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Abstract

The segmentation and tracking of coronary arteries (CAs) are critical steps
for the computation of biophysical measurements in pediatric interventional
cardiology. In the literature, most methods are focused on either segmenting
the vessel lumen or on tracking the vessel centerline. However, they do
not simultaneously combine the segmentation and tracking of a specific CA.
This paper introduces a novel algorithm for CA segmentation and tracking
from 2D X-ray angiography sequences. The proposed algorithm is based on
the Temporal Vessel Walker (TVW) segmentation method, which combines
graph-based formulation and temporal priors. Moreover, superpixel groups
are used by TVW as image primitives to ensure a better extraction of the
CA. The proposed algorithm, TVW with superpixels (SP-TVW), returns
an accurate result to segment and track the artery along the angiogram.
Quantitative results over 12 sequences of young patients show the accuracy
of the proposed framework. The results return a mean recall of 84% in the
dataset. In addition, the proposed method returned a Dice index of 70%
in segmenting and tracking right coronary arteries and circumflex arteries.
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The performance of the proposed method surpasses the existing polyline
method in tracking the centerline of CA with a more precise localization of
the centerline, resulting in a smaller distance error of 0.23mm compared to
0.94mm.

Keywords: Segmentation, Graph-based Method, Tracking, Coronary
Arteries, Random Walker, X-ray Angiography, Superpixels

1. Introduction

Two-dimensional (2D) X-ray moving sequences (also called angiograms)
are used in percutaneous coronary interventions (PCI) for the diagnosis and
treatment of coronary artery (CA) pathologies in newborns and young pa-
tients. While other imaging modalities such as computed-tomography are
used prior to PCI intervention to have a general view of the CA tree, 2D
X-ray angiography allows the visualization of the arteries in real-time during
the intervention displaying also the motion of the arteries under respiratory
and cardiac work. The accurate and repeatable segmentation and tracking of
CAs from 2D angiograms are essential for the assessment of the biophysical
measurements of the arteries to predict cardiovascular diseases.

These measurements include computing the vessel segment length [1], de-
tecting stenosis [2] and estimating the severity of a stenosis by measuring the
vessel’s diameter [3]. Segmenting and tracking the artery along the moving
angiography sequence is a key step for measuring the artery and assessing its
dynamics in the cardiac cycle.

Vessel segmentation from a 2D moving sequence is a challenging task.
First, the visualization of CAs in X-rays depends on the diffusion of the con-
trast agent in the blood flow. The faster the diffusion of the contrast agent,
the harder it is to outline the CA. This is the case for pediatric patients,
where the heart rate can be as high as 160 beats per min (twice that of
an adult). Therefore, an entire vessel tree cannot be depicted in a single
image, but gradually in the angiographic sequence at a typical frame rate
of 15 frames/s. It would be more relevant to segment only section of the
artery [4], rather than segmenting the whole coronary tree. Moreover, the
displacements of CAs are influenced by both the respiratory and cardiac mo-
tions. For these reasons, it is difficult to track CAs automatically with these
motions. To address this problem, temporal coherence should be preserved,
while segmenting one artery in the sequence’s frames. This coherence will



Figure 1: Overview of the segmentation of a coronary artery in 2D+time: Segmenting
and tracking the right coronary artery (highlighted in yellow) in an angiographic motion
sequence.

guarantee that the method is tracking the specific artery despite the respi-
ratory and cardiac motions. In addition, using new image features to define
homogeneous groups of pixels can enhance the segmentation accuracy. Super-
pixels have been used to define image primitives for image segmentation [5].
They can help by preserving the essential information while simplifying the
spatio-temporal segmentation. Instead of extracting pixels independently,
the method would extract a group of connected pixels that share the same
properties.

Our objective is to design a spatio-temporal segmentation algorithm that
can be coherent both spatially and temporally for pediatric interventional
cardiology. The spatial coherence guarantees that the method segments one
particular vessel from the background, while the temporal coherence tracks
the segmented vessel in the motion sequence. The results obtained will guide
cardiologists after PCI interventions in evaluating the dynamics and the mea-
surements of the vessel of interest (VOI) during the cardiac cycle.

The contribution of this paper is the development of an algorithm for
segmenting and tracking a specific CA in a moving X-ray sequence. Figure
1 illustrates the results of the proposed work, where a specific artery is seg-
mented and tracked in a moving X-ray sequence. This work was previously
undertaken in [6]. The previous work introduced a multiscale graph-based
method that combines vesselness features with a temporal prior: the multi-
scale Temporal Vessel Walker (TVW). This study extends the work presented
in [6] as follows:

1. Tt enhances the TVW [6] by incorporating superpixels as image primi-
tives.

2. It uses the SP-TVW method within a multi-size superpixel pipeline,
rather than applying the method at different scales of the image. This
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indicated to be more efficient than using a multiscale framework [6].
3. No post-processing step is used, unlike the previous work where shape
matching is applied for post-processing.
4. While the previous method was tested on only 5 angiographic se-
quences, in this paper, we evaluated the algorithm on a larger dataset
of 12 sequences displaying different types of CAs.

The findings are expected to significantly contribute to the field of segmen-
tation and tracking in 2D X-ray sequences. Most importantly, the findings
may lead to the development of new protocols for assessing and evaluating
CA dynamics directly from monoplane 2D X-ray sequences.

This paper begins by discussing existing literature on vessel segmentation
and tracking. Then, we describe the proposed pipeline for spatio-temporal
segmentation. In sections 4 and 5, we show the experimental results on young
patients’ datasets and discuss these results. In section 6, we summarize our
findings by discussing future works.

2. Literature review

Different approaches have been proposed in literature for segmenting CAs.
A complete review of segmentation methods can be found in [7]. However,
most methods deal with the segmentation of a single image, and not a moving
angiogram sequence. To consider the movement of a CA, other studies have
suggested a solution for tracking the same structure in time. The polyline
tracking method that was proposed by [8] extracts and tracks a CA’s center-
line in 2D angiographic sequences. The CA’s centerline is represented by a set
of lines or polylines, and each line is retrieved in the sequence. The polyline
tracking method is a reference work in the literature [9], and shows successful
qualitative results. Moreover, the method is formulated as a minimization
problem on a constructed graph, similar to the proposed method. However,
to handle respiratory motion and simplify the computations, polyline track-
ing is applied after a pre-processing step. Otherwise, the computations can
be memory intensive and time consuming because the solution relies on find-
ing the shortest path within a large graph in which each node represents a
possible line segment of the centerline. Moreover, the polyline representation
of a vessel may lead to the loss of curvature information.

Gao and Sundar [9] presented a motion model to track seeds that belong
to the CA during the angiography sequence. Nonetheless, their model consid-
ers only cardiac motion, and not both cardiac and respiratory displacements.
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More recently, the work in [3] presents a spatio-temporal approach to
extract and track the CA tree. However, the method tracks the entire tree,
and not one artery in particular. It is accepted that tracking one artery is
more challenging because all of the arteries in the sequence will share similar
features, and it is difficult to automatically distinguish one from the other,
while dealing with the artery’s motion in time. Besides, the method in [3]
computes the vessel lumen at each point in the centerline individually, and
does not compute a global segmentation of the lumen.

Finally, while other studies have used spatio-temporal segmentation to
track and segment arteries, they either focus on other types of arteries, which
do not have the same motion as CA (such as cortical vessels in [10]), or they
work on other imaging modalities such as 3D CT scans in [11], where the
artery’s displacements are not depicted in the same manner as in 2D X-ray
angiograms.

To the best of our knowledge, this work is the first to undertake a spatio-
temporal segmentation method, where the method tracks the lumen of one
specific artery, while being robust to both respiratory and cardiac motions
from a monoplane 2D X-ray sequence.

2.1. Superpizel Method

Figure 2: X-ray frame oversegmented with superpixels (red lines are the borders of super-
pixels)

To enhance the segmentation process, one effective pre-processing step
for image representation is superpixel extraction. First introduced by Ren
and Malik [5], the method organizes an image into small groups of pixels
sharing the same features with low contour energy inside the group. The use
of superpixels preserves the important information needed for segmentation,
while simplifying the representation of the image and reducing the model’s



search space. One of the most efficient methods for superpixel computations
is the simple linear iterative clustering (SLIC) [12]. The method performs a
local clustering of pixels using their color values and spatial locations. Figure
2 shows an X-ray frame segmented using the SLIC superpixel algorithm .
Superpixels have been used within graph-based methods such as normalized
cut [13] and random walks [14], where they simplify the graph size and the
retrieval of the optimal solution.

3. Proposed method: Temporal segmentation of CA in 2D X-ray
moving sequences

Input : Angiography sequence at
each superpixel size Spsize;

Yes

No
Frame

t=1? l’ &

Segment and track
the vessel with TVW
using the
segmentation result
on frame t-1

Segment and track
the vessel with
TVW using the

result on frame 1

Segment the first
frame using VW

Compute the )
centerline and
extract the vessel
of interest as
specified by the
seeds Yy,

Combine the results

Figure 3: Proposed pipeline for spatio-temporal segmentation of an artery in 2D X-ray
angiogram.

Figure 3 illustrates the steps of the proposed algorithm employed for the
segmentation and tracking of CAs. At the beginning of the sequence, the

'We used the implementation of SLIC from the VLFeat package
http://www.vlfeat.org/api/slic.htm



clinician defines the vessel of interest by specifying -using a simple click- the
limits of the vessel. The vessel walker method (VW) [15] with superpixels is
applied to segment all the vessels in the image. This result is further refined
to extract only the vessel of interest based on the selected seeds, as described
in section 3.2.1. For the rest of the sequence, the original Temporal Vessel
Walker with superpixels (SP-TVW) is applied, and is described in section
3.2.2. To track and segment the vessel, the method uses the segmentation
result at the first frame of the sequence and the segmentation result at the
previous frame. The steps presented in Figure 3 are applied for different
superpixel sizes to capture large and thinner parts of the artery. The results
computed for different superpixel sizes are merged using a weighted combi-
nation to obtain a final segmentation result. All of these steps are detailed
in the following section. First, we start by presenting the Temporal Vessel
Walker model and then all the steps of the new pipeline are described.

3.1. Temporal Vessel Walker

To solve the spatio-temporal segmentation task, the proposed solution
is based on the Temporal Vessel Walker method introduced in [6]. The
proposed method adapts the random-walks formulation [16], [17] for vessel
segmentation in 2D X-ray images. The method adds a temporal prior to
preserve the structure of interest. In a multiple-frame sequence where we
observe the same vessel of interest, the aim is to segment the vessel from
a new frame Z' at time ¢, knowing the segmentation result in its previous
frame Z'~! (Figure 1).

The proposed idea is as follows: If we have a pixel pi~* at location i in
7'~" and p} at the same location in Z*, and if p} or one of its neighbors shares
the same features as p!~', then pixel p§ or one of its neighbors has a high
probability of having the same label (i.e., background or foreground label)
as pi~'. To guarantee this temporal similarity, we define graph G, which
connects by an edge each pixel p/~! in Z!~! to a pixel p} and its neighbors
within a radius r; from Z?, as shown in Figure 4. Each edge has a weight wi;
expressing the temporal similarity between pf‘l and pz-:

_ 2 e
exp{ =7 ([ —1L)°}, ifi=j

wi; = or dist(i,j) <, (1)
0, otherwise.

I!7" is the intensity value at pixel p/~!, and ~, is a parameter controlling the
effect of the intensity differences on the weight.
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Figure 4: Representation of the temporal graph G,: Node 7 from image Z*~! is connected
to the node having the same location in Z¢ and its surrounding 8-neighbours. We com-
pute the temporal similarity measures between i and all the connected nodes (j and its
neighbors).

We define the TVW following a Bayesian approach. The proposed method
looks for a mapping f : Z — {0,1}, where f; = 1 if the pixel i belongs to
the vessel, and f; = 0 if ¢ belongs to the background. Having the image’s
features (represented by vector Y) and a prior segmentation mask (f''), the
mapping should maximize the posterior probability of the Markov random
field (MRF) associated with the label map:

X* = argmax p(X|Y, X"
X

= argmax logp(X) + logp(Y | X) + logp(X"™ | X). (2)
X

Assuming the pixel features to be conditionally independent given their label,
the likelihood term can be defined as

i
logp(Y | X) = > wilogp(ys|wi = 1) + (1—z:)logp(y:|z: =0). (3)

=1

While various image features could be used, such as pixel intensity values
and gradient directions, we found that vesselness values were most robust to
contrast changes and artery movement. In our method, y; thus corresponds
to the vesselness of pixel i obtained from a Frangi filter [18] and normalized
to the [0, 1] interval. Based on an empirical analysis, we observed that the
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vesselness values in the arteries (i.e., foreground region) roughly follow a
one-sided Laplace distribution, where most pixels have a vesselness near 1,
and the probability decreases sharply to zero for smaller values of vesselness.
Likewise, the probability of having a near zero vesselness in the background is
high, and drops quickly for higher values of vesselness. Using this observation,
we model the likelihood of foreground/background pixels as:

logp(yi|zi =1) o —a(l —y)

logp(yi|zi =0) o< —PBy;, (4)
where v and /3 correspond to the scale parameter of their respective Laplace
distribution, and are used to control the trade-off between false-positives and

false-negatives. For the label image prior, we use the standard Potts model
to enforce spatial consistency of labels:

1zl 17l

log p(X Z Z wij |z — 5. (5)

=1 =1
A similar model is used to model the temporal prior of labels:

Izl |71

log p(X*1 X) —ZZUJ |lz; — 2. (6)

i=1 j=1

Combining these definitions, we can then formulate the maximum a posteri
(MAP) problem as the task of minimizing the following energy function:

1| 1|
X) =ad (1—y)w + B> yilwi—
=1 =1
Izl 7] izl |z (7)
2D I WATETAES 3 pEALER Tl
i=1 j=1 i=1 j=1

where parameter p is added to control the trade-off between spatial and
temporal smoothness.

This formulation corresponds to a graph-cut problem, which can be solved
efficiently using a max-flow algorithm. However, because the are susceptible
to the shrinking bias problem, graph-cut methods are not well suited for the
segmented of thin structures like arteries [19]. Instead, we use a random-walk
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approach in which the intergrality constraints on x; are relaxed to the [0, 1]
interval, and the energy function reformulated as follows:

7| 17|
BX) =a> (1 —p)e? + 8 e — 1
=1 =1
Izl 17| Izl |7 <8>
+ ZZ@UU (sz - 33]')2 + /LZZU}Z]’ (xz - 37;‘_1)2'
i=1 j=1 i=1 j=1

The solution to this quadratic problem can be obtained efficiently by solving
a sparse linear system.

The resulting X vector describes the probability for each pixel to belong
to the foreground. To obtain a binary segmentation, a threshold has to be
selected or computed. We chose Otsu’s thresholding algorithm [20] to find a
final binary segmentation of X. This well-performing method computes the
threshold that minimizes the weighted within-class variance.

The application of TVW alone may succeed in extracting parts of the CA
and tracking it in the sequence. Nevertheless, in the context of CA segmenta-
tion and tracking, using the Temporal Vessel Walker alone is not sufficient to
capture cardiac and respiratory motions of CAs. Therefore, additional steps
are necessary to enhance the result of TVW. For this reason, we adapted
the method to the CA motion by grouping similar pixels and tracking these
groups. To achieve this, superpixels can be an accurate grouping method. In
the following section, we present the proposed algorithm for spatio-temporal
tracking using the temporal vessel walker with superpixels to segment and
track a CA in a 2D X-ray angiogram.

3.2. Temporal Vessel Walker with superpizels for segmentation and tracking

3.2.1. Segmentation of the first frame: Vessel Walker method using super-
pixels

At the beginning of the X-ray sequence, and because we do not have an
initial prior, the method starts by asking the operator (the cardiologist) to
specify two seed points. These seeds correspond to the beginning and the
end of the vessel of interest, as shown in the first image in Figure 5. More
than two seeds can be defined in the case when the contrast in the image is
limited, or if there is vessel overlap or many bifurcations. Using the Vessel
Walker and the specified seeds, the method extracts the vessel of interest.
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bifurcations

Figure 5: Steps for the segmentation of the first frame.

It is important to accurately extract the lumen of the first frame in the
sequence, which is why different steps are used, as shown in Figure 5:

1. Extending the Vessel Walker method using superpixels: The Vessel
walker method [15] is applied on the first image of the sequence by using
superpixels grouping. The image Z is represented by an undirected
graph G. Each by node v; in G corresponds tp a superpixel sp; from
Z. The weight w;; describes mean intensity similarity between two
neighbouring nodes v; to v;. As shown in the second image in Figure 5,
the result extracts all the vessel-like structures in a frame. To extract
only the VOI as specified by the seeds, the following steps are needed.

2. Computing the centerline of the VOI: The centerline is computed as the
shortest path that connects the endpoints of the vessel (i.e., selected
seeds) passing by pixels with similar features. An adjacency matrix
is defined to describe the image as a connected graph. Intensity and
orientation features are used following the idea in [21]. Using the adja-
cency matrix and the seed locations, Dijikstra’s shortest path algorithm
[22] computes the centerline of the vessel (Figure 5).

3. Extracting the lumen of the computed centerline: A region surrounding
the computed centerline is defined (the radius of the region is selected
empirically) and the lumen within that region is extracted (fourth im-
age in Figure 5). This result may include some bifurcations of the
vessel that are not of interest to clinicians (fifth image in Figure 5). A
postprocessing step is added to compare the centerline features with

11



the extracted lumen, keeping only pixels that are similar to the ones in
the centerline. The final result is shown in the last image in Figure 5.

While computing the lumen at the first frame may seem to be demanding in
terms of the number of steps and computations, the complete computation
takes a mean time value of 20 s per frame (running non-optimized Matlab
code on an Intel Core i7 3.1 GHz).

3.2.2. Segmentation and tracking: Temporal Vessel Walker using superpizels
(SP-TVW)

Figure 6: The temporal adjacency matrix computes similarities between the selected source
nodes (red points in Z'~1) and sink nodes (red points in Z?)

The model in Eq.(8) is extended using superpixels. These groups of pixels
increase the accuracy of the retrieval of similar groups from one frame to the
next. The temporal adjacency matrix w” defined in Eq.(1) is then modified
to use superpixels?.

The value of wj; describes the mean intensity similarity between the su-
perpixels belonging to frame Z'~!, (which represent source nodes), and the
ones that belong to Z* (the sink nodes).

Because the motion from Z'~! to Z* is located around a specific region, we
simplify the computations in the equation (1) by selecting only the superpix-
els in Z'~! and Z' within a specific region (instead of using all the superpixels
in Z'~! and Z%). Therefore, the only selected source nodes are the superpixels

2Adjacency matrix was computed with the code for the region adjacency
graph (source: http://www.mathworks.com/matlabcentral/fileexchange/16938-region-
adjacency-graph-rag-)
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belonging to the foreground segmentation result in Z!~!, and the sink nodes
in frame Z* are those belonging to a specific region of interest ROL,, which
is the region surrounding the foreground result at Z'=!, where the radius of
the ROI, is selected based on the maximum displacement of arteries from
one frame to the next. The temporal adjacency matrix is computed using
the selected source and sink nodes, as defined in Figure 6. Considering only
these specific nodes gives a sparse adjacency matrix, which speeds up the
computations and limits the background noise.

3.3. Proposed algorithm

Algorithm 1 Proposed algorithm for tracking and segmenting coronary ar-
teries in 2D X-ray sequences.
Require: 2D xray sequence of frame; ; i = 1..nbFrm
Require: The weight assigned to each superpixel size k; ; j = 1..SPsizeprqq
for each frame; < 1,nbFrm do
if frame; := 1 then
Ask operator to select seeds (limits of the vessel) ;
Apply Vessel Walker segmentation with superpixel ;
Compute the centerline and lumen using the VW result ;
TV W, < the computed lumen ;
else
for SPsize; <— 1, SPsizepq, do
TVW -1y < compute SP-TVW using the result at frame;_; ;
TVWi1y < compute SP-TVW using the result at frame; ;
TVWsize; = TVWi—1) + 2 X TVW;1y ;
TVW; =TVW, + k; x TVW size;;
end for
Threshold the result : TVW* = TVW; > mean(TVW;) ;
end if
end for
RESULT : Segmentation result TVW; of the angiographic sequence ; i =
1..nbFrm.

Algorithm 3.3 summarizes the proposed pipeline (as illustrated in Figure
3) for a spatio-temporal segmentation of 2D xray angiography sequence. At
the first frame (frame; = 1), the operator (the cardiologist) specifies the
artery of interest. The centerline of the artery is computed and then its
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lumen is segmented using the vessel walker method. Then, for the rest of the
sequence, the algorithm applies the SP-TVW method at different superpixel
sizes (where SPsize; = [1...SPsizepq,]) to track and segment the same
artery in the angiographic sequence.

For each frame i, and at each superpixel size SPsize;, the algorithm
computes the temporal vessel walker, using the segmentation result obtained
from the previous frame (T'VW(;;_1y), and again using the result at the first
frame (T'VW/(;1)). The computations use the segmentation mask of the pre-
vious frame because the changes from the previous to the actual frame are
less dramatic. Besides, the changes in intensity from consecutive frames are
less important. However, during segmentation in the moving sequence, the
result from the previous frame may contain some errors (such as overlapping
vessels or missing parts of the VOI). Therefore, in addition to the previous
frame, the SP-TVW is applied using the first-frame segmentation mask as
a prior because this prior was computed accurately: Indeed, the segmen-
tation at the first frame should be validated qualitatively before launching
the segmentation for the rest of the sequence (as explained in section 3.2.1).
Consequently, both SP-TVW results (i.e., using the previous frame and first
frame) are combined to determine the final segmentation result T'VIW size;,
computed at a specific superpixel size.

Figure 7: Computing superpixels at different sizes: left: SPsize=20 ; right: SPsize=13.

Because the CA’s thickness changes from the proximal to the distal parts
of the artery, the result is applied at different superpixel sizes (SPsize; =
1..SPsizeprq, ). Figure 7 shows the superpixels computed at different sizes.
We notice that a large SPsize captures the proximal and thick parts of the
artery (highlighted region A in Figure 7), which have a high contrast with
the background. On the other hand, a smaller SPsize captures the distal
thinner parts of the artery, where the contrast level is limited (highlighted
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region B in Figure 7). For this reason, the segmentation result VW T'size; is
computed at different superpixel sizes.

The results for the same frame at different superpixel sizes are weighted
and combined to obtain a final segmentation result VWT; at frame i: as
the SPsize value decreases, more weight is given to the corresponding TVW
result (i.e., the value of k; increases). To obtain a binary segmentation mask,
TVW,; is thresholded. Once the segmentation mask T'VIW} is obtained, the

method uses it to compute the segmentation result VW T;, ; in the next frame
in the sequence, until the end of the sequence.

4. Experimental results

4.1. Data Acquisition

To evaluate the proposed work, we used a dataset of 12 angiographic se-
quences of coronary catheterization. The sequences were acquired from six
young patients with congenital heart disease from the Sainte-Justine’s Hos-
pital (Montreal, Canada). These data were saved and anonymized into the
DICOM format, and were recorded after approval by the Sainte-Justine’s In-
stitutional Ethics Review Board. The angiograms were acquired by a C-arm
Infinix-CFI BP by Toshiba profiling: six angiograms of right coronary arteries
(RCA), three angiograms of the left anterior descending artery (LAD), and
three others of the circumflex branch (Cx). Each sequence comprised nine
frames (£2) having a size of 512 x 512 pixels, and each of which represents
a single cardiac cycle selected as the one that best delineates the anatomy
from among the full angiographic acquisition. Different artifacts are present
in our database: The frame-rate is low (15 frames per second), which makes
the motion from one frame to the following more pronounced. In addition,
some sequences depict sternal sutures (when the patient has been previously
operated on), which are dark tubular regions that can alter the segmentation
result.

Because it can be complex and time-consuming to manually segment all
of the sequence’s frames, one segmentation expert (the first author) has man-
ually segmented 4 keyframes for each sequence. Each keyframe represents a
different stage of the cardiac cycle: at the beginning (0%), at 20%, at 40%,
and at the end of the cycle (100%). Using these frames, it is sufficient to
evaluate the performance of the segmentation method because each frame
represents different motion changes along the sequence. Only the main ves-
sels were segmented. The manual segmentation is delimited at a terminal

15



Observer 1 Observer 2 Observer 3 Ground truth

Observer 1 1.00 0.91 0.87 0.90
Observer 2 0.91 1.00 0.89 0.86
Observer 3 0.87 0.89 1.00 0.87
Ground truth 0.90 0.86 0.87 1.00

Table 1: Cohen’s kappa coefficient computed between each pair of observer’s manual
segmentation.

bifurcation or when the vessel would measure half of its original diameter.
This ground-truth data has been subject to a double correction and valida-
tion by two cardiologists (the 4th and 5th authors).

Vessel lumen’s segmentation is evaluated using the ROC curve’s AUC,
precision, recall, and Dice metrics. To evaluate the centerline extraction
and tracking, we modified the classical computations of precision and recall
metrics. PrecisionCL, RecallCL, and the distance error were computed as
proposed in [23]: for each pixel in the ground-truth, we checked within its
neighborhood of radius 5 if there is a corresponding point from the computed
centerline. Finally, we computed the location error between the ground-truth
and the computed result to evaluate the accuracy of the centerline location.

4.2. Inter-observer evaluation

Groundtruth data were defined manually. To quantify agreement between
manual segmentation results, we asked three trained operators to manu-
ally segment the LAD in four frames from one sequence (sequence 1 of our
dataset). Each operator was asked to segment the main artery until a termi-
nal bifurcation has been reached or until the diameter of the vessel measures
half of its original diameter. All three operators have blindly segmented the
LAD, without seeing each others results or the ground truth. Pairwise inter-
observer agreements were measured using Cohens Kappa coefficients and are
shown in table 1. When we compare the results of the same observer, kappa
coefficient is 1 meaning total agreement, which is normal since we compare
the same results to each others. Otherwise, the coefficient is between 0.86
and 0.91. This is considered as almost perfect agreement [24] and indicates
a low inter-observer variability.
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Polyline tracking Ours

PrecisionCL 0.78 0.81
RecallCL 0.75 0.78
Distance error 0.94 0.23

Table 2: Average performance of the polyline tracking method [8] versus our proposed
algorithm on the 12-sequence dataset in terms of centerline extraction and tracking.

4.8. Comparing the proposed method to polyline tracking

Because the polyline tracking follows only the centerline of the vessel,
and our work tracks the lumen of the vessel, both methods are evaluated in
terms of centerline tracking and not lumen tracking. To do so, we applied the
Hamilton-Jacobi skeletonization method [25] to extract the centerline from
our SP-TVW lumen. The Hamilton-Jacobi method analyses the normalized
flux of the gradient vector field to detect the centerline points. It has been
proven to be computationally efficient and robust to boundary noise. Both
the polyline and the proposed methods were initialized using the same cen-
terline computed from the first frame (as described in section 3.2.1) and they
were both tested on the 12 angiographic datasets.

Table 2 displays the performance of the polyline tracking method [§]
and our algorithm on the dataset. The results are evaluated in terms of the
centerline precision (PrecisionCL), and recall (RecallCL), and distance error.
The proposed method has a higher trade-off than polyline tracking in terms
of PrecisionCL and RecallCL. Moreover, its corresponding distance error of
0.23mm is lower than that obtained using polyline tracking, which returns a
mean distance error of 0.94mm.

Fig. 8 shows the centerline extraction performance using the proposed
method and the polyline tracking method on sequence 8 of our dataset. Poly-
line tracking preserves the general shape of the initialized artery. However,
as the artery expands because of the cardiac work, polyline tracking cannot
capture some parts of the artery, unlike our results. Indeed, the images in
the first row in Fig.8 display green colored pixels that exhibit false negatives
generated by the polyline tracking approach. The proposed algorithm gives
more accurate results and retrieves the CA in the rest of the sequence with
fewer false negatives, as shown in the second row of Fig.8. Moreover, despite
the presence of false positives in the proposed result (pink pixels), the pro-
posed method overlaps more with the ground-truth compared to the polyline
method. As a matter of fact, the location of the computed centerline is well
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Figure 8: Computed centerline at different frames (left to right: frame 2, 4 and 9) on
sequence 8 and their overlap on the ground-truth centerline. Top row: Polyline Tracking
results. Bottom row: Our results. Green colored pixels show false negative; pink colored
pixels show false positives and white colored pixels are for true positives (i.e., overlap).

aligned with the ground-truth data. This is illustrated by the presence of
more white pixels in the proposed results than in the polyline result in Fig.8.

4.4. FExtending the TVW model using superpizels: contribution of the pro-
posed algorithm

Figure 9: Results showing per-pixel probability values to belong to the foreground, as
computed using the TVW without superpixels (left) and with superpixels (right)

Table 3 displays the mean results on four angiographic sequences of our
database using the temporal vessel walker (SP-TVW) with superpixels in
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TVW TVW (multiscale) SP-TVW

Precision 58.75% 85% 79.75 %
Recall 82% 52.75% 73.5 %
Dice 63.25% 63.5% 75.5 %

Table 3: Average performance (Precision, Recall, and Dice coefficient) on the first four
angiographic sequences of our database.

comparison to using TVW pixelwise and to the TVW within the multiscale
approach[6]. Using the TVW method pixelwise, while we have a better recall
value of 82%, there is limited precision. The TVW within the multiscale
approach returns the highest precision result of 85%, but it yields low recall
values. On the other hand, TVW with superpixels returns the highest trade-
off between recall and precision values, and the highest Dice value of 75.5%.

Figure 10: Segmentation overlaid on the original frame 4 of the RCA sequence 3 of our
dataset. Top row: the ground-truth (left) and the TVW with superpixels result (right).
Bottom row: TVW method pixelwise (left) and TVW within the multiscale approach
(right).

Fig. 9 illustrates the computed probabilities of pixels belonging to the
foreground (i.e., the non-thresholded results computed using Eq. (8)), using
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Figure 11: Influence of the superpixel size on Dice, Recall, and Precision using our pro-
posed work.

the TVW formulation with and without superpixels. The colors in the im-
ages shows the probability values; the red pixels correspond to probability
that it belongs to the foreground close to 1, while the blue pixels correspond
to a probability of 0. The use of superpixels better highlights the difference
between the foreground and background regions, whereas the result com-
puted without superpixels has some limitations in terms of extracting parts
of the vessels. This is observed particularly in the yellow region at the end
of the vessel, where the probability values are around 0.6 and 0.5.

Figure 10 shows the ground-truth and the segmentation results obtained
using the three approaches in sequence 3 of our dataset at frame 4. In the left
image of the second row, the use of TVW pixelwise displays false positives
in its segmentation mask, where sternal sutures belonging to the background
are highlighted as part of the artery. SP-TVW and the multiscale approach
exhibit more precise results in the extraction of the artery. Nonetheless, the
multiscale approach is less precise around the borders of the vessels, where
its segmentation mask oversteps the edges of the vessel.
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Figure 13: Influence of the superpixel using the VWTSP model at different superpixel
sizes on the segmentation result.

4.5. Parameter’s influence

4.5.1. Superpizel size

In this section, we evaluate the effect of the superpixel size (SPsize) on
the mean performance, as illustrated in Fig.11. The values were computed
on the first three sequences of the dataset. When the SPsize becomes too
large, each superpixel will regroup pixels that are less similar to each other.
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This explains the sensitivity of the precision curve when the superpixel size
becomes larger than 10. On the other hand, recall values increase as the
SPsize is increased, until it reaches the value of SPsize= 10 pixels.

Figure 12 shows the impact of the size of superpixels on the computation
times. Note that as the superpixels size increases, the computation times
are faster. As the size becomes larger, the number of nodes in the adjacency
and temporal adjacency graphs decreases, making the matrices computation
lighter.

Finally, Figure 13 displays the impact of different superpixel sizes (from
the largest 100 to the smallest 4) on the segmentation result. We can see
that as the SPsize gets smaller, fewer errors are made. However, when the
SP size is the smallest, there is some difficulty highlighting the border of the
vessel.

4.5.2. Tracking parameter
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Figure 14: Influence of the p values on the Dice, Recall, and Precision using the TVW
method.

Figure 14 shows the influence of the temporal parameter ;1 on our method.
We tested only the TVW using the previous segmentation frame as a prior
and at one superpixel size. These tests were done on the first three sequences
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of the dataset. The first curve in Figure 14 displays the performance in terms
of the Dice values as p increases. When the p value is between 0.1 and 1,
the Dice curve increases and reaches a peak at 4 = 1. Once p > 1, the
performance drops dramatically. Optimal values for the temporal parameter
p are within the interval [0.1, 1]. This temporal parameter can have a critical
impact on the performance because it helps to ensure that the VOI is tracked
along the angiography sequence. Parameter p has the same effect on the
precision curve where the optimal value of p is within the interval [0.5, 1].
However, the parameter does not affect the recall values (as shown in the
second curve in Figure 14). Having a temporal prior may limit the rate of
false positives, but it can also limit the true positive rate; hence, p increases
the precision level but can also limit the recall value.

Figure 15: Influence of the p values on the SP-TVW results: first row: segmentation
masks overlaid in yellow on original frames. Bottom row: Segmentation mask displaying
true positives (white), false positives (pink), and false negatives (green). From left to
right: results at © =0, 1, and 10

Figure 15 displays the proposed method’s results on the second frame
of sequence 2 of our dataset. Each column shows the result for p = 0, 1,
and g = 10. The top row shows the effect of ;1 on the segmentation masks.
There is some improvement between @ = 0 and pu = 1, where the background
noise around the end of the vessel is limited at © = 1. However, when u
gets a higher value, more background noise is added because the SP-TVW
highlights the connection between the previous segmentation result and the
actual frame.
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These findings are highlighted further in the second row in Figure 15,
where it exhibits the overlap between the segmentation mask and the ground-
truth: false positive pixels are colored in pink, false negatives in green, and
true positives are in white. When parameter p = 1, false positives are limited
compared to the result at ;4 = 0. On the other hand, when p = 10, the true
positive rate increases and more pixels are colored in white. However, the
method becomes less robust to the background noise.

4.5.8. Influence of parameters a and [
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Figure 16: Influence of « (left column) and S (right column) parameters on Dice, recall,
and precision (From top to bottom) using the proposed method.
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The impact of parameters a and , from equation (8), is presented in
Figure 16. Parameter « influences the weight of the foreground pixels. As
the value of « increases, the more robust becomes the result to background
noise, increasing the precision value. On the other hand, when « is greater
than 10, the method will discriminate not only background noise, but also the
pixels belonging to the vessels, which explains the low recall values. The value
of o should be optimally selected to preserve a trade-off between precision
and recall. The Dice curve shows that an optimal value of o = 10 leads to
this trade-off. The parameter [ affects the weight of the background pixels.
Unlike parameter «, higher § values result in a higher recall. However,
background pixels that have an important vesselness value will be considered
as part of the foreground. This limits the precision of the method. The Dice
curve shows that at f = 50, the method gives the optimal segmentation
result.

4.6. Performance on simulated angiographic sequence

We evaluated our pipeline on a simulated sequence of 17 frames displaying
CAs in 2D X-ray angiography under both respiratory and cardiac motions.
The sequence was acquired with the XCAT software [26] that simulates both
cardiac and respiratory mechanics including the motion of the diaphragm,
heart, rib cage, and lungs. Ground truth segmentation mask of all the frames
of the sequence is provided using the XCAT system. Results show that the
proposed method succeeds in tracking and segmenting a right coronary artery
within the entire 17 frames with a mean Dice coefficient of 0.98, precision
of 0.99 and a recall of 0.97. Overall, the method succeeds in extracting and
tracking the artery accurately despite its motion as illustrated in Fig. 17.

(a) Frame 1 (b) Frame 5 (¢) Frame 10 (d) Frame 17

Figure 17: Results on simulated sequence: the segmentation result of the right coronary
artery overlaid in yellow on frames 1, 5, 10 and 17.
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Figure 18: Performance of the proposed pipeline depending on the nature of the coronary
arteries.

4.7. Performance depending on the type of the vessel: RCA , LAD or Cz

This section evaluates the performance of the proposed algorithm in 3.3.
The parameters’ values were empirically selected following a K-fold cross
validation. Optimal values used were a = 50, § = 1000, and temporal
parameter p = 0.05. Superpixel sizes for the SLIC [12] implementation are
20 and 10 (with a regularizer value of 0.01). Frangi’s vesselness scales are
within the range [1,8]. Finally, v = 4000 and r = 1 were selected for the
adjacency matrix, and v, = 50 and r, = 1 for the temporal adjacency matrix.

The performance of the proposed framework is assessed in tracking and
extracting the vessel’s lumen during the angiographic sequence. Because the
motion range depends on the nature of the CA, we evaluated the dataset
according to each category of CA (RCA, LAD, or LCX). Figure 18 shows
the dependence of the performance on the nature of the artery in terms of
Dice, precision, and recall values. Figure 19 shows the segmentation results
at different frames in different sequences shown from top to bottom: LAD,
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Figure 19: Segmentation mask overlaid in yellow on the original frames of three sequences
at different times. Top row: result on LAD artery. Second row: result on a Cx artery.
Third row: result on an RCA artery.

Cx, and RCA artery. The method gives the best performance when tracking
RCA, with a Dice close to 0.8. Segmenting and tracking Cx arteries is more
challenging, but there is still a good trade-off between the precision and recall
with a mean Dice close to 0.7 and a high recall of 0.9. LAD arteries are the
most challenging cases because of their nature in terms of their shape and
motion. This leads to a mean Dice for LAD cases of 0.6, yet with a high
recall value of 0.8.

5. Discussion

The proposed method preforms accurate segmentation and tracking of
a CA in 2D X-ray angiography. The method is applied without any pre-
processing to deal with the respiratory motion or cardiac motion, as shown in
existing works [9, 8]. The proposed Temporal Vessel Walker with superpixels
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(SP-TVW) is defined as the combination of a temporal prior with intensity
and topological features. In addition, superpixels are used to regroup similar
pixels, which leads to accurate and fast computations. Experimental tests on
datasets of young patients show the efficiency and robustness of the proposed
algorithm.

Table 3 highlights the contribution of the proposed SP-TVW compared
to the previous iterations of the Temporal Vessel Walker method. While the
use of the TVW pixelwise can track the artery, in some cases, it highlights
the background noise as part of the vessel. On the other hand, applying
the TVW in the multiscale framework limits the effect of noise. However,
this can lead to the loss of contrast (especially at small scales), making the
final segmentation result limited with low recall values. SP-TVW returns
the highest trade-off between recall and precision values. The addition of
superpixels contributes to the retrieval of similar groups of pixels from one
frame to the next in a more accurate way than the application of TVW in
a pixelwise fashion.The use of superpixels better highlights the difference
between the foreground and background regions, as shown in Fig.9.

Previous studies have considered the tracking of CAs in 2D X-ray se-
quences. However, they either track manually selected seeds [9] without
handling the respiratory motion of the arteries, or they extract the entire
CA tree [3] without focusing on tracking specific arteries. We compared our
proposed algorithm with the polyline tracking method [8], which is a method
that performs well, and which is still cited in the literature as a key refer-
ence for tracking specific CAs in moving sequences [9]. Besides, the method
is formulated as a minimization problem on a constructed graph, which is
similar to the proposed method. Fig. 8 shows that polyline tracking pre-
serves the general shape of the artery. This is explained by the fact that the
neighborhood search using polyline tracking is small. However, as the artery
expands owing to the cardiac work, polyline tracking cannot capture some
parts of the artery. We believe that this is caused by the length constraint in
the polyline method.This constraint is not used in our method, which leads
to better tracking of the artery in time, even when the artery is expanding.
Moreover, the proposed method has a better overlap with the ground-truth
compared to the polyline method. Indeed, our method uses prior information
from the previous frame, and also relies on the actual frame’s information.
Therefore, the proposed method is able to extract the centerline and track it
accurately in the sequence. As illustrated in Table 2, our proposed work has
a better quantitative performance in terms of its ability to find and track the
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centerline of the vessel. Moreover, it has fewer errors in terms of localizing
the centerline, which is crucial in order to compute properties of the artery
such as its diameter or length.

The proposed method is based on different parameters, the most impor-
tant of which are «, 8, and p from Eq. (8), and the superpixel size (SPsize).
Figure 11 shows the importance of selecting the appropriate SPsize, espe-
cially in the case of thin, long structures such as CAs. When the SPsize is
too small, the algorithm has a high precision, generating fewer false positive
errors. However, a small SPsize leads to low recall values. The selection of
the optimal superpixel size is important to maintain the balance between
high recall and precision values. In addition, one CA may have a thick diam-
eter at the proximal part of the artery and a thinner diameter at the distal
part of the artery (as shown in Fig.7); hence, the proposed method computes
the SP-TVW at different superpixel sizes to optimize the trade-off between
the precision and recall, guaranteeing a better performance.

The results in Figure 15 indicate that having a p value close to 1 helps
the method in tracking the structure of interest, while being more robust to
background noise. If u = 10 the method gives more weight to the last term
in equation (8). Therefore, the segmentation is computed based on the prior
information without considering the present frame’s features. It is important
to select the optimal value for u, thus increasing the accuracy of the method
used to track the artery, while remaining robust to background noise.

Fig. 16 shows that an optimal choice between o and [ values leads to an
optimal trade-off between recall and precision. Therefore, their values should
be selected depending on the nature of the dataset.

Because each type of CA has a different shape and motion, we evaluated
the dataset according to the different categories of CAs (RCA, LAD, and
LCX). As shown in Figures 18 and 19, the proposed method has the best
performance when tracking RCA. The RCA is one of the arteries that have a
large range of motion during cardiac work. Despite the motion, the proposed
method is able to track and extract the artery accurately. While the segmen-
tation and tracking of Cx arteries is more challenging, it still allows a good
trade-off between precision and recall. LAD arteries are the most challeng-
ing cases because of their shape. In fact, in all of the sequences displaying
LAD, there is a vessel overlap or vessels that bifurcate from the main artery.
Tracking LAD becomes more challenging as it is difficult to distinguish be-
tween the arteries. Therefore, in such cases, more features must be added to
enhance the proposed method.
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Overall, the proposed method shows a high recall value for all different
types of coronary arteries. However, the proposed method can be sensitive
to different factors, such as the presence of overlapping vessels and the low
frame rate (15 fps). Despite these limitations, the proposed method produces
encouraging results in enabling accurate tracking of the VOI and extracting
its lumen. However, more work is necessary to enhance the precision of the
proposed method by adding new features, such as the vessel’s orientation.

6. Conclusion

This work presents a spatio-temporal algorithm for the simultaneous seg-
menting and tracking of a CA in a 2D X-ray moving sequence based on
the Temporal Vessel Walker and superpixels (SP-TVW). The model com-
bines temporal prior and intensity and topological features. The superpixels
method regroups similar pixels together, which leads to the accurate extrac-
tion of thinner and thicker parts of the same artery and fewer computations.

Experimental tests on a dataset for young patients show the efficiency
and robustness of the proposed algorithm, while dealing with respiratory
and cardiac motions. The results of the proposed pipeline show that it is
possible to build a model for the simultaneous tracking and segmenting of a
vessel. The ability to accurately track a specific artery (or part of an artery)
may be crucial for measuring the properties of the vessel during the cardiac
cycle as well as helping with the detection of pathologies.

Future work includes using not only the previous frame’s result but also
the following frame as a prior to segment the current frame. It includes
also the development of an adaptive formulation to automatically select the
parameters of the proposed method depending on the contrast level in the X-
ray sequence. Moreover, additional features are needed, such as the vessel’s
direction, to solve the challenge of overlapping vessels. Finally, more tests
with longer sequences at different cardiac cycles will help to evaluate the
repeatability of the proposed method.
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