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Abstract

Background: Repolarization gradients contribute to arrhythmogenicity. In reaction–dif-

fusion models of cardiac tissue, heterogeneities in action potential duration (APD) can

be created by locally modifying an intrinsic membrane kinetics parameter. Electrotonic

coupling, however, acts as a confounding factor that modulates APD dispersion.

Method: We developed an algorithm based on a quasi-Newton method that iter-

atively adjusts the spatial distribution of a membrane parameter to reproduce a pre-

defined target APD map in a coupled tissue. The method assumes that the relation

between the adjustable parameter and APD is bijective in an isolated cell. Each itera-

tion of the algorithm involved simulating the cardiac reaction–diffusion system with the
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updated parameter profile for one beat and extracting the APD map. The algorithm

was extended to simultaneous estimation of two parameter profiles based on two APD

maps at different repolarization thresholds.

Results: The method was validated in 1D, 2D and 3D atrial tissues using synthetic

target APD maps with controllable total variation and maximum APD gradient. The

adjustable parameter was local acetylcholine concentration. The iterations converged

provided that APD gradients were not too steep. Convergence was found to be faster

(2 to 5 iterations) when the maximal gradient was less steep, when APD range was

smaller and when tissue conductivity was reduced.

Conclusion: This algorithm provides a tool to automatically generate arrhythmo-

genic substrates with controllable repolarization gradients and possibly incorporate

experimental APD maps into computer models.

Keywords: computer modeling; cardiac electrophysiology; parameter estimation;

action potential duration; cell coupling

1. Introduction

The presence of strong repolarization gradients in a cardiac tissue is an arrhythmo-

genic factor that promotes wave breaks and reentry [1–4]. The occurrence of functional

block has been observed in the presence of action potential duration (APD) gradients

above a critical value of the order of 2 to 12.5 ms/mm [5–8]. Dispersion of action poten-

tial duration (APD) may result from intrinsic spatial variations in ion channel density

(notably aggravated by the remodeling induced by successive episodes of arrhythmia),

from beat-to-beat variability in repolarization eventually exhibiting non-linear dynam-

ics and chaos [9], or from the interplay between geometry, conduction properties, wavelet

dynamics [10, 11], and mechano-electric feedback [12, 13].
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Electrotonic currents flowing through gap junctions tend to reduce the differences

in APD between neighboring cells [14–16]. As a result, APD measurements in an intact

tissue may not exactly reflect the intrinsic local properties of the cells, but rather an

average over a surrounding region whose size and shape depends on conduction prop-

erties [17, 18]. Determination of true intrinsic membrane properties may be obtained

through biopsies followed by patch clamp experiments. This approach is however lim-

ited in terms of spatial resolution, creates damage to the tissue and possibly changes

the dynamics and densities of ionic currents, resulting in an APD that may differ from

the APD that would have been measured in situ. Techniques such as electrical stimu-

lation, monophasic action potentials and optical mapping preserve the integrity of the

tissue (to some extent), but the resulting APD maps are affected by electrotonicity.

Thus, the relationship between measured APD and intrinsic APD is relevant to the

non-destructive extraction of cellular intrinsic properties.

In computer models of cardiac arrhythmia, the incorporation of APD dispersion

requires designing a spatial profile of intrinsic properties of cardiac cells. Typically, a

membrane kinetics parameter is chosen as target and its spatial distribution is used as an

input to the model [19, 20]. The question arises whether that parameter distribution can

be determined from an APD map in the coupled tissue. The existence and uniqueness

of the solution has been investigated in a simplified model with exponentially-shaped

action potentials [21]. Hurtado et al. calibrated a ventricular model to reproduce the

relation between activation time and a refractoriness parameter [22]. Defauw et al. pro-

posed a Gaussian Green’s function model and a deconvolution approach to estimate the

intrinsic APD map [17]. Inspired by their approach, we hypothesized that knowledge

about which specific membrane kinetics parameter causes APD variations would enable

the development of more accurate methods.

In this paper, we propose an algorithm for iteratively computing the parameter
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distribution that reproduces a target APD map, based on an idea initially sketched in

[21] and tested in [23]. The implementation is described and extensively validated in

atrial tissue models with increasing complexity, and its computational performance and

accuracy are evaluated.

2. Methods

2.1. Problem statement

In the framework of a monodomain model of cardiac tissue, let us consider that the

membrane model depends on a local parameter k that lies within a physiological range

[kmin, kmax]. This parameter could be an ion channel conductance, an ionic concentra-

tion, or a normalized parameter describing the transition between normal and diseased

tissue, but is assumed not to affect intercellular coupling (gap junction conductances).

After spatial discretization, tissue configuration is described by a vector k whose size

is the number of nodes in the mesh.

When the spatial distribution of k is non-uniform, the simulated APD map is also

non-uniform. The forward problem then consists in computing the APD map (a) as a

function of k

a = aforw(k;G) . (1)

Because of electrotonicity, APD distribution depends not only on k but also on the

intercellular coupling matrix G. Practically, the function aforw was evaluated by running

a monodomain simulation with the distribution of parameters set to k and by measuring

the APD map. Specific simulation methods are described in Sect. 2.5.

Assuming that the coupling is known, the inverse problem consists in recovering the

parameter distribution k that would reproduce a given APD map atarget

k = a−1
forw(atarget;G) , (2)
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provided that the solution exists and is unique for a given stimulation protocol, i.e.

aforw is invertible. Uniqueness of the solution has been proved in a simple analytical

model [21] and is also guaranteed if the APD map in the coupled system can be written

as the convolution of the intrinsic APD map with a spatial (e.g. Gaussian) filter [17].

2.2. Parameter identification

The inverse problem is equivalent to solving the equation aforw(k)−atarget = 0. Our

approach relies on the fact that the problem is easily solved when cells are uncoupled

(G = 0). A first approximation k(0) is obtained by neglecting electrotonicity:

k(0) = a−1
forw(atarget; 0) . (3)

Then, at iteration n, the parameter profile is updated using the quasi-Newton formula

k(n+1) = k(n) −
(
Daforw(k

(n); 0)
)−1 ·

(
aforw(k

(n);G)− atarget

)
, (4)

where the Jacobian Daforw(k
(n);G) has been approximated by the (diagonal) Jacobian

in the uncoupled tissue Daforw(k
(n); 0) to avoid expensive computations. The Jacobian

in the coupled tissue is indeed a fully-populated matrix. The diagonal approximation,

which is reminiscent of mass lumping in finite element methods, guarantees that the

inverse exists. Moreover, if the simulated local APD is shorter than the target APD, the

local parameter k will be updated to increase the intrinsic APD, therefore increasing the

updated simulated APD provided that this effect is not compensated by the neighboring

cells. This overcompensation will not occur as long as the APD error is a smooth

function of space. The iteration process stops when the error ∥aforw(k
(n))−atarget∥ falls

below a tolerance, typically 1 ms.

2.3. Computational issues

As a preprocessing step, the relation a = α(k) between the parameter k and the APD

(a) was studied in an isolated cell. The function α was evaluated (using simulations)
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at n = 8 equally-spaced points in the interval [kmin, kmax]. The number of points was

then iteratively increased until the maximal error between spline interpolation based

on the previous iteration and the new computed data points fell below a threshold,

typically 0.5 ms. This provided a piece-wise polynomial interpolation for the function

α(k). The monotonicity of α(k) was checked using the coefficient of the polynomials.

Spline interpolation on the same data points (reflected across the diagonal) was used

to compute the inverse function k = α−1(a). The derivative α′(k) was obtained by

analytically differentiating the piece-wise polynomial in each of its segments. To avoid

out-of-bound errors, when the argument of the function is out of the domain or the

range of α, the value at the bound is returned.

With these notations, we have:

a−1
forw(atarget; 0) = α−1(atarget) (5)

(Daforw(k; 0))
−1 = diag(α′(k))−1 , (6)

where the functions α−1 and α′ are applied element-wise and ‘diag’ creates a diagonal

matrix from a diagonal vector.

The algorithm was implemented in Matlab on a Linux machine. At each itera-

tion, the Matlab function writes a parameter file, calls an external program to run the

simulation, reads the output and continues the execution in Matlab.

2.4. Extension to two parameters

If the membrane model depends on two parameters k and m, two measures of

repolarization a = α(k,m) and b = β(k,m) are needed for parameter identification.

They may represent APD at different repolarization thresholds or at different heart

rates. Assuming that the system a = α(k,m) and b = β(k,m) has a unique solution in

a domain Ω, the inverse solution may be denoted by k = α−1(a, b) and m = β−1(a, b).
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In a coupled tissue where the two measures aforw(k,m) and bforw(k,m) can be

simulated, a first estimate of the parameter vectors k and m that solve the inverse

problem atarget = aforw(k,m) and btarget = bforw(k,m) is obtained by

k(0) = α−1(atarget,btarget) (7)

m(0) = β−1(atarget,btarget) . (8)

Then, at iteration n the update formula readsk(n+1)

m(n+1)

 =

k(n)

m(n)

− J(k(n),m(n))−1 ·

aforw(k
(n),m(n))− atarget

bforw(k
(n),m(n))− btarget

 (9)

where the Jacobian is approximated by

J(k,m) =

diag((∂kα)(k,m)) diag((∂mα)(k,m))

diag((∂kβ)(k,m)) diag((∂mβ)(k,m))

 (10)

where the functions ∂kα, etc. are applied element-wise. The inverse of J is easily

computed thanks to its 2-by-2 diagonal block structure:

J−1 =

D11 D12

D21 D22

−1

=

 ∆−1D22 −∆−1D21

−∆−1D12 ∆−1D11

 (11)

where ∆ = D11D22 −D12D21 and all the D matrices are diagonal.

The implementation is similar to the one-parameter case. The functions α and β

are approximated using cubic interpolation on a 2D grid (Matlab function interp2).

The partial derivatives are computed numerically with finite differences. The inverse

functions are also computed by interpolation (TriScatteredInterp).

2.5. Simulation methods

Practically, the algorithm requires as input the specification of the adjustable param-

eter k, the interval [kmin, kmax], the single-cell function α(k) and the forward simulator
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aforw(k). This includes the specification of a tissue model and stimulation protocol as

well as the definition of APD.

Unless otherwise stated (notably Sect. 3.5), the Ramirez et al. membrane model [24]

was used. This non-linear model of canine atrial myocyte takes into account 14 ionic

currents including an acetylcholine-dependent K+ current (IK(ACh)) [19], variations of

intracellular concentrations (Na+, K+, Ca2+) and calcium dynamics in the sarcoplas-

mic reticulum, for a total of 26 ordinary differential equations. The non-dimensional

parameter k was defined as a function of acetylcholine concentration (ACh) in µM:

k =
10

1 + 9.13652 · ACh−0.477811 . (12)

This expression is the first factor in the formulation of the IK(ACh) current. The interval

[kmin, kmax] = [0, 0.1] corresponds approximately to the ACh range considered in Kneller

et al. [19].

APD was measured at a −70 mV threshold, which is near 90% repolarization in this

model. The resulting functions α(k) and α′(k) and their validation are represented in

Fig. 1.

The function aforw(k) was computed by running a monodomain simulation in 1D

(5-cm long cable), 2D (5-by-2.5 cm sheet of tissue) or 3D (atrial model [27]) in finite

difference regular grids. The vector k encoded ACh concentration at every node of the

grid. The entire tissue was stimulated simultaneously with an intracellular current of

50 µA/cm2, which approximately corresponds to 1.5× threshold, applied after 50 ms

at rest to let the tissue reach steady state. When all cells were back to resting state,

the simulation stopped and the APD map was outputted.
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3. Results

3.1. Convergence of the iterations

Convergence of the algorithm was tested in a one-dimensional cable model. The

tissue was a 5-cm long cable consisting of 250 nodes (∆x = 200 µm) with Ramirez et

al. membrane kinetics [24]. The conductivity was σ = 0.5, 1 or 2 mS/cm. The target

APD profile was a sigmoid curve (hyperbolic tangent) characterized by a mean value

of 120 ms, an amplitude of APD variation (max - min) of 0 to 60 ms and a maximal

gradient from 0 to 30 ms/mm.

Figure 2 shows examples of inverse solutions obtained by adjusting the local con-

centration of ACh. The initial iteration provided a reasonable estimate (white circles)

although the APD gradient was significantly underestimated due to the filtering effect

of electrotonicity. The errors on the maximum gradient after the initial step were 17%,

35% and 48% in panels A, C and E respectively. After 2-10 iterations, convergence was

reached (maximal error < 1 ms). When the target APD gradient was steeper than the

gradient that would be generated by a discontinuity (step function) in ACh concentra-

tion, the ACh profile obtained was not monotonic (Figs. 2D,F). At some point, ACh

concentration would need to “become negative” to further steepen the gradient so the

inverse problem had no solution.

The number of iterations needed to decrease the maximal error in APD below 1 ms

is presented in Fig. 3. More iterations were required when the target APD gradient was

steeper, when the tissue conductivity was higher, and when the APD range was smaller

(for a given APD gradient). To reproduce steep gradients, over 10 iterations may be

needed. However, physiological solutions in which the ACh profile was monotonic (as

in Fig. 2B) only required ≤ 3 iterations (small dots in Fig. 3).

Using all conditions for which the solution existed and the iterations converged (n =
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507 target APD maps, from Fig. 3), the rate of convergence was estimated by displaying

the maximal error along the iterations (Fig. 4). The rate of convergence was slower than

that of the original Newton method because the Jacobian was only approximated and

off-diagonal elements were neglected. The error was nevertheless divided by 10 after 5–6

iterations. Attempting to decrease the maximum error below 0.1 ms is debatable since

APD computation was based on linear interpolation of membrane potentials stored

every 0.1 ms.

3.2. Accuracy of the inverse solver

To assess the accuracy of the algorithm, a sinusoidal ACh profile similar to the

configuration of Kneller et al. [19] was set up in the same cable as the previous section

(5 cm long, σ = 1 mS/cm). The spatial variation of ACh (in nM) was formulated

as ACh(x) = 0.6 + 0.4 cos(2πx/λ), where the wavelength λ, representing the distance

between two consecutive local maxima of the target sinusoidal ACh profile, ranged from

0.2 to 10 cm.

The APD profile corresponding to each of these configurations was computed and the

ACh profile obtained by solving the inverse problem was compared at each iteration to

the target ACh profile. The relative error was defined as the maximal difference between

the target ACh profile and the inverse solution, divided by ACh range (0.8 nM).

The resulting APD profile was approximately sinusoidal. At short wavelength, how-

ever, the amplitude of the variations in APD was reduced due to the smoothing effect

of electrotonicity. The steepest APD gradient was maximal for a wavelength of 1.25 cm

(Fig. 5A).

The relative error decreased with the iterations (Fig.. 5B), but was systematically

larger for shorter wavelengths, i.e. for steep spatial variations in ACh. The iterations

converged to the target ACh profile for all wavelength values, suggesting that the so-
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lution to the inverse problem is unique. However, while 10 iterations were sufficient to

achieve a relative error < 1% at a wavelength of 1.25 cm, 378 iterations were needed

when the wavelength was 0.2 cm. This demonstrates how electrotonic effects filter

out high-frequency information in agreement with their approximate representation as

convolution operators (e.g. Gaussian) acting on the intrinsic APD map [17, 21, 25].

3.3. Anisotropy

The effect of anisotropy on the convergence of the inverse solver was assessed in a

two-dimensional tissue (5×2.5 cm, ∆x = ∆y = 200 µm) with Ramirez et al. membrane

kinetics. Three sets of conductivity values were used: (1) 1 mS/cm (isotropic), (2) 1.25

mS/cm (longitudinal) and 0.67 mS/cm (transverse), and (3) 2 mS/cm (longitudinal)

and 0.5 mS/cm (transverse), thereby incrementally increasing the anisotropy ratio while

keeping the product of longitudinal and transverse conductivities constant.

The target APD profile was a sigmoid function (hyperbolic tangent) of the distance

to the bottom-left corner and ranged from 105 to 135 ms, as illustrated in Fig. 6A.

The maximal gradient was varied from 0 to 20 ms/mm. The computed ACh map

corresponding to the target APD map of panel A is displayed in panel B.

Figure 6C shows the number of iterations needed to reach 1 ms accuracy. In

the isotropic case, convergence was similar to the one-dimensional case (Fig. 3). As

the anisotropy ratio increased, more iterations were needed for convergence. Non-

monotonicity occurred at gradients ≥ 5 ms/mm (also similar to the one-dimensional

case), as in in Fig. 6B.

3.4. 3D geometry

Extension to more realistic conditions was tested in a simple model of the atria with

rule-based fiber orientation [26, 27] (Fig. 7A). To enable comparison with 1D and 2D
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results, the Ramirez et al. model was used and the whole tissue was simultaneously

stimulated to simulate APD maps. The longitudinal/transverse conductivities were set

to 2/0.5 mS/cm, 4/1 mS/cm or 9/3 mS/cm, the latter configuration representing the

baseline values in [27].

Generation of target APD maps was based on random distributions of patches [23,

28]. Four realizations were generated; one is shown on Fig. 7A. This defined a map u0(x)

such that u0 = 0 inside the colored patches and u0 = 1 outside. In order to control the

gradient, a Gaussian spatial filter was applied by solving an isotropic diffusion equation

∂u/∂t = ∆u with u(x, 0) = u0(x) and no-flux boundary condition. The simulation

code designed for the monodomain equation was used to solve the diffusion equation

on the same grid. Analytical calculations in 1D suggest that the solution at time

T = λ2/2 provides a map in the range [0, 1] with maximum gradient of approximately

(
√
2πλ)−1. Accordingly, the target APD map was set to a(x) = a0+∆a ·u(x, T ), where

a0 = 105 ms, ∆a = 30 ms and T = ∆a2/(4πγ2). The gradient parameter γ was either

2, 3.5 or 5 ms/mm. Combined with the four realizations, this gave 12 target APD maps

(e.g. Fig. 7B) whose gradients were validated using numerical finite differences to check

consistency.

The inverse problem was solved for the 12 target APD maps and the 3 conduction

properties, and the resulting ACh profiles were determined. An example is shown in

Fig. 7C. Convergence was assessed by computing the 99th percentile of the absolute

value of the difference between the simulated and the target APD maps. In some grid

points (notably at the boundary of the tissue or at the junction with the conducting

system), the absolute error may not decrease below a few milliseconds so the percentile

was used as an error metric instead of the maximum in order to avoid overfitting.

The convergence results (Fig. 8) confirm that more iterations are needed when the

gradient is steeper and when the conductivities are higher. In the extreme case (white
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circles in panel C), no solution existed and the iterations converged towards an ACh

profile with zero values near the steepest gradients, similarly to the results in a cable

(Fig. 2D). Nevertheless, for slow APD variations (2 ms/mm as in Fig. 7B), 4 iterations

were sufficient to reduce the 99th-percentile error below 1 mm.

3.5. Estimation of two parameters

The algorithm for simultaneously estimating two parameters was tested in a one-

dimensional tissue. The Courtemanche et al. [29] membrane kinetics model was used in

order to simulate a wider range of action potential morphology. Two parameters were

varied: a multiplication factor for the L-type calcium current (PCaL in the range [0.5, 1];

0.8 means 20% inhibition) and one for the transient outward current (Pto in the range

[0, 1]). APDs were measured both at −70 and −30 mV, thus providing the two required

measures a and b from subsection 2.4. The relation between the two parameters and the

two repolarization measures, illustrated in Fig. 9, is a one-to-one mapping that defines

the functions α−1 and β−1.

For the sake of illustration, we created a gradient in APD−30 mV (hyperbolic tangent

from 120 to 160 ms with a maximal gradient of 3 ms/mm) and constant APD−70 mV =

270 ms in the same cable as previous simulations (5 cm, 250 elements, 2 mS/cm con-

ductivity). The two-parameter inverse solver was applied to identify the profiles of

PCaL and Pto. The initial estimate had error up to a 2.6 ms. After two iterations, the

maximum error was below 1 ms for both target APD maps. The converged solution

is displayed on Fig. 10. The bottom panel shows how both parameters have to adjust

to increase APD−30 mV while keeping APD−70 mV constant. The shapes of the resulting

action potentials are shown in Fig. 9B.
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4. Discussion

We developed an algorithm for estimating membrane kinetics parameters from an

APD map in the presence of electrotonic coupling. As compared to Defauw et al. [17]

whose Gaussian deconvolution technique enabled estimation of the intrinsic APD from

the measured APD, we achieved better accuracy at the expense of further assumptions

on the cause of APD variations (the membrane parameter responsible for APD gradients

has to be known) and more computational time. Note that Defauw et al. [17] also

required knowledge about conductivity and anisotropy. Our approach is therefore more

appropriate in the context of modeling, where we aim at incorporating experimental

data into the model and controlling parameters such as APD gradients in order to

better design numerical experiments.

The initial estimate based on neglecting coupling underestimated APD gradients

but was a reasonable approximation of the solution (usually at most 2-5 ms error,

sometimes up to 10 ms, or about 5-10% relative error). As a result, the subsequent

Newton iterations always converged provided that the solution existed. Non-existence

of the solution occurred when the APD gradient was too strong for a given conductivity,

in agreement with a simple theoretical model [21]. Very strong APD gradients were

only observed in the presence of poor coupling. The closer the APD gradient to the

critical gradient, the more iterations were needed for convergence. Inverse solutions

with non-monotonic variations in ACh were computed to demonstrate the performance

of the algorithm in extreme cases where hand-made fine-tuning would be difficult. In

more physiological conditions, however, a few iterations were sufficient to reach 1-

ms accuracy. This corresponds to < 1% relative error since the APDs were always

> 100 ms.

The performance of the algorithm was globally preserved when increasingly com-
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plex models were used, from 1D to 3D with anisotropy. The approach would remain

applicable to more realistic cardiac models. Notably, bidomain models can improve the

description of the spatial distribution of repolarization [30, 31]. Also, while this paper

focused on atrial models, the much thicker ventricular wall offers opportunities for fu-

ture applications because of the importance of repolarization gradients in the genesis

of the T wave [32]. Improvements of the mathematical description of current diffusion

in a cardiac tissue based on fractional diffusion and porous-medium approaches have

recently been proposed [18, 33, 34]. Our parameter estimation approach would also

apply in these cases.

In the presence of conduction heterogeneity, local fluctuations in electrotonic load

can affect the APD. When a smooth target APD map is selected, there is a risk of trying

to overfit those small local fluctuations. A regularization approach may be applicable

to identify the best smooth solution. Note that since our inverse problem has a unique

solution (if any, and if the single cell problem has a unique solution), regularization is

not strictly required. Here, we simply defined the error metric as the 99th percentile of

absolute error to avoid this problem.

In the presence of noise on the target APD map, two options are possible. One would

be to use regularization. The consequence would be to limit the maximum gradient

of the parameter profile, although even a smooth APD map may be the result of a

discontinuous parameter profile. Another approach would be to numerically determine

the maximum APD gradient that can be reproduced in the model, and then filter the

experimental APD map such that the APD gradients are everywhere smaller than the

critical gradient.

If the APD map is only known at a limited number of locations as often experi-

mentally, interpolation is necessary. A priori information about the spatial variations

of APD (e.g. smoothness) must be assumed. Laplacian or radial basis function inter-
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polation can be used to specify the target APD at every node of the mesh, and then

the algorithm can be run as previously.

The method easily extends to the estimation of two or more parameters. In the

limited set of scenarios that we tested, the number of iterations needed were not sig-

nificantly larger. An issue though is the requirement of a one-to-one relation between

parameters and APD measures. In many situations, the solution to the inverse problem

in a single cell may not be unique and a subset of the parameter space must be chosen,

which could be challenging in three or more dimensions. A possible application of two-

parameter estimation is to simultaneously reproduce APD at different cycle lengths.

This constitutes a first step toward fitting spatially-varying APD restitution curves [35]

and is relevant to the design of substrates for conduction blocks and reentry [5, 36].

A more complex application would be to reproduce the odd-beat and even-beat APD

maps during discordant alternans [37] at a given pacing rate by fitting two parameters.

Dependence on pacing site and stimulation history [38] would however make it chal-

lenging to completely reproduce the spatio-temporal alternans patterns. The rationale

for choosing the Ramirez et al. model with ACh variations was precisely that it has low

rate-adaptation and parameters can be estimated based on a single beat. The same

approach is however expected be applicable to other model formulations and types of

parameters.

APD slightly depends on activation pattern and propagation direction and is affected

by collision between wave fronts and with boundaries [10, 16, 17]. We deliberately

avoided that confounding factor by stimulating the whole tissue simultaneously. Our

approach still applies when APD is computed during normal sinus rhythm propagation,

with similar performance in terms of accuracy and convergence, as suggested by our

recent preliminary results in a 3D atrial model extending this paper [23], provided that

boundary and collision effects are accounted for in the target APD map.
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Despite its relevance to arrhythmogenicity [1, 39, 40], accurate measurement of APD

gradients in animal models or in patients remains challenging. Repolarization is more

difficult to map than depolarization and gradients may be underestimated due to low

spatial resolution or spatial filtering. Emerging technology may improve the reliability

of measurements [41]. Meanwhile, computer modeling provides a way to accurately

control the steepness of APD gradients and assess their effect on arrhythmogenicity [42–

45]. The tools presented in this paper facilitate the design of these simulation studies.
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Figure 1: Action potential duration (α) as a function of the parameter k in a single cell using the

Ramirez et al. model. (A) Function α(k): control points (n = 5 circles) from which spline interpolation

was constructed (thick brown line); validation with single cell simulations (black dots); the error

criterion corresponds to the maximal absolute difference between the thick line and the small dots.

(B) Derivative α′(k): symbolic derivative of the spline interpolation function shown in panel A (thick

brown curve); validation using numerical derivative based on single cell simulations (black dots).
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Figure 2: Inverse problem in a 1D cable (σ = 2 mS/cm). Action potential duration (APD) profile

along a cable (left panels: A, C, E) showing the target APD profile (solid line), the first iteration

(white circles) and the profile after convergence (gray circles). The target maximum APD gradient is:

(A) 5 ms/mm, (C) 10 ms/mm, and (E) 7 ms/mm. The corresponding right panels (B, D, F) display

the ACh profile after convergence.
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Figure 3: Number of iterations needed to solve the inverse problem in 1D with an error < 1 ms as

a function of the maximal action potential duration (APD) gradient. The target APD profile was a

sigmoid function as in Fig. 2 and ranged from 105 to 135 ms (A) or 90 to 150 ms (B). The conductivity

of the tissue was 2, 1 and 0.5 mS/cm (curves from left to right on each panel). The dots denote the

critical gradient above which the resulting ACh profile was not monotonic (gray part of the curves).
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Figure 4: Maximal error as a function of the iterations in the 1D simulations of Fig. 3 that converged

(averaged over n = 507 target APD maps). The error bars show the median and quartiles. The

straight line with a slope of −1.65 illustrates the rate of convergence.
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Figure 5: Accuracy of the inverse problem in a 1D tissue (5 cm long) with sinusoidal ACh profile

ACh(x) = 0.6 + 0.4 cos(2πx/λ), where λ is the ACh wavelength. (A) Steepest APD gradient in the

resulting APD profile as a function of ACh wavelength. (B) Relative error of the inverse solution

(relative to the target ACh profile) as a function of ACh wavelength after 1, 10, 50, 100 and 1000

iterations. The curve after 1000 iterations is always below 1%.
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Figure 6: Solution to the inverse problem in a 5-by-2.5 cm two-dimensional tissue. The longitudi-

nal/transverse conductivities of the tissue were 2 and 0.5 mS/cm (ratio 4:1), 1.25 and 0.67 mS/cm

(ratio 9:4) and 1 mS/cm (isotropic, ratio 1:1). The longitudinal direction follows the horizontal axis.

(A) Example of target APD map with a maximal APD gradient of 5 ms/mm. (B) ACh profile obtained

by solving the inverse problem for the target APD map of panel A and an anisotropy ratio of 4:1. (C)

Number of iterations needed to solve the inverse problem in 2D with an error < 1 ms as a function of

the maximal APD gradient.
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Figure 7: (A) Geometry of the atria (posterior view) with a realization of random patches of het-

erogeneity. (B) Generated target action potential duration (APD) map with a maximum gradient

of 2 ms/mm. Contour lines are shown every 5 ms. (C) Profile of acetylcholine (ACh) concentration

resulting from the solution to the inverse problem (after 15 iterations) based on the APD map of panel

B.

30



Figure 8: Convergence of the iterations in 3D assessed by the 99th percentile of the absolute error

between simulated and target APD maps. Simulations were done with longitudinal/transverse conduc-

tivities of (A) 2 and 0.5 mS/cm, (B) 4 and 1 mS/cm and (C) 9 and 3 mS/cm, and APD gradients of

2, 3.5 and 5 ms/mm. Error bars represent the standard deviation over four realizations of the random

patches distribution. The 1-ms threshold is indicated as a horizontal dotted line.
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Figure 9: (A) One-to-one mapping between the parameters (PCaL, Pto) in the range [0.5, 1]× [0, 1] and

the action potential durations (APD) measures at a threshold of −70 mV and −30 mV in a single cell

with Courtemanche et al. kinetics. (B) Examples of action potentials with the same APD at −70 mV

but with varying APD at −30 mV.
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Figure 10: Two-parameter inverse problem in a 1D cable: PCaL and Pto are simultaneously estimated

based on action potential durations (APD) at −70 mV and −30 mV. Top panel: Target APD profiles

(solid line), initial estimates (white circles) and profiles after convergence (gray circles). Bottom panel:

Profiles of PCaL and Pto, initial estimate (dotted lines) and after convergence (solid lines).
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