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Abstract

This paper proposes a method for an automatic extraction of geometric fea-
tures, related to weight parameters, from 3D facial data acquired with low-
cost depth scanners. The novelty of the method relies both on the processing
of the 3D facial data and on the definition of the geometric features which are
conceptually simple, robust against noise and pose estimation errors, compu-
tationally efficient, invariant with respect to rotation, translation, and scale
changes. Experimental results show that these measurements are highly cor-
related with weight, BMI, and neck circumference, and well correlated with
waist and hip circumference, which are markers of central obesity.

Therefore the proposed method strongly supports the development of
interactive, non obtrusive systems able to provide a support for the detection
of weight-related problems.

Keywords: Facial morphology, 3D scanning & reconstruction, Weight &
fat-related parameters, BMI, Structural Equation Model

1. Introduction

Overweight and obesity (defined as abnormal or excessive fat accumula-
tion) represent a major risk factor for a large spectrum of diseases, including
cardiovascular disease, diabetes [1, 2], musculoskeletal disorders, and some
cancers (endometrial, breast, and colon). Data published by the Global
Health Observatory in [3] show that excess body fat affects a large part of
the adult population (aged 18 and over): around 39% were overweight in 2014
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and 36.1% in 2010; while obese adult people were 13% in 2014, and 11.3%
in 2010. Hence, overweight and obesity are increasing, and cause direct and
indirect costs, stressing healthcare and social resources: strong actions to
prevent unhealthy behaviours in the general population are mandatory.

In recent years, personal health monitoring systems are gaining popular-
ity, since individuals are increasingly more motivated to play an active role
and are shifting from passive recipients of care towards actively managing
their own health [4]. The SEMEOTICONS project (described also in [5, 6])
falls in this domain: it aims to build a sensorized platform, the Wize Mir-
ror, able to track over time the individual health status, and offer a tailored
guidance towards lifestyle improvements, as described in [7, 6]. Such a mir-
ror arises from the integration of different modules, processing different data,
which are acquired unobtrusively. In this paper, the advances in 3D scanning
technologies and 3D geometry analysis are exploited to develop a method for
the automatic and reliable estimation of weight-related health parameters,
as a key component of easy-to-use, low-cost yet accurate healthcare tools. In
the Wize Mirror, the estimation of such parameters will be complemented
with results from the analysis of skin composition, emotional status, heart
rate, endothelial functionality, chemical composition of the exhaled, in order
to draw an overall picture of the individual’s wellbeing status with respect
to the cardio-metabolic risk.

The peculiar focus of this work is on the ability of digital measurements
on 3D face scans to enclose the information about body weight and fat,
which is measured in literature through well established indicators, such as
weight, Body Mass Index (BMI), waist circumference, hip circumference and
neck circumference. We focus on the face, following the principles of medical
semeiotics, which considers the face as a mirror of wellbeing [8, 9, 10]. The
challenge is significant: though it is well known that the face is involved in
the process of fat accumulation, there is no consensus in the literature about
which are the facial morphological correlates of body weight and related
indexes (Section 2.2).

The contribution of this work is three-fold, on both the technological and
the clinical side:

• We propose a low-cost, yet accurate, 3D face reconstruction system
(Section 3.1); this makes the proposed method a viable solution in
everyday scenarios, including home, pharmacies, and schools.

• We define a set of automatic digital face measurements based on mod-
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ern 3D shape analysis techniques (Section 3.2), which can be accurately
computed without requiring any manual intervention.

• We show evidence of the correlation of the proposed facial measure-
ments with standard parameters of overweight and obesity (including
weight, BMI, waist circumference, hip circumference, neck circumfer-
ence, and fat mass) in a study on 30 volunteers (Section 4); this ev-
idence may support the adoption of the proposed measurements in
self-monitoring applications for wellbeing.

2. State of the art

Anthropometry is the discipline which deals with the study of body and
face morphology: it has been used for decades to measure individuals and
quantify human physical variation through measurements performed man-
ually by trained personnel with results often affected by inter- and intra-
observer variability. Section 2.1 reports on the most common parameters
to estimate the size and composition of the human body, and also to assess
overweight and obesity.

Recently, the development of 3D scanning technologies opened a new field
of research named digital anthropometry. The accuracy of digital measure-
ments has been shown compatible with applications in forensic medicine,
ergonomics, clothing industry, and medical settings [11, 12]. In Section 2.2,
we report on existing computational measures related to overweight, obesity
and cardio-metabolic risk.

2.1. Standard anthropometric measurements

Anthropometry, in the medical domain, refers to a set of simple, inex-
pensive and non-invasive methods to understand the physical properties of
the human body and face, such as size and shape. Also, measurements
and indexes derived from anthropometry may be used to monitor the nu-
tritional status, and are currently studied to disclose existing relations with
syndromes, as the obstructive sleep apnea, reported by Balabilh et al. in [13]),
and health risk factors, such as the cardiovascular or the cardio-metabolic
risk, in [14] by Millar et al.

The first indicator of generalized obesity, probably the most used and
debated, is the body mass index (BMI), introduced in [15]. BMI is com-
puted using only weight and height [BMI=(weight in kilograms)/(height in
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meters)2]; although simple, it shows a high correlation (0.7 to 0.8) with body
fat in the adult general population, as reported in [16, 17]. Hence, BMI is
still used for statistical surveys of large population. Nonetheless its cut-off
values are the same for male and female subjects, for all ages in the adult
population (18 years and over). On the contrary, it is a crude measure, not
distinguishing lean mass from fat. Scholars continue working on new mea-
sures and indexes, superior to BMI for the prediction of the overall health
status.

Among the measures proposed to predict the cardio-metabolic risk we
mention the following:

• the waist circumference (WC), a relatively simple and convenient mea-
sure to detect central fat accumulation [18, 19, 20];

• the hip circumference (HC), which provides additional information
about the hip region, negatively associated with health outcomes in
women [21];

• the waist-to-hip ratio (WHR), as it indicates increased cardiovascular
risk [22];

• the neck circumference (NC), being a marker of central obesity, and
associated with many fat-related anthropometric measurements and
cardiovascular risk factor [23, 24, 25].

In the present study weight, BMI, WC, HC, and NC are considered as refer-
ence anthropometric measurements against which to validate the digital face
measurements defined in Section 3.2.

2.2. Digital anthropometric measurements

State-of-the-art shape analysis provides a rich and powerful set of tools
which automatically extract information from a 3D object (see [26] for a
recent review). Computer vision and computer graphics have been applied
to body analysis to estimate height, weight and other parameters enclosed
in the body appearance.

Velardo and Dugelay presented a regression model for the weight estima-
tion based on a set of geometric body measurements extracted from the 2D
body silhouette [27]. They also propose in [28] an automatic vision-based
system for estimating the subjects’ absolute weight from a frontal 3D view of
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the user, acquired through a low-cost depth sensor; example of applications
of such a system are extreme environments and circumstances in which a
standard scale cannot work or cannot be used.

Giachetti at al. [29] used heterogeneous body scans as input data for the
automatic extraction of geometrical parameters related to body fat. Their
aim was the computation of parameters not dependent on the precise location
of anatomical landmarks, and robust against pose and mesh quality, so as to
be used in healthcare applications. They found that several parameters were
highly correlated with total-body-less-head fat and trunk fat (computed via
Dual-Energy X-rays Absorptiometry scanning).

As far as faces are concerned, most of the methods proposed in the liter-
ature are based on 2D images. Moreover, no conclusive results can be drawn
about the morphological facial correlates of body fat. In [30] Ferrario et al.
observed an increase in some facial dimensions in a study on the face mor-
phology of obese adolescents. Djordjevic et al. in [31] reported an analysis of
facial morphology of a large population of adolescents under the influence of
confounding variables: though the statistical univariate analysis showed that
four principal face components (face height, asymmetry of the nasal tip and
columella basis, asymmetry of the nasal bridge, depth of the upper eyelids)
correlated with insulin levels, the regression coefficients were weak, and no
significance persisted in the multivariate analysis.

Only very few methods exploit 3D information: one of the most interest-
ing is presented by Banabilh et al. in [13]), in which the craniofacial obesity,
assessed via 3D stereo-photogrammetry, is correlated with the obstructive
sleep apnea syndrome.

In adults, Lee et al. proposed in [32] a prediction method of normal
and overweight females based on BMI using geometrical facial features only.
The features, measured on 2D images, include Euclidean distances, angles
and face areas defined by selected soft-tissue landmarks. The study was
extended and completed in [33] by investigating the association of visceral
obesity with facial characteristics, so as to determine the best predictor of
normal waist and visceral obesity among the considered facial characteristics.
Cross-sectional data were obtained from a population of over 11 thousand
adult Korean men and women aged between 18 and 80 years. Also, in [34]
Giorgi et al. defined a more complex shape descriptor from the geometric
theory of persistent homology, to analyse the face morphology encoded in a
set of 23 landmarks (a subset of the facial Farkas landmarks, defined in [35]),
and tested it on a synthetic dataset of 3D faces.
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The present study differs from the state of the art in some aspects: the
method proposed for the self-assessment of the wellbeing status with respect
to the cardio-metabolic risk is fully automatic, in order to be integrated in
a more complex system; also, it processes 3D face data acquired with a low-
cost depth sensor. In spite of the low-cost of the sensor used, and of the low
computational cost of the implemented methods, in Section 4, results showed
that a relevant relation may exist among face morphology and body weight
and fat-related parameters, including markers of central obesity, The present
study differs from the state of the art in some aspects: the method proposed
for the self-assessment of the wellbeing status with respect to the cardio-
metabolic risk is fully automatic, in order to be integrated in a more complex
system; also, it processes 3D face data acquired with a low-cost depth sensor.
In spite of the low-cost of the sensor used, and of the low computational cost
of the implemented methods, in Section 4, results showed that a relevant
relation may exist among face morphology and body weight and fat-related
parameters, including markers of central obesity, an important component of
cardio-metabolic risk.

3. Methods

The proposed study is based on two main components: the low-cost 3D
reconstruction system of faces, described in Section 3.1, and the computation
of geometrical measurements on the 3D facial data, in Section 3.2.

3.1. Low-cost 3D reconstruction

This section describes an inexpensive system for 3D geometric face re-
construction based on readily available depth sensors such as Kinect or Asus
Xtion. The system acquires and process the data in order to recover a good
3D reconstruction of faces: a manifold mesh with one boundary component,
accurate enough for the extraction of informative facial features.

The proposed 3D reconstruction method recovers point clouds from a set
of depth frames and fuses them into a single global surface. This is achieved
using a structure from motion algorithm [36]. The data fusion is performed
by tracking the global model using a coarse-to-fine iterative closest point
(ICP) algorithm and the surface reconstruction is estimated using a truncated
signed distance function (TSDF) and a Poisson meshing algorithm [37].

Before applying the reconstruction procedure, a face segmentation stage
has to be performed on the depth frames in order to extract only the infor-
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mation representing the face from the depth data. This step eliminates back-
ground objects, body parts or hair from the reconstruction process. Without
the segmentation the reconstruction can be noisy or/and heavily distorted.
Additionally, this stage needs as a first step the face pose estimation in order
to be able to select the region of interest from the depth frames.

3.1.1. Face pose estimation

The proposed face pose estimation consists of calculating the head po-
sition in 3D space (x,y,z) and the orientation expressed by the three Euler
angles (pitch, yaw, roll). The 3D pose of the face is calculated using the
technique developed in [38], which is based on a random forest face pose
estimation method [39] and a Kalman filter tracking. The Kalman filter is
utilised to perform head pose tracking, by filtering the measurements pro-
vided by the face pose estimator. Moreover, using this approach, outliers can
be detected and the missing measurements effectively handled.

3.1.2. Face segmentation

The proposed face segmentation method selects from the data only the
face and neck regions, which are the areas with useful information for the
morphological analysis. The typical objects removed as part of this process
include: the shoulders, some hair or objects in the background. The method
is based on the 3D face pose estimation utilizing a generic 3D face model.

Each depth frame is transformed into a 3D point cloud using the intrinsic
parameters of the sensor. Then, based on the face pose estimation described
above, a 3D generic face model (see Figure 1) is transformed to match the
input 3D data. The initial rotation matrix is defined by the three estimated
pose rotation angles and the translation vector contains the estimated coor-
dinates of the head center.

Subsequently all the points belonging to the model are transformed by
using the rigid registration process between the model and the input 3D data
using iterative closest point (ICP) [40]. After the registration, all the points
belonging to the model are projected into a 2D image using the camera cal-
ibration parameters building a 2D sparse mask (see Figure 2). In order to
generate a dense and continuous mask, standard mathematical morphology
techniques are applied to the mask image (erosion and dilation, see imple-
mentations in [41]).
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Figure 1: Generic 3D face model used for segmentation, created using the software FaceGen
(www.facegen.com)

Figure 2: First row: Input depth frame from the sensor (left), rigidly registered generic
face model projected onto the depth frame (centre), segmented face after applying the
proposed method (right). Second row: Colour images, shown only for better visualization
of the processing pipeline. The colour information is not used in the proposed system.
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3.1.3. Registration of range scans

The 3D reconstruction process is based on merging the 3D data from
captured frames to reconstruct the scene. The proposed system uses the
methods described in [36] and its implementation available in [40]. That
implementation was extended for this work, to include the techniques used
for face segmentation explained in Section 3.1.2.

The original reconstruction method proposed in [36] uses a moving sen-
sor to capture different points of view in order to reconstructs static scenes.
In this work, a new functionality has been added to allow reconstructing a
face when the sensor is in a fixed position and the person is moving. Using
the segmentation proposed in Section 3.1.2, the person motion is reversed
to estimate the relative motion of the sensor with the head being in a vir-
tual fixed position. Such approach enables unobtrusive measurements with
very limited user interaction in the framework of the proposed Wize Mirror
developed as part of the SEMEOTICONS project. The original procedure
of moving the sensor to reconstruct the user face can be still used with the
proposed method, as the only data used for reconstruction are the results of
segmentation, if the person is still and the sensor is moving, the movement
will be equivalent to fixing the sensor and rotating the head. Such approach
may be useful when subject cannot move or stand still.

For each new 3D input the points are tracked by aligning a surface mea-
surement (Vk, Nk) (vertex and normal vectors maps) against the model pre-
diction from the previous frame (V̂k−1, N̂k−1).

3.1.4. Surface reconstruction

In order to perform the surface reconstruction, a volumetric truncated
signed distance function (TSDF) is used (see [36]). After the registration
process, the 3D points are fused into a 3D global face reconstruction. The
global reconstructed volume is formed by the weighted average of all individ-
ual TSDFs computed for each depth map. This fusion computes the denoised
global TSDF from multiple noisy TSDF measurements.

The reconstructed meshes obtained using the method described in [36]
are of good quality, however, they do not fully meet the requirements for a
correct morphological analysis of the 3D face reconstructions. The mesh has
to be a manifold and contain no holes and no duplicated points or triangles.

Therefore the Poisson surface estimation method, described in [37], is
applied on the 3D point cloud extracted from the TSDF in order to obtain a
new mesh compatible with the requirements imposed by the morphological
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Figure 3: Example of 3D reconstruction and labelling results using the proposed method.
Rendered using the Phong’s shader provided in Meshlab [42]

analysis. In the reported here results, the open source Point Cloud Library
(PCL, [40]) implementation of the Poisson meshing was used. Representative
examples of the surface reconstruction are shown in Figure 3.

3.1.5. Labelling

The labelling process produces as output the approximate positions of the
centre of the eyes, tip of the nose and centre of the chin on the reconstructed
mesh. This labelling is an important requirement for the subsequent mor-
phological analysis. The method proposed to tackle this problem is based
on a deformable model. In that method the model is labelled manually only
once, marking the points of interest. Then the model is registered to the
reconstructed face and after the deformable fitting, the labels end up close
to the relevant anatomical landmarks.

The detailed description of the adopted deformable model is provided in
[43]. A low dimensional shape space vector (SSV) of the statistical shape
model (SSM) is used to represent 3D faces. The SSM has been calculated
using a model-based surface registration process. Two different stages are
needed in this process: model building and hierarchical model fitting. The
point distribution model described in [44] is used for building the SSM. First,
the point correspondences between faces in the training database are esti-
mated. Subsequently, based on the estimated point correspondences, the
statistical shape model is built using PCA. As result a new face Q can be
approximately represented by the linear model Q = Wb+Q̄, where Q̄, where
Q̄ is a mean face, W = [u1, . . . , uk] is the shape matrix of k eigen-faces
[u1, . . . , uk] and b = [b1, . . . , bk] is the shape space vector (SSV) which con-
trols the contribution of each eigen-face in the approximated face Q. The
hierarchical model fitting algorithm estimates iteratively and in turn the
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shape (vector b) and the pose (face position and orientation).
The automatic labelling results were compared with the ground truth la-

bels manually selected on 3D facial reconstructions of 22 test subjects. These
manual annotations were not aided by textural information as only 3D shape
data were used in that process. The average error of the automatic landmark
positioning was estimated at 5.6mm, 4.3mm and 6.9mm for the eyes, nose
and chin respectively. These should be compared with the corresponding
estimated ground truth annotation errors of 2.5mm, 1.5mm and 2.2mm re-
spectively. The ground truth was calculated as the average from three manual
annotations performed by two observers. The estimated eye landmarks po-
sitions are used to estimate the interpupillary distance, subsequently used
for normalisation of the proposed face measurements (see Section 3.2). The
normalised eye labelling error [45] (defined as max(eL,eR)/d, with eL/eR
representing distance between the estimated and ground truth position of
the left/right eye and d denoting the ground truth interpupillary distance)
was estimated at approximately 0.1. As reported in [46] this is comparable
with the error obtained by the other methods used for eye detection. The av-
erage interpupillary distance measurement error is 5.2mm with the estimated
corresponding ground truth annotation error of 2.3mm. It should be noted
that normalisation using the interpupillary distance only partially corrects
for differences between subjects faces as it accounts only for an overall vari-
ability of the face size but it does not take into account inherent differences
in face morphology between subjects. The results reported in Section 5, show
agreement between measurements based on manually labelled high resolution
3D facial scans using commercial Artec scanner and those computed based
on the proposed automatically labelled 3D facial reconstructions. Therefore
it can be concluded that the proposed facial features (see Section 3.2) are
not overly sensitive to the accuracy of the labels/landmarks detection.

3.1.6. 3D reconstruction validation

The 3D face reconstruction method has been validated through different
experiments using a plastic head model (see Figure 4) and real faces from
subjects during different acquisition campaigns (see Figure 3). In order to
check the stability of the 3D model obtained using the proposed reconstruc-
tion method, the reconstructions of the plastic head model were repeated
multiple times with differently acquired range data. For the experiment pre-
sented in Figure 4, the plastic head model was scanned five times, from
slightly different positions and inclinations in front of the sensor. Four differ-

11



Number of points Mean distance (mm) Std. deviation (mm)

62295 0.5 2.2

60777 0.5 1.5

63798 0.4 2.5

67851 0.2 2.9

63680 0.4 2.2

Table 1: 3D reconstruction statistics: number of points per reconstruction, mean distance
between those points and the reference reconstruction and standard deviation of the dis-
tances. Each row corresponds to one reconstruction presented in Figure 4 and the last
row shows the average.

ent reconstructions were compared to the randomly selected reference recon-
struction. Each reconstruction was registered to the reference one using the
ICP algorithm provided in the CloudCompare software [47]. Afterwards the
average distance and the standard deviation were estimated using the cloud
to mesh tool available in [47], and finally the distance map is obtained using
the calculated distances by the same software.

As it can be seen in Table 1, the average error is only 0.4 mm, and the
standard deviation 2.2 mm, which indicates that the scanner provides repeat-
able and consistent reconstructions of the same face surface independently
from the changes in the face position or orientation. This is an important
result as it shows that the random reconstruction error (from the sensor and
registration process), which is difficult to correct, is very small. Therefore,
the obtained reconstructions are suitable for the subsequent morphological
analysis.

3.2. 3D face features

This work aims to define reliable and automatic measures of face mor-
phology which are correlated with weight and fat-related parameters, and
which can be automatically computed on the reconstructed 3D faces.

As observed in Section 2.2, most of the methods in the literature deal
with 3D scanned bodies rather than faces. Also, the methods dealing with
faces are based on 2D images rather than 3D data. Nevertheless, faces are
inherently three-dimensional objects. Thanks to the availability of complete
3D data rather than just images, it is possible to take advantage of modern
3D shape analysis techniques, such as the computation of geodesic distances
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Figure 4: Comparison between 3D reconstructions obtained using the proposed method.
On the left, signed distance maps between the current and the reference reconstructions.
On the right, histograms calculated with the number of points belonging to the recon-
structed face and clustered depending on their signed distance (in millimetres) to the
reference face.
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on the surface, thus using surface feature to consider the whole geometry of
the face.

Moreover, most of the methods in the literature are based on the accurate
location of anatomical landmarks on the face [34, 48, 30]. Nevertheless, locat-
ing landmarks with optimal accuracy on 3D acquired data could be difficult,
especially for poorly geometrically characterized landmarks. Since this study
aims to devise measures which can be computed automatically on 3D data ac-
quired via a low-cost scanner, so as to be part of a self-monitoring automatic
system, the proposed method uses shape measures which are independent of
the precise, optimal location of a large set of anatomical landmarks. Indeed
they require the detection of only three landmarks (namely the eyes and
the nose tip, visualised also in Figure 3), automatically located on 3D face
meshes as explained in Section 3.1.5: the nose tip is used for the location of
the geometric objects involved in the shape measurements, while the distance
between eyes is used for normalization, partially accounting for differences
among subjects. Additionally, another measure is proposed: the length of a
geodesic path through the neck region, defined thanks to the detection of the
chin landmark (see Figure 3). Thus, the considered shape measures result
objective, normalized, and easily computable from scanned data.

The process of putting on weight is likely to involve complex shape
changes. Figure 5 shows a simulation based on a synthetic model, the Basel
Face Model (BFM). The BFM is a morphable face model built from the
registered 3D scans of 100 male and 100 female subjects [49]. By applying
principal component analysis to the registered scans, the regression coeffi-
cients, accounting for the main face shape variations according to gender,
age, height and weight, are extracted. By controlling the weight parameters,
one can simulate a 10-step fattening process on a randomly generated seed
face, as shown in Figure 5 (left). Figure 5 (right) shows the comparison
between the fattest face and the seed one; the colours represent the point-
to-point distances between the seed and the morphed face, with red (blue)
indicating the regions most (least) affected by the weight changes. It can be
seen that most of the changes affect the peripheral regions of the face, and
the neck region. These are the regions which are analysed by the proposed
descriptors as detailed in the next sections.

Even though the facial measurements are not fully normalised with re-
spect to the differences among subjects, in the perspective of the integration
into the Wize Mirror, such a normalization is not strongly required, because
the self-monitoring is based on their variation over time on a single subject,
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Figure 5: A synthetic face fattening in ten steps (left); Point-to-point distances between
the fat face and the normal one, mapped onto the fat face in false colors, values increasing
from blue to red (right).

rather than on their absolute value.
The first measure proposed is MorphoE. MorphoE is the maximum

length among the curves ci given by the intersection of the face mesh with a
set of Euclidean spheres centered on the nose tip and radius varying in the
range [0, RE] (Figure 6, left). The choice of the radius RE is crucial to sat-
isfy a set of possibly conflicting requirements. First, RE has to be sufficiently
large to guarantee that the curves span a sufficiently large and informative
face area. Second, RE must be sufficiently small not to reach critical face
regions, namely those which are most likely to be affected from occlusions
(e.g., due to hair) and therefore 3D reconstruction errors. Finally, it would be
convenient to have RE defined automatically for each subject. In Section 5,
we experiment with RE = kE ∗ Deye, Deye being the distance between the
subject’s eyes and kE set to 1.5, which empirically proved to be a reasonable
value. The range [0, RE] is sampled into 20 equally spaced intervals. Then,

MorphoE = maxi=1,...,20{length(ci)}.

A check is performed on the reconstructed 3D mesh to ensure that the biggest
sphere does not intersect the mesh boundary, guaranteeing that no errors are
introduced due to occlusions and reconstruction errors.

The second measure MorphoG is a variant of MorphoE, where the curves
on the mesh are defined as the boundaries of a set of geodesic disks centered
in the nose tip. A geodesic disk of radius r and center C is the locus of points
having geodesic distance r from C; briefly speaking, geodesic distances mea-
sure the shortest path between two points along the surface, that is, the path
one would follow if bounded to walk on the surface of the object [26]. There-
fore, geodesic distances capture information which is substantially different
from Euclidean distances. We compute geodesic distances using the the Dijk-
stra algorithm, which takes O(nlog(n)) [50]. As above, the sphere radii vary
in the range [0, RG]. In the experiments performed, RG = kG ∗ Deye, with
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Figure 6: LEFT. MorphoE : in bold, the curve which realizes the maximum length among
the intersection between the face and the set of spheres centered in the nose tip. MIDDLE.
Annuli1.4,1.55 measures the area of the green region. RIGHT. AB1.7,1.4 measures the
length of the green geodesic path.

kG set to 1.65. Again, the range [0, RG] is sampled into 20 equally-spaced
intervals.

The third measure AnnuliR1,R2
is defined as the area of the annular region

of the mesh enclosed between two Euclidean spheres centered in the nose tip
and having radii R1∗Deye and R2∗Deye respectively, with R1 = k1∗Deye and
R2 = k2∗Deye, k1 = 1.4 and k2 = 1.55. Whereas MorphoE and MorphoG are
length measurements, AnnuliR1,R2

is a surface measure; for a visualization
see Figure 6, middle.

The last measure proposed, ABλ1,λ2
, focuses on the neck region, and on

the region below the chin in particular. Indeed, ABλ1,λ2
is defined as the

length of the geodesic path joining two feature points on the face mesh. The
two points are given by the intersection of two spheres: the first is centered
in the nose tip, and has radius λ1 ∗ Deye, the latter is centered in the chin,
and has radius λ2 ∗ Deye. Here λ1 = λ2 = 1.6, values found empirically to
be reasonable for the whole set of data, defining points below the inferior
earlobes (see Figure 6, right). In the experiments performed the geodesic
joining the two points always went through the neck region, under the chin.

The measurements defined above are:

• well-defined, easy to implement, and computationally efficient;

• independent of rotation and translation (thanks to the use of spheres),
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and scale (thanks to the normalization with respect to the distance
between the eyes);

• robust against noise and pose estimation errors.

4. Experimental setting

In order to show the robustness of the four digital measures we defined,
and evaluate the correlation of these measures with the standard indexes of
cardio-metabolic risk and weight, we have performed some experiment on a
set of 30 volunteers, 13 women and 17 men, aged in-between 29 and 62 years.
22 (6 women, 16 men) were enrolled in an acquisition campaign held at the
CNR premises in Pisa (Italy) in May, 2015; and other 8 (7 women, 1 man)
were enrolled in October, 2015, in the same location. The study was approved
by the Ethical Committee of the ”Azienda Ospedaliera Universitaria Pisana”,
protocol n.213/2014 approved on September 25th, 2014; all patients provided
a signed informed consent before enrollment.

4.1. Standard anthropometric measurements

The following physical parameters were collected by the medical staff
for each volunteer: gender, age, height, weight, neck circumference, waist
circumference, hip circumference. Then, BMI was calculated. The waist
circumference was measured at the umbilicus, and the hip circumference in
a horizontal plane at the level of the maximal extension of the buttocks.
Additional parameters related to body composition were collected: fat-free
mass (FFM) was measured by electrical bioimpedance (scale manufactured
by Tanita, Japan), and fat mass (FM) was calculated as the difference be-
tween body weight and FFM. Table 2 shows the characteristics of the studied
population: mean, standard deviation, and the range of variation for each
characteristic as min - max values.

4.2. Digital anthropometric measurements

The first 22 subjects had their face scanned, both with a low-cost scanner
based on the Kinect range sensor, and with a commercial portable structured
light scanner (ARTEC Eva). The aim was to assess how much the mesh
quality affects the results. The other 8 subjects were scanned only with the
Kinect.
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Weight BMI WC HC NC FFM FM

(kg) (kg/m2) (cm) (cm) (cm) (%) (%)

mean 73.36 25.06 89.04 100.25 35.77 73.08 26.92

σ 21.37 5.88 17.91 14.37 3.75 9.19 9.19

range 48.9 - 168 17.8 - 51.8 66 - 170 83 - 165 30 - 46 51 - 91.5 8.5 - 49

Table 2: Characteristics of the studied population, 13 women and 17 men. (BMI: body
mass index; WC: waist circumference; HC: hip circumference; NC: neck circumference;
FFM: fat-free mass; FM: fat mass; σ: standard deviation)

There are differences between the acquisition protocol used for capturing
with the depth sensor and the commercial scanner. While the depth sensor
was fixed in a position and the user simply rotated the head left and right,
the ARTEC Eva was moved around the head of the subject in order to scan
the face. The proposed acquisition protocol for the low-cost reconstruction
system requires only the interaction of the user during approximately five sec-
onds. The system informs the user that a slow rotation of the head is needed,
first to the left and then to the right. While the user is rotating the head, the
depth frames are being saved and they are used afterwards to perform the 3D
reconstruction following the work-flow described in Section 3.1. When using
the ARTEC Eva, the user remained still and an operator moved the scanner
around the user’s head, resulting in a longer scanning time. However, due to
different scanning techniques used for both sensors, the structured light scan-
ner provides reconstructions with higher resolution, which is also associated
to a much higher cost.

4.3. Statistical Analysis

The Kolmogorov-Smirnov tests [51, pp. 392–394] were applied to data,
and they resulted all normally distributed; hence, parametric tests were used
to compare the mean among groups. In Section 5 the concordance between
data coming from different hardware was assessed computing the intra-class
correlation coefficient (ICC, [52]); the Pearson’s correlation coefficient was
used to evaluate the existing relations between facial features and physical
parameters.

Structural Equation Modeling (SEM) is a combination of factor analysis
and multiple regression: a methodology to estimate and test a network of
relations among observed and latent variables [53] and, in the current set-
ting, to evaluate whether the facial features may be condensed into a single
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Figure 7: An example path diagram of a Structure Equation Model: x1, . . . , x4 are the
observed variables; X is the latent variable; e.xi is the error of xi.

indicator. A sample of a structural equation model is given by the following
equation system, also illustrated through a path diagram in Figure 7. The
path coefficients βi in the equation system define how much each observed
variable contributes to the latent variable.















x1 = α1 + β1 ·X + e.x1
x2 = α2 + β2 ·X + e.x2
x3 = α3 + β3 ·X + e.x3
x4 = α4 + β4 ·X + e.x4

The quality of a statistical model is assessed measuring its fit, through
tests or indicators (see [54]). Here, the SEM model is evaluated with two
indexes: (i) Standardized Root Mean Square Residual (SRMR); (ii) Com-
parative Fit Index (CFI). The SRMR is a measure of the mean absolute value
of the covariance residuals and it is defined as the difference between the ob-
served correlation and the predicted correlation. A model is considered to
show a good fit if the SRMR is ≤ 0.10. The Comparative Fit Index (CFI) is
equal to the discrepancy function adjusted for sample size; CFI ranges from 0
to 1 and a model with CFI values ≥ 0.95 is considered to have an acceptable
fit.

Statistical analysis was conducted using SPSS Statistic 19.0 program and
STATA 13.0 software.
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5. Results

First of all, it was verified that the use of a commercial or a low-cost
scanner did not affect significantly the results, via assessing the concordance
between the features coming from the Artec scans, and from the Kinect
scans. Interrater agreement between the two sets of data was assessed with
the single score ICC. The interpretation of the ICC values, according [52], is:
0–0.2 poor agreement; 0.3–0.4, fair agreement; 0.5–0.6, moderate agreement;
0.7–0.8, strong agreement; > 0.8, almost perfect agreement. Interrater agree-
ment between measures from Artec and Kinect resulted very high: strong
to almost perfect for all items; the correlation was moderate (ICC=.678,
95%CIs= .225-.866) only between measures ABλ1,λ2

(see Table 3). These

MorphoE MorphoG AnnuliR1,R2
ABλ1,λ2

ICC .913 .894 .775 .678
95%-CIs .790 - .964 .745 - .956 .458 - .907 .225 - .866

Table 3: Interrater agreement between data acquired with Kinect and Artec, expressed as
intra-class correlation coefficient. ICC: Intraclass Correlation Coefficient; CIs: Confidence
interval.

values revealed that the geometric features selected do not strongly depend
on mesh resolution and accuracy. In order to better appreciate the measure-
ments’ robustness against the precise location of landmarks and the mesh
resolution, a visualization of each measurement, computed on the two sets
of 3D facial data, is provided in Figure 8.

Hence, on the basis of the statistical methods described above, in the
following subsections there is a description of the results, supporting the re-
lationship between the proposed computational descriptors and the physical
parameters: weight, BMI, WC, HC, NC, FM. The FM (fat mass) was added
in order to get an index of body composition. First the discussion relates
to each single facial feature, then to the composite index Face Morphology,
built as the latent variable of a single-factor model.

5.1. Correlations between face features and physical parameters

All facial features are highly correlated with weight, BMI and NC, up
to r = 0.78, and all are highly significant, with a p-value≤ 0.001 for all
features. MorphoE and MorphoG are also highly correlated with WC and
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Figure 8: Four graphs showing the concordance between the measurements computed on
the 3D facial data acquired with the Artec scan and manually labelled, and those acquired
with the low-cost sensor and automatically labelled.

Figure 9: Some plots showing the correlation between the physical parameters related to
body fat and the proposed measurements: BMI and MorphoG, neck circumference and
AnnuliR1,R2, weight and MorphoE , and neck circumference and MorphoE .
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HC, up to r = 0.619, and with high significance (p ≤ 0.001). The corre-
lation between the features AnnuliR1,R2

, ABλ1,λ2
and the parameters WC

and HC is a bit lower, but still significant, except for AnnuliR1,R2
and WC.

Some of these correlations are shown in the charts in Figure 9, while Table 4
shows the Pearson’s correlation coefficients between computational 3D face
features and all the considered fat-related physical parameters. Given the
relatively small size of the sample and the fact that the data are not specific
to any range of body weight and fat, but include subjects in diverse fitness
conditions, the results are very good, in that they show strong correlation
between automatically extracted 3D facial features and fat-related physical
parameters.

Concerning FM, the facial features show a moderate positive correlation,
yet the p−values show that the correlation is not significant. This might be
due to the sample size, and also to the fact that the sample includes both
men and women, and gender significantly affects FM values; the use of a
corrective factor is currently under study.

MorphoE MorphoG AnnuliR1,R2
ABλ1,λ2

Weight r .733 .719 .669 .675
p-value .000 .000 .001 .001

BMI r .711 .716 .651 .671
p-value .000 .000 .001 .001

WC r .614 .619 .547 .579
p-value .002 .002 .08 .005

HC r .569 .568 .518 .557
p-value .007 .007 .016 .009

NC r .788 .781 .778 .648
p-value .000 .000 .000 .001

FM r .272 .316 .211 .349
p-value .221 .152 .347 .112

Table 4: Pearson’s correlation coefficients between facial features and weight and fat-
related indexes (BMI: body mass index; WC: waist circumference; HC: hip circumference;
NC: neck circumference; FM: fat mass)
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5.2. SEM analysis

A single-factor model is built on the set of facial features extracted from
the Kinect scans (observed variables): MorphoE, MorphoG, AnnuliR1,R2

,
ABλ1,λ2

; the latent variable is Face Morphology. The goodness of fit of the
Face Morphology model, in the studied population, results high: χ2=137.45,
p-value = 0.0000; SRMR=0.008; CFI=0.953. Then the SEM model is cor-
rectly built. Figure 10 shows the relations between the latent variable Face

Figure 10: Path diagram of the single-factor model, with path coefficients labeling each
arrow. The path coefficients are standardized: values < 0.10 indicate a small effect; values
around 0.30 indicate a medium effect; and values > 0.50 indicate a large effect. (* means
that p-value< 0.0001)

Morphology and the facial features, quantified by the labels on the arrows.
All the standardized coefficients are above .84, with the exception of ABλ1,λ2

;
thus, Face Morphology provides a very good explanation of the observed vari-
ables.

The mean vector and variance matrix of the model were used to com-
pute the factor score of the Face Morphology model, via a linear regression.
Table 5 reports the Pearson’s correlation analysis between weight-related in-
dexes and the factor score of the structural equation model: the factor score
correlates better than each single facial feature with all physical parameters
(but FM).
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Weight BMI WC HC NC FM

r .742 .724 .633 .580 .804 .300

Table 5: Pearson’s r between weight-related indexes and factor score of the model (BMI:
body mass index; WC: waist circumference; HC: hip circumference; NC: neck circumfer-
ence; FM: fat mass). All coefficients have p-values < 0.0001.

6. Discussion and Conclusion

We presented an automatic system able to reconstruct a 3D face and
extract measurements, which can be automatically computed and do not re-
quire neither high scanning resolution nor pose adjustments. The results on
the sample of the studied subjects, without any known pathology or medical
treatment, allow us to formulate two conjectures: (i) a relevant relation exists
among face morphology and body weight and fat-related parameters, includ-
ing markers of central obesity, an important component of cardio-metabolic
risk; (ii) the relation is stable in the general adult population.

Looking back to the existing literature dealing with face morphology,
cited in Section 2.2, it is appropriate to make a few comments. Banabilh
et al. in [13] carry out an accurate analysis of the face shape, using the 3D
stereophotogrammetry, in order to detect patients more prone to severe form
of sleep apnea; hence, although this study is one of the first investigating
the relations between 3D accurate facial data and specific healthy/unhealthy
condition, it cannot be properly compared to our study, nor with respect to
the methodology neither to the objective. Other works (such as by Coetzee et
al. [8] and Tinlin et al. [9]) aim to assess the health status focusing on body
fat; on the contrary, they measure the perceived fat adiposity, hence they do
not provide a reproducible measure for the assessment of the health status.
Ferrario et al. [30] consider the excess body fat in obese adolescents and the
facial features studied are computed using 50landmarks manually located
for each subject; while the measurements here proposed use only 4 facial
landmarks, automatically labelled; also the target population is different.

In [32, 33] the study population is divided into four groups (by age and
gender) and the waist circumference is used to classify each subject into
two classes: normal and obese, defined with respect to the visceral obesity,
assessed through the waist circumference. Hence, the predictive potential
of the facial geometric features considered is evaluate in [33] by computing
the AUC (area under the receiver operating characteristic curve) and the
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Cohen’s Kappa, and such analysis shows that for each group there exist facial
descriptors which are good in discriminating the two classes. Comparing to
the present work, the features considered in [33] are computed on 2D data
collected manually by expert technicians, whilst the proposed descriptors are
based on 3D data, automatically acquired and labelled; also, as described in
the previous Section, in spite of the small size of the sample considered, the
Pearson’s correlations result moderate to strong between the 3D automatic
descriptors and a set of body fat related parameters (NC, weight, BMI, WC).
The statistical analysis is carried out considering such 3D descriptors as
continuous variables and the prediction potential of the proposed descriptors
(and of the composite index) has not been assessed; on the other hand, the
correlation patterns found indicate that such descriptors may be used in the
future to classify the subjects into more than two classes, with respect to
body fat.

The obtained results encourage us to increase the number of enrolled
subjects, also taking into consideration gender differences, and to prolong
the observation for each subject. The main objectives are: (i) to better
clarify, and possibly quantify, the link between facial descriptors and fac-
tors of cardio-metabolic risk; (ii) to define normal ranges and cutoff values
with respect to the cardio-metabolic risk through well-established risk charts
(HEART SCORE, Fatty-Liver index, HOMA index, FINRISK); (iii) under-
stand whether these descriptors could be used to properly follow the temporal
variations of the risk factors related to body weight and fat.

Our findings may be considered as a first step in the development of inter-
active, non obtrusive monitoring systems, based on low-cost depth sensors,
able to provide reliable estimates of body weight and related parameters.
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