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A B S T R A C T

We propose a methodology to predict the cardiac epicardial and mediastinal fat volumes in computed tomography
images using regression algorithms. The obtained results indicate that it is feasible to predict these fats with a high
degree of correlation, thus alleviating the requirement for manual or automatic segmentation of both fat volumes.
Instead, segmenting just one of them suffices, while the volume of the other may be predicted fairly precisely. The
correlation coefficient obtained by the Rotation Forest algorithm using MLP Regressor for predicting the medi-
astinal fat based on the epicardial fat was 0.9876, with a relative absolute error of 14.4% and a root relative
squared error of 15.7%. The best correlation coefficient obtained in the prediction of the epicardial fat based on
the mediastinal was 0.9683 with a relative absolute error of 19.6% and a relative squared error of 24.9%.
Moreover, we analysed the feasibility of using linear regressors, which provide an intuitive interpretation of the
underlying approximations. In this case, the obtained correlation coefficient was 0.9534 for predicting the
mediastinal fat based on the epicardial, with a relative absolute error of 31.6% and a root relative squared error of
30.1%. On the prediction of the epicardial fat based on the mediastinal fat, the correlation coefficient was 0.8531,
with a relative absolute error of 50.43% and a root relative squared error of 52.06%. In summary, it is possible to
speed up general medical analyses and some segmentation and quantification methods that are currently
employed in the state-of-the-art by using this prediction approach, which consequently reduces costs and
therefore enables preventive treatments that may lead to a reduction of health problems.
1. Introduction

Medical diagnosis support systems speed up the tedious and meticu-
lous analysis done by physicians or technicians on medical data. In many
cases, a huge amount of data has to be analysed and, therefore, the
diagnosis or the support data may lack precision and suffer noticeable
inter and/or intra-observer variation.

Cardiac epicardial and mediastinal fats are correlated to several car-
diovascular risk factors [1]. At present, three techniques (i.e., modalities)
appear suitable for the quantification of these adipose tissues, namely
Magnetic Resonance Imaging (MRI), Echocardiography and Computed
Tomography (CT). Computed tomography provides a more accurate
evaluation of fat tissues due to its higher spatial resolution when
compared to ultrasound and MRI. In addition, CT is also widely used for
computing the coronary calcium score.

In this work, we propose and analyse different methods for predicting
ugo92@gmail.com (V.H.A. Pinheiro)
the amount of epicardial fat based on the mediastinal fat and vice-versa.
This is important mainly to speed up the process of their segmentation,
regardless of being a manual or automatic segmentation. In our previous
work [1], these two fats were automatically segmented in approximately
1.8 h (in volumes of 50 images on average). If the segmentation of one of
these fats is known a priori, the volume of the other fat can be predicted in
real time. This implies that a patient scan can be processed in approxi-
mately half of the computing time.

This work is organized as follows: Section 2 presents an overview of
the state-of-the-art, further reinforcing the clinical significance of esti-
mating these two fat volumes. In Section 3, the methodology and data
used in this work are introduced and discussed. Section 4 contains the
performed experiments, comparisons and overall analyses. Finally, in the
last section, the conclusions of this work are summarized and avenues for
future research are suggested.
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2. Literature review

The human heart (Fig. 1) is enclosed in the pericardium, a fibroserous
sac comprising three concentric layers [1]. The outermost layer is a
densely fibrous, tough and inelastic structure (fibrous pericardium). In-
side the fibrous pericardium is the serous pericardium, which consists of
two layers. The outer of these layers (which is firmly applied to the inner
surface of the fibrous pericardium) is termed parietal layer. This layer is
reflected around the roots of the major vessels to become continuous
with the visceral layer (epicardium), which covers the internal surface of
the heart and is firmly applied to it [2].

Two distinct types of fat are closely associated to the human heart,
namely the epicardial and mediastinal fats. They are separated by the
epicardium layer. In a sense, the epicardial fat is the fat located within the
cardiac sac (pericardium), while the mediastinal is the fat that lays on the
outer surface of the heart, within the mediastinum. Some authors refer to
it as pericardial fat, and indeed there exists a slight divergence in the
nomenclature on this matter, as previous discussed in [1].

Some studies [3,4] associate the amount of epicardial adipose tissue
with the progression of coronary artery calcification. Schlett et al. [5], for
instance, found that the epicardial fat volume is nearly twice as high in
patients with high-risk coronary lesions as compared to those without
coronary artery calcification. Several studies also correlate other car-
diovascular risk factors and outcomes to the epicardial adipose tissue
volume, such as diastolic filling [6], myocardial infarction [3], atrial
fibrillation and ablation outcome [5], carotid stiffness [7], atheroscle-
rosis [8–10], and many others [11,3,12–14]. Furthermore, Chen et al.
[15] have also shown that a high coronary artery calcium score may be
associated to a higher general cancer incidence.

In addition, some studies address the importance of the mediastinal
fat and its correlation with pathogenic profiles, health risk factors and
diseases [16,17]. Some works [10,7] associate mediastinal fat, along
with epicardial fat, to carotid stiffness. Others [10,4] relate these fats to
atherosclerosis and coronary artery calcification. Sicari et al. [18] have
also shown how mediastinal fat, rather than epicardial fat, is a car-
diometabolic risk marker.

Moreover, a 16-year study [19] that assessed a total of 384597 pa-
tients found a rate of approximately 38.4% of deaths in the subsequent
28 days for individuals that had their first major coronary event. The
same study also concluded that the probability of fatalities is slightly
smaller in women. Another study ranked cardiovascular incidents as the
most common cause of sudden natural death [20]. Therefore, the practice
of automatically evaluating the amount of fat related to the heart may
significantly contribute in avoiding similar outcomes.

Automated quantitative analysis of the epicardial andmediastinal fats
Fig. 1. A cross-section of the heart (top) and the associated cardiac layers (bottom).
could also add a prognostic value to cardiac CT trials, thus improving its
cost-effectiveness. Besides that, automation diminishes the variability
introduced by different human observers. In fact, quantifying the amount
of fats by direct user intervention is highly prone to inter- and intra-
observer variability. Thus, the evaluated samples may not be
segmented using a set of objective principles. Iacobellis et al. [21] have
shown that epicardial fat thickness and coronary artery disease, for
instance, correlate independently of obesity. This evidence supports the
need for individual segmentation and quantification of the adipose tis-
sues rather than merely estimating epicardial fat based on the overall fat
of the patient.

In a previous work [1], we proposed an accurate method for auto-
matically segmenting epicardial and mediastinal fats in CT exams. The
method is mainly based on feature extraction [22] and classification al-
gorithms [23]. However, registration is also performed for image align-
ment prior to feature extraction. Despite the superior accuracy of the
results, when compared to the state-of-the-art, the downside of the
approach is its processing time. Currently, it is able to automatically
segment the cardiac fats (epicardial and mediastinal) of a patient (a set of
approximately 50 images) in approximately 1.8 h.

In this work, we employ regression algorithms to predict the amount
of one of the cardiac fats based on the other. This approach of correlation
and prediction has not been previously addressed nor exploited in the
literature. Furthermore, we also explore the feasibility of this approach,
while comparing the performance of individual algorithms in the pre-
diction task.

3. Materials and methods

We used the ground truth data available in [24,25] that was provided
in our previous work [1]. The various images in the axial-plane were
manually segmented by two experts. The epicardial and mediastinal fats
in the images are represented as red and green pixels, respectively. The
transition between the two (which also corresponds to the pericardium)
is depicted in blue, as shown in the images of Fig. 2. Every non-black
pixel in the image represents fat. In other words, black pixels represent
everything that is not fat. More details on this fat range conversion can be
found in [1,26].

The cardiac CT scan is composed of approximately 50 images. The
amount of fat in these images varies depending on the slice number. In
this work, we address the fact that the volumes of these two fats strongly
correlate. Firstly, the images are converted to standard spacing in xyz-
space so that the heart of each patient is approximately at the same
scale. The term approximately refers to the fact that we use scanners from
two manufacturers, which introduces variability.

As stated, blue pixels represent the pericardium, which is a very thin
layer between the two fats. Since this information is already available in
the ground truth, we decided to include it as a variable in the prediction.
However, as the amount of blue pixels is very low, we would like to
highlight some points about their treatment, as follows: (1) they can be
ignored in the associated equations, if desired, (2) they can be considered
either green or red pixels, (3) or even both red and green at the same
time, as in our previous work [1]. Furthermore, (4) they could also be
estimated by tracing the pericardium contour. The best approach de-
pends on the task at hand and the requirements of the user.

It is important to emphasize that for predicting the epicardial fat (red
pixels), the information we have a priori is depicted in Fig. 3-(a), where
epicardial pixels are originally grey. Similarly, Fig. 3-(b) shows the a
priori information when we wish to predict the amount of mediastinal
(green) pixels.

Fig. 4 shows the input amount of grey pixels in these two prediction
cases. Fig. 4-(a) corresponds to the scenario where we wish to predict the
amount of epicardial (red) pixels. It can be seen in that image that
epicardial pixels are originally grey, since this information is not avail-
able prior to processing. Fig. 4-(b), on the other hand, corresponds to the
scenario where we wish to predict the amount of mediastinal (green)



Fig. 2. Slices of individual patients containing only fat (red¼epicardial, green¼mediastinal, blue¼pericardium and grey¼other types of fat). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article).

Fig. 3. Example of input images for the prediction of epicardial and mediastinal fat. (a) How input images look like when predicting epicardial (red) pixels (b) How input images look like
when predicting mediastinal (green) pixels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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pixels. Fig. 4-(c) and -(d) correspond to possible representations of the
predictions.

The ground truth contains CT scans from 20 patients, which gives us a
total of 878 images. For every image in the ground truth, we extract an
instance of the dataset, which is composed of 7 features: (1) the amount
of red pixels in the image, (2) the amount of green pixels in the image, (3)
the amount of blue pixels in the image, (4) the amount of grey pixels in
the image, (5) the amount of black pixels in the image (background), (6)
the total amount of images of the associated scan and (7) the index of the
slice to be processed (considering a scanning direction from head to feet).



Fig. 4. Example of the amount of grey pixels when predicting the epicardial and mediastinal fat. (a) Input amount of grey pixels when predicting epicardial (red) pixels (b) Input amount of
grey pixels when predicting mediastinal (green) pixels (c) Potential amount of grey pixels that could be considered epicardial after the prediction of image (a) (d) Potential amount of grey
pixels that could be considered mediastinal after the prediction of image (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article).
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These 7 features are the attributes of the instances in our extrac-
ted dataset.

Although the extracted features may seem fairly simple in nature,
they suffice for the purposes of prediction, as demonstrated in our ex-
periments. Our approach considers the amount of fat in a specific slice so
as to minimize errors that would appear if we attempted to predict the
entire volume at once. Furthermore, it offers an additional advantage as
it counts the amount of pixels corresponding to each fat at each slice, thus
permitting the analysis of the correlation as processing evolves along the
axial plane.

After generating the dataset composed of 878 instances (one for each
image), we used the Weka framework [27] to perform the experiments.
The class we wish to predict is continuous and, thus, the problem is posed
as regression. We analyse the performance of the various algorithms
based on the correlation coefficient, mean absolute error (MAE), root
mean squared error (RMSE), relative absolute error (RAE) and root
relative squared error (RRSE). The Pearson correlation coefficient ρ is
defined in Eq. (1):
Pn ðai � aÞðbi � bÞ

ρ ¼ i¼1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðai � aÞ2 Pn

i¼1
ðbi � bÞ2

r (1)

where ai stands for the predicted values and bi stands for the original
values of the dataset, both with regards to instance i. a and b represent the
mean of the predicted and original values, and n is the total number
of instances.

The mean absolute error (MAE) is given in Eq. (2) and measures the
average error between the predicted and the original values:

MAE ¼ 1
n

Xn

i¼1

jai � bij (2)

The root mean squared error is a very similar metric to MAE and is
shown in Eq. (3):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðai � biÞ2
s

(3)



Table 1
Comparison of individual regression algorithms for predicting the amount of mediastinal
fat.

Algorithm ρ MAE RMSE RAE RRSE

Rotation ForestþMLP Regressor 0.9876 1331.8 1948.2 14.4 15.7
RBF Regressor 0.9866 1247.5 2027.1 13.7 16.1
MLP Regressor 0.9856 1449.1 2101.5 15.9 16.9
SMO Regressor 0.9852 1261.3 2130.4 13.8 17.1
Rotation ForestþRandom Forest 0.9822 1663.3 2387.4 18.2 19.2
Additive RegressionþRandom
Forest

0.9812 1596.9 2415.1 17.5 19.4

k-NN/IBk 0.9804 1604.5 2443.0 17.6 19.6
Random Forest 0.9763 1793.2 2700.3 19.7 21.7
M5P 0.9695 2356.7 3040.4 25.9 24.5
Alternating Model Tree 0.969 2286.0 3059.2 25.1 24.6
M5 Rules 0.9681 2375.0 3104.8 26.1 25.0
Linear Regression 0.9534 2875.3 3736.7 31.6 30.1
Extra Tree 0.9516 2487.8 3823.2 27.3 30.8
LeastMedSq 0.9493 2896.2 3944.1 31.8 31.7
Elastic Net 0.949 2977.8 3900.9 32.7 31.4
REP Tree 0.9431 2671.9 4139.3 29.3 33.3
Random Tree 0.9343 2747.7 4433.0 30.2 35.7
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The relative absolute error (RAE) and root relative squared error
(RRSE) are essentially the MAE and RMSE, but in relation to the mean.
Their formulations are given by Eqs. (4) and (5), respectively:

RAE ¼
Pn
i¼1

jai � bij
Pn
i¼1

jb� bij
(4)

RRSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðai � biÞ2

Pn
i¼1

ðb� biÞ2

vuuuuut (5)

3.1. Regression algorithms

Let the instances of our problem be described in a Rk space, where k is
the total number of features of each and every instance. The regression
problem consists of finding the vector of weights w that approximates the
most the attribute values to the value we seek to predict (usually one of
the attributes, say attribute k represents the value we want to predict).
The predicted or estimated value for a given instance tðiÞ is given by Eq.

(6), where tðiÞj represents the attribute or dimension j of instance tðiÞ:

Xk�1

j¼1

wjt
ðiÞ
j ¼ w1t

ðiÞ
1 þ w2t

ðiÞ
2 þ⋯þ wk�1t

ðiÞ
k�1 (6)

The regression goal is to minimize the total error among all the in-
stances of the dataset. Thus, we wish to minimize the error E on the
training data, which is given by Eq. (7):

E ¼
Xn

i¼1

�����tðiÞk �
Xk�1

j¼1

wjt
ðiÞ
j

����� (7)

There are many algorithms to determine the optimal set of weights, so
as to minimize the error. However, the previous steps effectively sum-
marize the methodology to be followed. A popular approach to solve
regression problems are neural networks. These are function-based
classifiers (similarly to linear regressors) and the computation of the
weights can be performed using back propagation, for instance.

Whilst it may not be very intuitive, some decision tree-based algo-
rithms can also perform regression really well (e.g., Random Forests al-
gorithm [28]). They essentially discretize the data and treat the problem
as a multi-label classification. Some lazy algorithms such as k-Nearest
Neighbours (k-NN or IBk), which analyse the surrounding k instances in
order to classify an unlabeled instance, are also fairly good regression
algorithms.

The main issue that raises from applying k-NN, neural networks or
decision tree algorithms to a regression problem is that the predictive
models produced by these algorithms are frequently rather complex for
humans to understand. In this respect, linear regression algorithms are
more appropriate as they are easier to interpret and to reproduce, since
the resulting predictive model is a simple linear function.

4. Experimental results

At first, we analyse the performance of several algorithms for pre-
dicting the amount of mediastinal fat based on the amount of epicardial
fat and the remaining features. That is, among the 7 previously described
features, the amount of green pixels (mediastinal fat) is the class of the
problem (Section 4.1). In the next group of experiments (Section 4.2), the
amount of red pixels (epicardial fat) is the actual class of the problem.

One may argue that it is not necessary to perform these two types of
experiments, since if we have a single function that relates both epicar-
dial and mediastinal fats, it can be used to predict either one. Although
this is true for linear regression algorithms (since the resulting model is a
linear function), this is not generally true for other types of non-linear
algorithms (e.g., decision tree, neural networks, etc.). Clearly, it is not
straightforward to “invert” a predictive model that is intrinsically com-
plex. In this research we perform these two groups of experiments
separately.
4.1. Predicting the amount of mediastinal fat based on the amount of
epicardial fat

The indices shown in Tables 1, 3, 5 and 6 were obtained using 10-fold
cross validation. The parameters of each algorithm were experimentally
adjusted (two to three combinations of parameters were tested for each
algorithm) and the best results were selected. We also set an upper time
limit of 10 min for running each of the algorithms (including the cross
validation testing time).

It is possible to see in Table 1 that the Rotation Forest [29] with the
Multilayer Perceptron [30] (MLP) Regressor as one of its parameters was
the best performer in this experiment, achieving a correlation coefficient
of 0.9876. The plot in Fig. 5 shows the actual amount of mediastinal fat
(green pixels) on the x-axis versus the predicted or estimated amount of
mediastinal fat on the y-axis, using the Rotation ForestþMLP Regressor.

Although the Linear Regression algorithm did not perform as well as
other algorithms, this is probably the only algorithm among the ones in
Table 1 that generates a model that can be easily understood. The cor-
relation achieved with the Linear Regression algorithm is shown in Fig. 6,
and can be compared to Fig. 5, which corresponds to the best result. The
function generated by the Linear Regression on the full training dataset is
shown in Eq. (8):

greenQnt ¼ �1:2295� redQnt � 7:4448� blueQnt � 0:9017

� blackQnt � 72:8534� imageIndex þ 233:0906

� imagesQnt þ 230102:0526 (8)

where greenQnt represents the amount of mediastinal fat (green pixels) in
the current slice (imageIndexth slice), redQnt represents the amount of
epicardial fat (red pixels) in the slice, blueQnt represents the amount of
blue pixels, blackQnt the amount of black pixels, imageIndex represents
the number of the slice and imagesQnt represents the total number of
slices in the patient scan.

Once the amount of mediastinal fat pixels in each slice of a patient
scan is estimated, it is trivial to obtain the total volume of this fat by



Fig. 5. Mediastinal fat correlation using Rotation ForestþMLP Regressor. Each point
represents the amount of pixels in a single slice.

Fig. 6. Mediastinal fat correlation using Linear Regression algorithm. Each point repre-
sents the amount of pixels in a single slice.

�E.O. Rodrigues et al. Computers in Biology and Medicine 89 (2017) 520–529
accessing the xyz physical spacing information in the DICOM file and
performing the conversion to a volume. The function in Eq. (8) must be
computed for every slice of the scan. The only constant in this equation is
imagesQnt, which does not change with regards to a single patient. The
amount of grey pixels in the image was not relevant enough to be
included in the prediction function, when using the linear regres-
sion algorithm.

Table 2 shows 10 randomly selected slices from the 20 patients. The
first column corresponds to the actual amount of mediastinal fat in the
slice (amount of pixels), the second column corresponds to the predicted
amount using the Rotation Forest and MLP Regressor, while the third
column shows the error between the actual and estimated amounts.
Table 2
Comparison of prediction results for mediastinal fat.

Actual quantity Predicted quantity Error

15125 15537.926 412.926
12660 13987.862 1327.862
11756 11935.518 179.518
10561 12157.081 1596.081
23418 24248.377 830.377
8673 10570.37 1897.37
11542 13753.043 2211.043
45177 44580.362 �596.638
24319 24579.283 260.283
23270 19815.134 �3454.866
4.2. Predicting the amount of epicardial fat based on the amount of
mediastinal fat

Table 3 compares the performances of individual regression tech-
niques on the prediction of the amount of epicardial fat. The performance
of the best algorithms in Table 1 is similar to those in Table 3. However,
the ranking of the algorithms changed substantially. Overall, the indexes
are lower than in the previous table. This suggests that it is more difficult
to predict the amount of epicardial fat given the mediastinal than
the opposite.

It is worth emphasizing that the Linear Regression algorithm per-
formed substantially worse when compared to the mediastinal fat pre-
diction (Table 1). The resulting linear predictor trained on the entire
dataset is shown in Eq. (9):

redQnt ¼ �0:4608� greenQnt � 1:3373� blueQnt � 0:4736

� blackQnt � 54:5244� imageIndex þ 47:9363

� imagesQnt þ 123509:7603 (9)

As previously mentioned, the regression algorithms did not perform
as well in this class of the problem. Thus, we investigated whether
inverting Eq. (8) could result in better performance. The Linear Regres-
sion algorithm in the mediastinal fat experiment achieved a correlation
coefficient of 0.9534, which is fairly good in comparison to the correla-
tion results in Table 3. Thus, if one wishes to predict the amount of
epicardial fat given the mediastinal fat data, it could be better to consider
the linear function of Eq. (8). Therefore, we experimented with the
inversion of Eq. (8), which resulted in Eq. (10). However, when applying
Eq. (10) to the problem, we obtain a correlation coefficient of 0.82369,
where MAE ¼ 2319:5983;RMSE ¼ 3013:6908;RAE ¼ 55:95% and
RRSE ¼ 56:70%. These indices are slightly worse than the ones obtained
with the Linear Regression algorithm, which are shown in Table 3.

redQnt ¼ �0:8133� greenQnt � 6:0551� blueQnt � 0:7334

� blackQnt � 59:2545� imageIndex þ 189:5816

� imagesQnt þ 187150:9171 (10)

Thus, we concluded that, based on the available evidence, it is more
appropriate to use Eq. (9) rather than Eq. (10).

Furthermore, Figs. 7 and 8 show the correlations of the best per-
forming algorithm in this experiment (Rotation Forest þMLP Regressor)
and Linear Regression, respectively. The x and y axes represent the actual
and predicted values of the amount of epicardial fat, respectively.

The predictive models generated in this experiment predict negative
values in some slices as it can be seen in Figs. 7 and 8, which does not
make sense in practice. This was not the case in the mediastinal fat
experiment. Moreover, the spreading of the points in the plot is much
wider in comparison to the previous experiment. The plots, however,
have different scales, readily observable by the RAE and RRSE indices
in Table 3.

In practice, the problem of negative values for the amount of
epicardial fat could be resolved through normalization. Indeed,
normalization could even further improve the accuracy of the obtained
results. However, one of the intended purposes of this research is to
propose a simple methodology for non-technical experts, where by
directly inputting the information related to the amount of pixels for one
fat, it is possible to obtain a fairly accurate prediction for the other type of
fat, without any further need for processing. It may also be the case that
the patient data could be outside of the normalization range. For
instance, let us suppose that the maximum value for a certain attribute in
the available training dataset ism. Thus, when the data is normalized, the
maximum value for the particular attribute will be equal to 1. However,
there may be instances where patients have attribute values higher than
m, which was the available maximum on the training set. If this was to
occur, regression models would not be able to provide sensible



Table 3
Comparison of individual regression algorithms for predicting the amount of epicardial fat.

Algorithm ρ MAE RMSE RAE RRSE

Rotation ForestþMLP Regressor 0.9683 671.0624 1095.029 19.6221 24.958
RBF Regressor 0.9592 736.551 1241.594 21.537 28.2985
SMO Regression 0.9569 783.9753 1271.063 22.9237 28.9702
MLP Regressor 0.9558 815.2913 1293.702 23.8394 29.4862
Rotation ForestþRandom Forest 0.9497 964.0111 1434.355 28.188 32.6918
Additive RegressionþRandom Forest 0.9472 880.1396 1412.651 25.7355 32.1973
k-NN/Ibk 0.944 871.8146 1446.764 25.4921 32.9748
Random Forest 0.9389 997.4846 1538.362 29.1667 35.0625
M5 Rules 0.8783 1505.644 2092.582 44.0255 47.7005
Alternating Model Tree 0.8776 1492.431 2102.981 43.6391 47.9313
M5P 0.8702 1557.657 2160.526 45.5464 49.2429
Extra Tree 0.86 1414.435 2287.365 41.3585 52.1338
Linear Regression 0.8531 1724.72 2284.188 50.4313 52.064
Random Tree 0.8477 1432.02 2428.647 51.8727 55.3539
Elastic Net 0.8438 1750.837 2349.17 51.195 53.5425
REP Tree 0.8436 1566.34 2371.547 45.8003 54.0525
LeastMedSq 0.7929 1935.701 2748.017 56.6005 62.633

Fig. 7. Epicardial fat correlation using the Rotation ForestþMLP Regressor. Each point
represents the amount of pixels in a single slice.

Fig. 8. Epicardial fat correlation using the Linear Regression algorithm. Each point rep-
resents the amount of pixels in a single slice.

Table 4
Comparison of prediction results for epicardial fat.

Actual quantity Predicted quantity Error

14506 13133.203 �1372.797
7429 8579.046 1150.046
6804 5140.564 �1663.436
7474 8158.426 684.426
3357 4088.433 731.433
10729 9287.318 �1441.682
15068 15509.504 441.504
11724 10216.715 �1507.285
6919 5005.346 �1913.654
9110 7520.698 �1589.302
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predictions for these instances. Thus, we decided to disregard the
application of normalization as a rectification procedure.

Table 4 shows 10 randomly selected slices from the 20 patients. The
first column corresponds to the actual amount of epicardial fat in the slice
(amount of pixels), the second column corresponds to the predicted
amount using the Rotation Forest and MLP Regressor, while the third
column shows the error between the actual and estimated amounts.
4.3. Predicting both fats from unprocessed exams

For the sake of comparison, we perform a third and final experiment
where the goal is to predict the epicardial and mediastinal fat volumes
without preprocessing the images. That is, we investigate the prediction
of the volume of the epicardial/mediastinal fat with no a priori infor-
mation of the mediastinal/epicardial fat and the pericardium. Thus, the
images of the patients would be entirely in greyscale, as shown in Fig. 9.
Therefore, the pixels in these images are either grey, corresponding to fat,
or black, depicting the background.

Table 5 compares the results obtained with each algorithm in this
experiment.It is possible to conclude that, with regards to Table 3, the
reported errors have almost doubled in most occasions. This confirms the
validity of the hypothesis that it is more accurate to predict one type of fat
based on the other, instead of attempting to predict it directly from un-
processed fat data. Despite the fact that the resulting models are not as
accurate as in the case of the previous experiments, nevertheless, they
provide acceptable results for the purposes of prediction. Indeed, this
approach could be useful if the volumes of both fats are unknown and
there is a requirement for rapid fat volume estimation.

Table 6 compares the results obtained when predicting the epicardial
volume without any information of the mediastinal fat and pericardium.
This experiment produced the worst results, the errors have nearly
doubled, as shown in Table 5. In terms of medical relevance, accurate
estimation of the epicardial fat is more significant than that of the
mediastinal volume.

Figs. 10 and 11 show the correlation plots obtained for the best
performing algorithm (Rotation ForestþMLP Regressor) for the medias-
tinal and epicardial fat, respectively. As expected, it is evident that errors
are much higher than the ones in Sections 4.1 and 4.2. More specifically,
the plot of Fig. 10 is more spread than that of Fig. 5 and the plot of Fig. 11
is more spread than that of Fig. 7.



Fig. 9. Examples of unprocessed slices of individual patient CT examinations.

Table 5
Comparison of individual regression algorithms for prediction of the amount of mediastinal fat on unprocessed images.

Algorithm ρ MAE RMSE RAE RRSE

Rotation ForestþMLP Regressor 0.9549 2464.511 3681.298 27.1063 29.6706
k-NN/Ibk 0.9544 2102.944 3701.523 23.1295 29.8336
MLP Regressor 0.9531 2502.514 3749.523 27.5243 30.2205
RBF Regressor 0.946 2366.389 4030.551 26.0271 32.4856
Random Forest 0.9456 2624.493 4031.234 28.8659 32.4911
Additive RegressionþRandom Forest 0.9448 2532.347 4063.312 27.8524 32.7496
SMO Regression 0.942 2815.128 4176.027 30.9626 33.6581
RotationForestþRandom Forest 0.942 2804.584 4180.239 30.8466 33.692
Alternating Model Tree 0.9202 3760.431 4871.069 41.3596 39.26
REP Tree 0.9081 3521.787 5224.702 38.7349 42.1102
M5P 0.9076 3875.261 5231.124 42.6226 42.162
M5 Rules 0.903 3940.991 5330.788 43.3456 42.9652
Random Tree 0.8983 3364.667 5644.721 37.0068 45.4955
Extra Tree 0.8975 3385.886 5569.347 37.2401 44.888
Linear Regression 0.8144 5525.071 7189.585 60.7683 57.9468
LeastMedSq 0.8121 5461.548 7234.044 60.0696 58.3052
Elastic Net 0.7945 5778.268 7522.813 63.5531 60.6362

Table 6
Comparison of individual regression algorithms for prediction of the amount of epicardial fat on unprocessed images.

Algorithm ρ MAE RMSE RAE RRSE

RotationForestþ MLPRegressor 0.9283 1112.602 1630.195 32.5338 37.1555
MLP Regressor 0.921 1170.427 1709.535 34.2236 38.9639
k-NN/Ibk 0.9186 1026.236 1733.968 30.0075 39.5207
RBF Regressor 0.9129 1111.812 1796.067 32.5097 40.9361
Additive Reg.þRandom Forest 0.9038 1210.713 1874.056 35.4016 42.7136
Random Forest 0.8999 1280.327 1922.779 37.4371 43.8241
RotationForestþRandom Forest 0.8915 1407.415 2036.57 41.1532 46.4177
SMO Regression 0.8546 1554.29 2312.397 45.4479 52.7044
Extra Tree 0.8366 1556.863 2459.925 45.5231 56.0668
Alternating Model Tree 0.8126 1957.636 2553.028 57.2419 58.1888
M5P 0.7952 1972.226 2680.816 57.6688 61.1014
Random Tree 0.7884 1724.339 2801.167 50.4202 63.8444
REP Tree 0.7651 1927.994 2843.145 56.3751 64.8012
M5Rules 0.7494 2087.658 2901.227 61.0437 66.125
Linear Regression 0.4907 2815.204 3814.83 82.3174 86.9479
LeastMedSq 0.4455 2816.671 3948.312 82.3603 89.9903
Elastic Net 0.4218 2878.6 3969.828 84.1711 90.4807
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5. Conclusions

In this research, we proposed the use of regression algorithms for
predicting epicardial and/or mediastinal fats in relation to one another
and to the image data. Two numerical values representing the volumes of
the epicardial and mediastinal fats are the main interest in most medical
analyses. Therefore, visual segmentation of the images can be bypassed if
there exists a reliable way of estimating the required fat volume, such as
the approach proposed in this contribution.

In a previous work [1], full segmentation of epicardial and medias-
tinal fat volumes took 1.8 h. Our experiments demonstrated that there is
no strict need to process and segment both fats, but rather to only process
one instead. Indeed, this implies some additional errors. However, the
obtained results demonstrate a high correlation between the segmented



Fig. 10. Mediastinal fat correlation using the Rotation ForestþMLP Regressor in the un-
processed images experiment. Each point represents the amount of pixels in a single slice.

Fig. 11. Epicardial fat correlation using the Rotation ForestþMLP Regressor in the un-
processed images experiment. Each point represents the amount of pixels in a single slice.
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fat volumes and the estimated ones. The key benefit of this approach is
that processing time is reduced by half, to approximately 0.9 h, using this
methodology.

With regards to the reported results, it is preferable to predict the
mediastinal fat volume based on the epicardial rather than the opposite.
The correlation coefficient obtained by the Rotation Forest algorithm
using the MLP Regressor as parameter for predicting the mediastinal fat
was 0.9876, with a relative absolute error of 14.4% and root relative
squared error of 15.7%.

The best correlation coefficient obtained for predicting the epicardial
fat based on the mediastinal was 0.9683 with relative absolute error of
19.6% and relative squared error of 24.9%. The maximum correlation
coefficient achieved when predicting the mediastinal fat with no a priori
information of the epicardial and pericardium was 0.9549 with a RAE of
27.1% and a RRSE of 29.6%, which is almost double the average error
obtained when information of the epicardial fat is considered or known a
priori. In the case of the epicardial volume prediction, the correlation
coefficient was 0.9283 with a RAE of 32.5% and a RRSE of 37.1%. Once
again, approximately twice the average error obtained when the medi-
astinal volume information is used.

The produced errors arise due to various factors. Examples of these
are the lack of a very accurate registration over the entire patient dataset,
the use of different CT scanners, exceptions to the norm, and indeed the
prediction power of the employed regression algorithms. Registration
was performed in the ground truth images, but this was an automated
procedure, proposed in our previous work [1] and inadvertently in-
troduces errors. A manual, more accurate registration would reduce the
errors produced on the prediction. Furthermore, if the CT scans are
calibrated to each other, acquired with the same parameters and the
same device as well as registered with an accurate registration, then the
errors could be substantially reduced.

We conclude that it is possible to predict fairly confidently one type of
fat based on the information of the other. Overall, the obtained results are
encouraging. Of particular note is that the utilized ground truth contains
CT images from two manufacturers (Siemens and Philips), which implies
that the proposed methodology (e.g., associated regression models)
may be applicable irrespectively of the type of the CT scanners. Further
research will concentrate on evaluating the application of the generated
linear functions and predictive models to CT examinations obtained
using scanners of other manufacturers to verify their generalization
properties.

Acknowledgments

The authors would like to thank CAPES-Brazil for providing schol-
arships and CNPQ-Brazil, grant number: 303240/20015-6.

References

[1] �E.O. Rodrigues, F.F.C. Morais, N.A.O.S. Morais, L.S. Conci, L.V. Neto, A. Conci,
A novel approach for the automated segmentation and volume quantification of
cardiac fats on computed tomography, Comput. Methods Prog. Biomed. 123 (1)
(2016) 109–128.

[2] V. Mahadevan, Anatomy of the heart, Surgery 30 (1) (2012).
[3] A.A. Mahabadi, N. Lehmann, H. Kalsch, T. Robens, M. Bauer, I. Dykun, T. Budde,

S. Moebus, K.H. Jockel, R. Erbel, S. Mohlenkamp, Association of epicardial adipose
tissue with progression of coronary artery calcification is more pronounced in the
early phase of atherosclerosis: results from the heinz nixdorf recall study, JACC:
Cardiovasc. Imaging 7 (9) (2014) 909–916.

[4] P.M. Gorter, A.M. Vos, Y. Graaf, P.R. Stella, P.A. Doevendans, M.F. Meijs,
F.L. Visseren, Relation of epicardial and pericoronary fat to coronary atherosclerosis
and coronary artery calcium in patients undergoing coronary angiography, Am. J.
Cardiol. 102 (4) (2008) 380–385.

[5] C.L. Schlett, M. Ferencik, M.F. Kriegel, F. Bamberg, B.B. Ghoshhajra, S.B. Joshi,
J.T. Nagurney, C.S. Fox, Q.A. Truong, U. Hoffmann, Association of pericardial fat
and coronary high-risk lesions as determined by cardiac CT, Atherosclerosis 222 (1)
(2012) 129–134.

[6] S. Dabbah, H. Komarov, A. Marmor, N. Assy, Epicardial fat, rather than pericardial
fat, is independently associated with diastolic filling in subjects without apparent
heart disease, Nutr. Metab. Cardiovasc. Dis. (2014) 1–6.

[7] T. Brinkley, F. Hsu, J. Carr, W. Hundley, D. Bluemke, J. Polak, J. Ding, Pericardial
fat is associated with carotid stiffness in the multi-ethnic study of atherosclerosis,
Nutr. Metab. Cardiovasc. Dis. 21 (5) (2011) 332–338.

[8] A. Yerramasua, D. Dey, S. Venuraju, D.V. Anand, S. Atwal, R. Corder, D.S. Berman,
A. Lahiri, Increased volume of epicardial fat is an independent risk factor for
accelerated progression of sub-clinical coronary atherosclerosis, Atherosclerosis
220 (1) (2012) 223–230.

[9] R. Djaberi, J.D. Schuijf, J.M. Werkhoven, G. Nucifora, J.W. Jukema, J.J. Bax,
Relation of epicardial adipose tissue to coronary atherosclerosis, Am. J. Cardiol. 102
(12) (2018) 1602–1607.

[10] T. Choi, N. Ahmadi, S. Sourayanezhad, I. Zeb, M.J. Budoff, Relation of vascular
stiffness with epicardial and pericardial adipose tissues, and coronary
atherosclerosis, Atherosclerosis 229 (1) (2013) 118–123.

[11] G.A. Rosito, J.M. Massaro, U. Hoffman, F.L. Ruberg, A.A. Mahabadi, R.S. Vasan,
C.J. O’Donnel, C.S. Fox, Pericardial fat, visceral abdominal fat, cardiovascular
disease risk factors, and cardiovascular calcification in a community-based sample:
the framingham heart study, Circulation 117 (2008) 605–613.

[12] R. Taguchi, J. Takasu, Y. Itani, R. Yamamoto, K. Yokoyama, S. Watanabe,
Y. Masuda, Pericardial fat accumulation in men as a risk factor for coronary artery
disease, Atherosclerosis 157 (1) (2001) 203–209.

[13] P. Raggi, Epicardial adipose tissue as a marker of coronary artery disease risk,
J. Am. Coll. Cardiol. 61 (13) (2013) 1396–1397.

[14] P. Raggi, P. Alakija, Epicardial adipose tissue: a long-overlooked marker of risk of
cardiovascular disease, Atherosclerosis 229 (1) (2013) 32–33.

[15] W. Chen, J. Huang, M.-H. Hsieh, Y.-J. Chen, Extremely high coronary artery
calcium score is associated with a high cancer incidence, Int. J. Cardiol. 155 (2012)
474–475.

[16] O. Chenn, I. Ahmad, B. Hua, J.A. Sockolow, I. Klem, T. Sacchi, J.F. Heitner,
Correlation of pericardial and mediastinal fat with coronary artery disease,
metabolic syndrome, and cardiac risk factors, J. Cardiovasc. Magn. Reson. 53 (10)
(2009) A283.

[17] F. Atalar, S. Gormez, B. Caynak, G. Akan, G. Tanriverdi, S. Bilgic-Gazioglu,
D. Gunay, C. Duran, B. Akpinar, U. Ozbek, A.S. Buyukdevrim, Z. Yazici, Mediastinal
adipose tissue expresses a pathogenic profile of 11 β-hydroxysteroid dehydrogenase
type 1, glucocorticoid receptor, and cd68 in patients with coronary artery disease,
Cardiovasc. Pathol. 22 (3) (2013) 183–188.

[18] R. Sicari, A.M. Sironi, R. Petz, F. Frassi, D.M. Chubuchny, D. Marchi, V. Positano,
M. Lombardi, E. Picano, A. Gastaldelli, Pericardial rather than epicardial fat is a

http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref1
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref1
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref1
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref1
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref1
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref2
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref3
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref3
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref3
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref3
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref3
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref3
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref4
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref4
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref4
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref4
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref4
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref5
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref5
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref5
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref5
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref5
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref6
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref6
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref6
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref6
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref7
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref7
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref7
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref7
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref8
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref8
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref8
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref8
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref8
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref9
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref9
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref9
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref9
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref10
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref10
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref10
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref10
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref11
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref11
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref11
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref11
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref11
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref12
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref12
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref12
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref12
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref13
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref13
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref13
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref14
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref14
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref14
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref15
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref15
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref15
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref15
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref16
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref16
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref16
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref16
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref17
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref17
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref17
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref17
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref17
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref17
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref17
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref18
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref18


�E.O. Rodrigues et al. Computers in Biology and Medicine 89 (2017) 520–529
cardiometabolic risk marker: an mri vs echo study, J. Am. Soc. Echocardiogr. 24
(10) (2011) 1156–1162.

[19] K. Dudas, G. Lappas, S. Stewart, A. Rosengren, Trends in out-of-hospital deaths due
to coronary heart disease in sweden (1991 to 2006), Circulation 123 (1) (2011)
46–52.

[20] C.T. Escoffery, S.E. Shirley, Causes of sudden natural death in jamaica: a
medicolegal (coroner’s) autopsy study from the university hospital of the west
indies, Forensic Sci. Int. 129 (2) (2002) 116–121.

[21] G. Iacobellis, E. Lonn, A. Lamy, N. Singh, A.M. Sharma, Epicardial fat thickness and
coronary artery disease correlate independently of obesity, Int. J. Cardiol. (2011)
452–454.

[22] E.O. Rodrigues, A. Conci, T.B. Borchartt, A.C. Paiva, A.C. Silva, T. MacHenry,
Comparing results of thermographic images based diagnosis for breast diseases, in:
Proceedings of the International Conference on Systems, Signals and Image
Processing (IWSSIP), pp. 39–42, 2014.

[23] �E.O. Rodrigues, A. Conci, F.F.C. Morais, M.G. Perez, Towards the automated
segmentation of epicardial and mediastinal fats: a multi-manufacturer approach
using intersubject registration and random forest, in: Proceedings of the IEEE
International Conference on Industrial Technology (ICIT), 2015, pp. 1779–1785.

[24] V. Lab, A Ground Truth of Cardiac Fats, 2015 〈http://visual.ic.uff.br/en/cardio/
ctfat/index.php〉.

[25] E.O. Rodrigues, Cardiac Datasets, 2016 〈https://github.com/Oyatsumi/
CardiacAdiposeTissue〉.

[26] E.O. Rodrigues, Automated Segmentation of Epicardial and Mediastinal Fats Using
Intersubject Registration and Classification Algorithms, 2015 〈http://www2.ic.uff.
br/PosGraduacao/Dissertacoes/666.pdf〉.

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The weka
data mining software: an update, SIGKDD Explor. 11 (1) (2009).

[28] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[29] J.J. Rodriguez, L.I. Kuncheva, C.J. Alonso, Rotation forest: a new classifier

ensemble method, Trans. Pattern Anal. Mach. Intell. 28 (10) (2006).
[30] S.K. Pal, S. Mitra, Multilayer perceptron, fuzzy sets, and classification, IEEE Trans.

Neural Netw. 3 (5) (1992).

http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref18
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref18
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref18
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref19
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref19
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref19
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref19
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref20
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref20
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref20
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref20
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref21
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref21
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref21
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref21
http://visual.ic.uff.br/en/cardio/ctfat/index.php
http://visual.ic.uff.br/en/cardio/ctfat/index.php
https://github.com/Oyatsumi/CardiacAdiposeTissue
https://github.com/Oyatsumi/CardiacAdiposeTissue
http://www2.ic.uff.br/PosGraduacao/Dissertacoes/666.pdf
http://www2.ic.uff.br/PosGraduacao/Dissertacoes/666.pdf
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref22
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref22
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref23
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref23
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref24
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref24
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref25
http://refhub.elsevier.com/S0010-4825(17)30047-1/sbref25

	Machine learning in the prediction of cardiac epicardial and mediastinal fat volumes
	1. Introduction
	2. Literature review
	3. Materials and methods
	3.1. Regression algorithms

	4. Experimental results
	4.1. Predicting the amount of mediastinal fat based on the amount of epicardial fat
	4.2. Predicting the amount of epicardial fat based on the amount of mediastinal fat
	4.3. Predicting both fats from unprocessed exams

	5. Conclusions
	Acknowledgments
	References




