients on ‘real death – simulated transfer’

data

The successful test on the group ‘IN30’ of patients transferred to TARN

supports the approach developed in this work. Nevertheless, transfer to

TARN hospitals differs from transfer from TARN qualitatively because of a

qualitative difference between hospitals included and not included in TARN.

In this section, we provide additional validation of the Markov models on

the mortality prediction in the ‘Available W30D’ group of TARN patients

with known outcomes (Fig. 6). We created a statistical model for imitation

of patient transfer and use the known outcomes. This means, we use ‘real

death – simulated transfer’ data.

• Firstly, using the main group, we evaluated the transfer probability for

each day in hospital as a function of NISS for 7 NISS bins, separately

for age< 65 and age≥ 65. For example, a histogram of the number of

transferred patients for the first day after trauma is presented in Fig. 6.
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Figure 6: Patients transferred from TARN during the first day after trauma (a) and

the fraction of these patients (b,c) for seven NISS bins and two age groups (age< 65 and

age≥ 65). Note the scale difference between the fraction histogram for NISS=1-3 (b) and

for the other six bins (c).

• Secondly, we take the ‘Available W30D’ group and separate it into the

‘training set’ and ‘test set’. Random selection of the patients for the

test set models transfer from TARN using probabilities evaluated at

the previous step utilising the real data.

• Thirdly, we create a Markov chain model using the training set and

test the mortality in the whole ‘Available W30D’ group, which was not

given during the modelling.

The random separation of the ‘Available W30D’ group into training and

test sets was performed 100 times. We evaluated the mortality for each such

separation by two näıve models (available case study and ‘all transferred alive

assumption) and the Markov ‘NISS binned, retarded. The results were com-

pared in Table 6. The fraction of death in the whole ‘Available W30D’ group

is 7.2%. ‘Available case study’ overestimates mortality (all the mortality

values given by this approach in 100 trials are in the interval [7.59%,7.67%],

which does not even include the true value 7.2%), the ‘all transferred are
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Table 6: Test of the Markov ‘NISS binned, retarded’ model on the ‘real death – simulated

transfer’ data from ‘Available W30D’ group

Fraction of FOD (All FOD (Available FOD (Markov

transferred alive) case study) model)

Min 9.84 6.83 7.59 7.18

Max 10.12 6.90 7.67 7.24

Mean 10.00 6.86 7.63 7.21

St. deviation 0.00628 0.0140 0.0153 0.0147

Width of 95% CI 0.0123 0.0274 0.0299 0.0285

alive’ hypothesis underestimates mortality (all the mortality values given by

this approach in 100 trials are in the interval [6.83%,6.86%], which also does

not include the true value 7.2%). All the values given by the Markov ‘NISS

binned, retarded model belong to the interval [7.18%,7.24%] around the true

value with mean 7.21% and standard deviation 0.0146%. The relative error

of this mortality prediction is small. It is less than 0.003 (or 0.3%). This test

on the ‘real death – simulated transfer’ data demonstrates the performance

of the proposed method.

5. Model refinement

We use a coarse model based on the severity of trauma for the evaluation

of FOD in the group ‘OUT30’. The reason for selection of such a coarse

model is that a fraction of cases in this ‘OUT30’ cohort is relatively small

with respect to the ‘Available W30D’ cases. As we can see from Table 3, this

fraction is relatively small in all cells except small severities with NISS=1-3

(see also Fig. 6 for the first day transfer). For refinement of the Markov model
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for this cell, we compare the age structure of the ‘Available W30D’ and the

‘OUT30’ fractions of this severity bin (Fig. 5). We see that the fraction of

elderly patients with low severities in TARN hospitals is high, whereas for

patients transferred from TARN this fraction is much lower. Mortality in the

group of patients 74.5+ is much higher than in the adult group, therefore

the model overestimates mortality in the low severity states. To refine the

model let us use two cells for low severity: ‘NISS 1-3 y’ (NISS bin 1-3 and

age < 54.5) and ‘NISS 1-3 o’ (NISS bin 1-3 and age > 54.5). This refined

model gives a significantly different FOD for NISS 1-3. In the cell ‘NISS 1-3

y’ the corrected FOD is 0.54% and in the cell ‘NISS 1-3 o’ it is 4.08% (almost

eight times greater). The corrected overall FOD for NISS 1-3 is 1.42% versus

2.68% in the NISS retarded model without the above refinement.

The effect of the refinement on the FOD for trauma cases is less because

the fraction of traumas with NISS severity 1-3 is relatively small (2.0%). For

the refined model with retarded transfer the FOD for transferred patients

decreases from 3.79% (retarded transfer NISS model) to 3.59% and the total

fraction of death is changed from 6.81% to 6.78% (compare to Table 4).

6. Weighting adjustment of death cases for further analysis

Single imputation of missed values does not reflect the uncertainty in

data properly. From the probabilistic point of view, a datapoint with missed

values should be considered as a conditional probability distribution of the

form

P(missed values | known values).
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Two approaches utilize this idea the multiple imputation and weighting ad-

justment.

In the multiple imputation approach several replicas of the database are

created, which differ in the imputed values [4, 5, 8, 13]. The distribution of

this values should reflect the conditional means and conditional variances of

the imputing attributes. It is not completely clear, how many imputations

should be generated. Rubin claims that “typically as few as five multiple

imputations (or even three in some cases) is adequate under each model

for nonresponse” [5]. Nevertheless, more recently, Graham et al produced

practical recommendations for selection of number of imputations m and

demonstrated that a reasonable choice is m ≥ 20 and for some cases m = 100

is not enough [8]. The multiple imputation algorithms are implemented in the

standard statistical software [33]. Sterne et al [13] discussed use and misuse

of imputation in epidemiological and clinical research and tried to produce a

standard for reporting of handling of missed data in medical research.

It should be stressed that the risk prediction models which used data

with gaps and rely on multiple imputation can be misleading, especially with

many predictor variables [34]. Recently, it was demonstrated that sensitivity

analysis may be more informative than multiple imputation for study of the

influence of missing data on risk prediction [34].

The weighting adjustment approach substitutes a datapoint with missed

values by a set of additional weights on the complete datapoints [35, 36,

37]. The simplest version of this approach is the cell weighting adjustment.

This follows the assumption that complete datapoints within a cell represent

the incomplete datapoints within that cell. An incomplete datapoint within

33



the cell is substituted by the equidistribution on the complete datapoints

there. Of course, cell weighting can inflate the variances for large cells. In

this section, we use cell weighting adjustments for the handling of missed

outcomes. Cells are defined by state s and the outcome.

We will use the database for evaluation of the death risk for trauma pa-

tients. The ‘Main Group’ selected for further analysis includes the ‘OUT30’

subgroup with 19,289 data cases transferred from TARN hospitals within 30

days after injury (Fig 1). The targeted outcome (alive or dead within 30 days

after injury) is unknown for these patients. Data without outcome cannot be

used for risk evaluation and should be deleted. Let us call the result of dele-

tion the truncated database. It is demonstrated in the previous sections that

the simple removal of the cases with unknown outcome shifts the risk esti-

mates; the proportion of Dead and Alive outcomes in the truncated database

differs from reality and the risk is overestimated (the pessimistic evaluation).

This bias may be compensated by reweighting of the cases with known out-

comes. There are 146,270 such ‘Available W30D’ cases. In this subsection

we estimate weights w(t, s) that should be assigned to the cases of death on

day t after injury with state s to hold the probability of death for the trun-

cated database. For the estimation of the proper FOD that should be kept

we use the Markov model of mortality based on binned NISS (Model 3) with

delayed transfer out of TARN (after selection dead and recovered patient,

see Fig. 4). This model demonstrates the best verification results (Table 5)

and is the most plausible from the common sense point of view.

According to the model, the probability of the patient in state s dying
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on day t after injury is evaluated as

pd(t, s) =
∆D(t, s) + ∆DL(t, s)

H0(s)
,

where H0(s) = H(1, s) is the initial number of patients in state s on the

first day after injury. For the truncated data with weights this probability is

evaluated as the ratio of the sums with weights:

pwd (t, s) =
w(t, s)∆D(t, s)

Hw
0 (s)

, (15)

where

Hw
0 (s) = H(31, s) +R(30, s) +

30
∑

t=1

w(t, s)∆D(t, s) (16)

and the superscript w corresponds to the truncated dataset with weights.

The numbers H(t, s), R(t, s) and ∆D(t, s) are the same for the original and

truncated datasets.

The probability of dying within 30 days from injury is evaluated as the

proportion of deaths (we use the model to find DL(30, s))

pd(s) =
D(30, s) +DL(30, s)

H0(s)
.

For the truncated database pd(s) is evaluated as the proportion of weighted

deaths:

pwd (s) =

∑30

t=1 w(t, s)∆D(t, s)

Hw
0 (t, s)

.

This should be the same number. Therefore, the weighted sum of deaths for

the truncated database is:

30
∑

t=1

w(t, s)∆D(t, s) =
pd(s)

1− pd(s)
(H(31, s) +R(30, s)).
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The last expression in the brackets is just the number of ‘Alive within 30

days’ outcomes. Immediately we get

Hw
0 (s) =

1

1− pd(s)
(H(31, s) +R(30, s)).

The formula for the calculation of the weights of death cases in the truncated

database is

w(t, s) =
pd(t, s)H

w
0 (s)

∆D(t, s)
. (17)

The weighting procedure changes the number of effective degrees of free-

dom can affect the statistical power of the dataset but for the TARN dataset

this change is rather minor. For example, for the standard problem of the

evaluation of the confidence interval in the proportion estimate the number

of degrees of freedom nw in the weighted database with weights wi is

nw =
(
∑

iwi)
2

∑

i w
2
i

. (18)

For our dataset nw = 143, 574.85 and the number of Available W30D records

is 146,270 (Fig. 1). The difference of degrees of freedom for the non-weighted

and weighted datasets is less than 2%.

7. FOD and patterns of mortality

The models we have developed allow us to evaluate the FOD for various

groups of patients. The rich TARN data give us the chance of studying

various special groups and detailed stratifications of the trauma cases: by

the severities of various injuries in combined traumas, by the age of patients,

and by time (day) after trauma. Each example below is supplemented by a

medical commentary.
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Figure 7: Age distribution of trauma cases in ‘Available W30D’ group and the FOD

(corrected) as a function of age. The piecewise linear segmentation of FOD(age) has an

obvious break point at age ≈ 62.

7.1. Example: FOD as function of age

The age distribution of trauma cases and the dependence of FOD on age

are shown in Fig. 7. Here we find surprisingly high accuracy of the piecewise

linear approximation of FOD for adult and elderly patients with a jump in

the slope at age ≈ 62.

The number of cases per year in the dataset drops down at age 65 because

for age≥ 65 some traumas are excluded from the database (see Fig. 1).

Medical commentary. The increase in mortality with age is well established.

Previous versions of the standard trauma outcome prediction system had two

different models with an age cutoff at 55 years. More recent models have age

as a weighted continuous variable with an interaction term between gender

and age. There has been a dramatic change in the trauma population over

the last 10 years, with a rapid increase in the number of older patients with

major injury. Understanding the effects of age on trauma care and adapting

to a changing population will be a key challenge for trauma systems in the

developed world over the next 10 years.
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7.2. Example: FOD of combined traumas of various severity

Evaluation of the severity of combined traumas is a classical problem. The

very popular solution is NISS – sum of squares of three maximal severities,

s21 + s22 + s23 (s1 ≥ s2 ≥ s3) (see, for example, [23, 24, 22]). The best severity

score should give the best evaluation of mortality. This is a basic and rather

old idea for defining and comparing trauma indices [38]. Of course, it is

possible to use three (or more) severities together as a multi-dimensional

trauma severity index (‘severity profile’ [19]) but the combination in one

index may be beneficial from different points of view.

The simplest method of combination is:

• Calculate FOD for every combination of severities for combined trau-

mas for a large database;

• Either use this FOD instead of the severity score

• Or find and use a convenient analytic approximation for this FOD

(smoothed FOD).

Of course, such evaluation of probabilities for several input attributes were

used by many authors and compared to other approaches [25, 39]. In this

paper, we use TARN database and evaluate FOD of combined traumas as a

function of three input attributes, three biggest severity scores s1 ≥ s2 ≥ s3

(like in NISS).

We use the dataset of 146,270 ‘Available W30D’ patients approached

TARN during the first day of injury and remained in TARN or were dis-

charged to a final destination within the first 30 days after injury (Fig. 1).
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Table 7: FOD for the maximal severity s1 = 5 and various s2 and s3 for data after

reweighting.

s3

s2 0 1 2 3 4 5

0 0.3590

1 0.2324 0.2906

2 0.1566 0.1496 0.0791

3 0.2466 0.2064 0.1315 0.1439

4 0.2579 0.2881 0.1643 0.2105 0.3113

5 0.4073 0.5668 0.4067 0.3666 0.4140 0.5908

Using our models, we calculate estimates with weights which take into

account modeled mortality/survival of the patients transferred from TARN

and other patients with unknown outcomes. Results for the maximal severity

s1 = 5 are presented in Table 7. The available case analysis gives qualitatively

the same results, hence, the effects we observe are not generated by the

reweighting procedure.

The results presented in Table 7 seem to be counterintuitive: FOD for

combined injuries with severities s1 = 5 and 1 ≤ s2 ≤ 4 are less than FOD for

s2 = s3 = 0 and the same maximal severity s1 = 5. Similar non-monotonic

behavior is observed for other values of the maximal severities. Elementary

estimates demonstrate that the probability p of obtaining these (or larger)

deviations to below from the FOD for single injuries (s1 = 5, s2 = s3 = 0)

for all cases with 1 ≤ s2 ≤ 4 simultaneously is less than 10−10. The number

of cases used for these estimates are given in Table 8. If the second severity

coincides with the maximal one, s2 = s1 = 5 then the FOD is larger than for
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Table 8: Number of cases for the maximal severity s1 = 5 and various s2 and s3.

s3

s2 0 1 2 3 4 5

0 1,376

1 276 101

2 302 163 332

3 577 243 645 1,580

4 349 140 203 2,653 2,301

5 387 102 95 807 2,159 1,842

single traumas.

It may be convenient to have formulas for estimation of FOD. This

smoothed FOD (sFODs1) is found for s1 = 2, . . . , 5 as a linear combination

of s2,3 and s22,3 (19). For s1 = 1 the simple formulas do not have much sense

and we have to use a refined model with the inclusion of age (Sec. 5) The

number of cases is not sufficient for good approximation for this extended

model. For s1 = 6 the number of cases is not sufficient and we use three bins

for trauma severities marked by the values of the coarse-grained variable ŝ:

0 ≤ s2 ≤ 2 (ŝ2 = 0, 48 cases), 3 ≤ s2 ≤ 4 (ŝ2 = 1, 53 cases), and 5 ≤ s2 ≤ 6
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(ŝ2 = 2, 38 cases). sFOD6 is presented as a quadratic function of ŝ2.

sFOD2 =0.01910 + 0.02124s2 + 0.00037s3

− 0.01054s22 − 0.00084s23;

sFOD3 =0.02202 + 0.00256s2 − 0.00238s3

+ 0.00099s22 + 0.00101s23;

sFOD4 =0.06571− 0.02075s2 − 0.03116s3

+ 0.00706s22 + 0.01086s23;

sFOD5 =0.35899− 0.13335s2 − 0.10879s3

+ 0.02963s22 + 0.02748s23;

sFOD6 =0.80297− 0.08750ŝ2 + 0.06102ŝ22.

(19)

All the coefficients are estimated using weighted least squares method. The

weight of the severities combination (s1, s2, s3) is defined as the sum of

weights of the corresponding trauma cases.

Medical commentary. The complete outcome dataset derived from this work

allows all patients to be included in the analysis of the effect of combined in-

juries. The counter-intuitive results from this analysis (some combinations of

injuries seem to have better outcomes than a single injury of the same sever-

ity) provides a fertile area for further work. It may be that the explanation

is technical, within the way that the continuum of human tissue destruction

from trauma is reduced to a simple 5 point scale. Each point on the scale is

actually a band that covers a range of tissue damage. There might also be a

true physiological explanation for the lower lethality of combined injuries, as

each injury absorbs some of the force of impact. The same concept is used in
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Formula 1, where the cars are designed to break into pieces, with each piece

absorbing some of the impact. In humans there is a well known concept that

the face can act as a ‘crumple zone’ and mitigate effect of force on the brain.

The effect of injury combinations shown in Table 6 is a novel finding that

requires further analysis.

7.3. Example. Time after trauma, non-monotone and multimodal mortality

coefficients

In the early 1980s a hypothetical statement was published that the deaths

from trauma have a trimodal distribution with the following peaks: imme-

diate, early and late death [40, 41]. This concept was clearly articulated in

a popular review paper in Scientific American [15]. The motivation for this

hypothesis is simple: Trunkey [15] explains that the distribution of death is

the sum of three peaks: “The first peak (‘Immediate deaths’) corresponds

to people who die very soon after an injury; the deaths in this category are

typically caused by lacerations of the brain, the brain stem, the upper spinal

cord, the heart or one of the major blood vessels. The second peak (‘Early

deaths’) corresponds to people who die within the first few hours after an

injury; most of these deaths are attributable to major internal hemorrhages

or to multiple lesser injuries resulting in severe blood loss. The third peak

(‘Late deaths’) corresponds to people who die days or weeks after an injury;

these deaths are usually due to infection or multiple organ failure.”

Strictly speaking, the sum of three peaks does not have to be a trimodal

distribution. Many groups have published refutations of trimodality: they

did not find the trimodal distribution of death. In 1995, Sauaia et al reported

that the “greater proportion of late deaths due to brain injury and lack of
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Figure 8: Daily coefficient of mortality – evaluated probability of a patient to die on day

t under condition that he/she survived during days 1 ÷ t− 1: a) for NISS=1-8, b) for all

dataset. The coefficient is filtered by moving 5-day average starting from the 3rd day. The

mortality coefficients are evaluated with the Markov models with retarded transfer. Data

for age< 65 and age≥ 65 are represented separately.

the classic trimodal distribution” [42]. Wyatt et al could not find this tri-

modal distribution in data from the Lothian and Borders regions of Scotland

between 1 February 1992 and 31 January 1994 [43]. They hypothesised that

this may be (partly) due to improvements in care.

Recently, more data has become available and many such reports have

been published [44, 45, 46]. The suggestion that the improvement in care

has led to the destruction of the second and third peaks has been advanced

a number of times [45]. In 2012, Clark et al performed an analysis of the

distribution of survival times after injury using interval censored survival

models [47]. They considered the trimodal hypothesis of Trunkey as an

artifact and provide arguments that the observed (in some works) second

peak is a result of differences in the definition of death.

K. Søreide et al analysed the time distribution from injury to death strat-

ified by cause of death. They demonstrated that the trimodal structure may
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be, probably, extracted from data but its manifestation is model–dependent

(see Fig. 6 in [48]). There were several discussion papers published: “Tri-

modal temporal distribution of fatal trauma – Fact or fiction?” [49, 50].

The trimodal hypothesis was tested on TARN data [51]. It was demon-

strated that “the majority of in hospital trauma deaths occur soon after

admission without further peaks in mortality”. We reproduce the same re-

sults, indeed. But TARN database, the largest European trauma database,

allows us to make a stratified analysis of mortality and the preliminary results

demonstrate the richness of the possible patterns of death.

Let us test the famous Trunkey hypothesis. In Fig. 8 the daily mortality

coefficients are presented for low severities (a) (NISS severities 1-8, 27,987

cases in database, 508 death in TARN, 3,983 patients transferred from TARN

within 30 days after injury), and for the whole database (b). For the pre-

diction of death in the ‘OUT30’ group we used the model with retarded

transfer.

The non-monotonicity and peaks in the mortality for low severities of

injury are illustrated in Fig. 8. Further analysis of these patterns should

involve other attributes such as the age of the patient and the type and

localization of the injury.

Medical commentary. It has been widely accepted that the Trunkey trimodal

distribution was a theoretical concept designed to illustrate the different

modes of dying following injury. Previous analysis of trauma data has looked

at all patients and has not shown any mortality peaks, however this new

analysis shows that there are peaks (patterns) if subgroups are studied. The

underlying clinical or patient factors are not immediately obvious, but fu-
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ture analysis giving a better understanding of patterns of death could act as

a stimulus to look for the clinical correlates of these patterns - with the po-

tential to find modifiable factors. The pattern of death in various subgroups

as shown in Figure 7 is a novel finding that requires further analysis.

8. Discussion

Handling of data with missed outcomes is one of the first data clean-

ing tasks. For many healthcare datasets, the problem of lost patients and

missed outcomes (in 30 days, in six months or any other period of interest)

is important. There are two main approaches for solving this problem:

1. To find the lost patients in other national and international databases;

2. To recover the distribution of the missed outcomes and all their correla-

tions using statistical methods, data mining and stochastic modelling.

Without any doubt the first approach is preferable if it is available: it is

better to have complete information when it is possible. Nevertheless, there

may be various organizational, economical and informational restrictions. It

may be too costly to find the necessary information, or this information may

be unavailable or even does not exist in databases. If there are only small

number of lost cases (dozens or even hundreds) then they may be sought

individually. However if there are thousands of losses then we need either a

data integration system with links to appropriate databases like the whole

NHS and ONS data stores (with the assumption that the majority of the

missed data may be taken from these stores) or a system of models for the

handling of missed data, or both because we might not expect all missed

data to be found in other databases.
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In the TARN dataset, which we analyze in this paper, the outcome is

unavailable for 19,289 patients. The available case study paradigm cannot be

applied to deal with missed outcomes because they are not missed ‘completely

at random’. Non-stationary Markov models of missed outcomes allow us to

correct the fraction of death. Two näıve approaches give 7.20% (available

case study) or 6.36% (if we assume that all unknown outcomes are ‘alive’).

The corrected value is 6.78% (refined model with retarded transfer). The

difference between the corrected and näıve models is significant, whereas the

difference between different Markov corrections is not significant despite the

large dataset.

Non-stationary Markov models for unknown outcomes can utilize any

scheme of predictive models with using any set of available attributes. We

demonstrate the construction of such models using maximal severity model,

binned NISS model and binned NISS supplemented by the age structure at

low severities. We use weighting adjustment to compensate for the effect of

unknown outcomes. The large TARN dataset allows us to use this method

without significant damage to the statistical power.

Analysis of mortality for a combination of injuries gives an unexpected

result. If s1 ≥ s2 ≥ s3 are the three maximal severities of injury in a trauma

case then the expected mortality (FOD) is not a monotone function of s3, s3,

under given s1. For example, for s1 = 4, 5 expected FOD first decreases when

s2,3 grow from 0 to 1-2 and then increases when s2 approaches s1. Probably

more attributes, such as type of injury (blunt/penetrating), localization of

traumas, gender, or airway status of the patient should be taken into account

for further analysis to resolve this puzzle.
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Following the seminal Trunkey paper [15], multimodality of the mortality

curves is a widely discussed problem. For the complete TARN dataset the

coefficient of mortality monotonically decreases in time but stratified analysis

of the mortality gives a different result: for lower severities FOD is a non-

monotonic function of the time after injury and may have maxima at the

second and third weeks after injury. Perhaps, this effect may be (partially)

related to geriatric traumas.

It is important to stress that both effects, non-monotone dependence of

mortality on the severity vector of combined traumas and multimodality

of the mortality curves for low severities, do not depend on the method

of mortality correction. These effects manifest themselves for both ná’ive

approaches as well as for Markov models.

We found that the age distribution of trauma cases is strongly multimodal

(Fig. 7). This is important for healthcare planning.

The next step should be the handling of missed values of input attributes

in the TARN database Firstly, we should follow the “Guidelines for reporting

any analysis potentially affected by missing data” [13], report the number of

missing values for each variable of interest, and try to “clarify whether there

are important differences between individuals with complete and incomplete

data”. Already preliminary analysis of the patterns in the distribution of the

missed input data in the TARN dataset demonstrates that the gaps in data

are highly correlated and need further careful analysis. Secondly, we have to

test and compare various methods of handling missing input attributs in the

TARN database.

It is not necessary to analyse all attributes in the database for mortality
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prediction and risk evaluation. It is demonstrated that there may exist an op-

timal set of input attributes for mortality prediction in emergency medicine

and additional variables may even reduce the value of predictors [52]. There-

fore, before the analysis of imputation efficiency, it is necessary to select the

set of most relevant variables of interest.

The models developed in this case study can be generalized in several di-

rections. Firstly, for trauma datasets, different attributes could be included

in the ‘state’ s for the non-stationary Markov models (Figs. 3, 4). We did

not explore all such possibilities but have studied just simple models of the

maximal severity (Model 2) and binned NISS (Model 3). An example of

model refinement with inclusion of age in the state variable s is presented

in Section 5. Secondly, the ‘two stage lottery’ non-stationary Markov model

could be used as a general solution applicable to any health dataset where

‘TRANSFER IN’ or ‘TRANSFER OUT’ is a feature. Transfer between hos-

pitals is common in healthcare, therefore, we expect that models of this type

will be useful for all large healthcare data repositories.

9. Summary

1. The Trauma Audit and Research Network (TARN) have collected the

largest European trauma database. We have analysed 192,623 cases

from the TARN database. We excluded from the analysis 16,693 pa-

tients (8.67%), who arrived into TARN hospitals later than 24 hours

after injury. The other 146,270 patients (75.94%) approached TARN

during the first day of injury and remained in TARN or discharged to

a final destination within 30 days of injury. 19,289 patients (13.19%)
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from this group transferred from TARN to another hospital or insti-

tution (or unknown destination) within 30 days of injury. For this

subgroup the outcome is unknown.

2. Analysis of the missed outcomes demonstrated that they cannot be

considered as misses ‘completely at random’. Therefore, the analysis

of available cases is not applicable for the TARN database. Special

efforts are needed to handle data with missed outcomes.

3. We have developed a system of non-stationary Markov models for the

handling of missed outcomes and validated these models on the data

arising from patients who moved to TARN (and excluded from the

model fitting). We have analysed mortality in the TARN database

using the Markov models which we have developed and also validated.

4. The results of analysis were used for weighting adjustment in the avail-

able cases database (reweighting of the death cases). The database

with adjusted weights can be used for further data mining tasks and

will keep the proper fraction of deaths.

5. The age distribution of trauma cases is essentially multimodal, which

is important for healthcare planning.

6. Our analysis of the mortality coefficient in the TARN database demon-

strates that (i) for complex traumas the fraction of death is not a

monotone function of all severities of injuries and (ii) for lower severi-

ties the fraction of death is not a monotonically decreasing function of

time after injury and may have intermediate peaks in the second and

third weeks after injury.

7. The approach developed here can be applied to various healthcare
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datasets which have the problem of lost patients, inter–hospitals trans-

fer and missing outcomes.
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and ETH Zürich (Switzerland), was a visiting Professor and Research Scholar

at Clay Mathematics Institute (Cambridge, MA), IHES (Bures-sur-Yvette,
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