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Abstract

Objective: Non-invasive neuromuscular characterization aims to provide greater

insight into the effectiveness of existing and emerging rehabilitation therapies

by quantifying neuromuscular characteristics relating to force production, mus-

cle viscoelasticity and voluntary neural activation. In this paper, we propose a

novel approach to evaluate neuromuscular characteristics, such as muscle fiber

stiffness and viscosity, by combining robotic and HD-sEMG measurements with

computational musculoskeletal modeling. This pilot study investigates the ef-

ficacy of this approach on a healthy population and provides new insight on

potential limitations of conventional musculoskeletal models for this applica-

tion. Methods: Subject-specific neuromuscular characteristics of the biceps and

triceps brachii were evaluated using robot-measured kinetics, kinematics and

EMG activity as inputs to a musculoskeletal model. Results: Repeatability

experiments in five participants revealed large variability within each subjects

evaluated characteristics, with almost all experiencing variation greater than

50% of full scale when repeating the same task. Conclusion: The use of robotics

and HD-sEMG, in conjunction with musculoskeletal modeling, to quantify neu-

romuscular characteristics has been explored. Despite the ability to predict joint

kinematics with relatively high accuracy, parameter characterization was incon-
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sistent i.e. many parameter combinations gave rise to minimal kinematic error.

Significance: The proposed technique is a novel approach for in vivo neuromus-

cular characterization and is a step towards the realization of objective in-home

robot-assisted rehabilitation. Importantly, the results have confirmed the tech-

nical (robot and HD-sEMG) feasibility while highlighting the need to develop

new musculoskeletal models and optimization techniques capable of achieving

consistent results across a range of dynamic tasks.

Keywords: Electromyography (EMG), HD-sEMG, musculoskeletal modeling,

neuromuscular characterization, robotic rehabilitation

1. Introduction

Neurological injuries such as cerebral palsy and stroke are among the leading

causes of physical disability in the developed world [1]. The effects of these

injuries commonly include impairments such as muscle weakness, increased joint

spasticity and reduced joint coordination which lead to functional deficits.

Physical and cognitive rehabilitation is typically undertaken to improve im-

paired motor function resulting from neurological injury. Current rehabilita-

tive care is goal-orientated, focusing on the assessment of quantifiable time-

dependent goals against a set of desired patient-specific outcomes [2]. These

treatments are often performed at the functional or impairment level, with lit-

tle or no ability to accurately assess underlying neuromuscular characteristics.

Neuromuscular characteristics relating to muscle force production, muscle

viscoelasticity and voluntary neural activation [3] can be estimated using phe-

nomenological models and may provide insights into the underlying physiolog-

ical properties of muscle [4]. Characteristics such as muscle fiber stiffness and

viscosity, could be used as objective measures to test interventions and track

patient progress during therapy [5].

The ability to non-invasively diagnose and track underlying physiological

characteristics, in-vivo, may help unveil neural recovery mechanisms and could

be used to evaluate existing therapies and develop new individualized rehabilita-
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tion treatments [6]. For example, it is assumed that hypertonia in spastic cere-

bral palsy leads to increased muscle fiber stiffness [7], and the ability to directly

quantify changes in fiber stiffness may provide further insight into treatment

effectiveness. Treatments that may give rise to structural changes in muscle

include physiotherapy, splinting and Botulinum Neurotoxin-A. Previous studies

regarding non-invasive diagnosis techniques have been for the knee [8], ankle

[5] and wrist joint [9]. These model-based approaches use electromyographic

(EMG) activity to infer estimates regarding the underlying physiological prop-

erties.

Rehabilitation robotics is an area of growing interest in both research and

commercialization. There is an increasing demand for physical rehabilitation

and a need to increase accessibility to therapy. The ability to provide patients

with in-home physical rehabilitation and automatically monitor their progress is

highly sought after [10]. To our knowledge, the use of robotic exoskeletons as a

supplementary tool for characterizing muscle properties has yet to be explored.

Previous integration of robotic exoskeletons with musculoskeletal modeling has

focused on the development of control strategies for rehabilitative training [11,

12, 13].

This paper proposes a novel approach to assess an individuals neuromuscu-

lar characteristics through the use of rehabilitative robotic exoskeletons (includ-

ing HD-sEMG) and computational neuro-musculoskeletal modeling. A neuro-

musculoskeletal model for the elbow, in combination with an upper arm ex-

oskeleton, has been implemented to evaluate neuromuscular characteristics for

the biceps and triceps muscle groups. An overview of the proposed technique is

illustrated in Fig. 1.

The aim of this study was to conduct a pilot trial on a healthy population to

investigate the efficacy of our technical approach and evaluating neuromuscular

characteristics using a Hill-based neuro-musculoskeletal model. The objectives

were (1) to validate the ability to obtain subjects neuromuscular characteris-

tics that predict/replicate human dynamics; (2) evaluate the reliability of the

subject specific assessment; (3) determine the feasibility of using robotics with
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neuromuscular modeling as an assessment tool.

2. Methods

2.1. Robotic Exoskeleton

An upper limb robotic exoskeleton designed for rehabilitation therapy was

used for the experiments [14]. The exoskeleton has one active degree-of-freedom

(DOF), driven by a series elastic actuator, for flexion/extension at the elbow

joint, and two passive DOF to account for pronation/supination of the fore-

arm as well as humeroulnar articulation. Hall effect sensors at the active joint

accurately track elbow angle and torque. A robust, low-level sliding-mode con-

troller is implemented to control human-robot interaction torques, allowing the

exoskeleton to carry out assistive and resistive rehabilitation exercises.

2.2. EMG Acquisition and Processing

EMG activity was captured using high density surface electromyography,

or HD-sEMG. Compared to traditional single channel electrodes, this multi-

channel system provides additional redundancy to increase measurement ro-

bustness. A recent study has also shown HD-sEMG can improve muscle force

estimation accuracy [15].

An ActiveTwo HD-sEMG system (BioSemi B.V., Amsterdam, Netherlands)

was used to record EMG from the biceps and triceps brachii. In total, 64

channels were recorded, 32 per muscle. A 16-by-2 electrode array was placed on

each muscle, with both rows aligned parallel along the muscle fiber direction.

The center of the electrode arrays was placed on the biceps brachii and triceps

long head according to the well-established recommendations given by [16]. This

follows the assumption that the activation in each head is indicative of the

activation of the entire muscle [17, 18].

All channels were sampled at 2048 Hz. The raw EMG signal was first band-

pass filtered through a fourth-order Butterworth filter with cut-off frequencies

at 10 Hz and 512 Hz. A 50 Hz notch filter removed mains noise, followed by a
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smoothing RMS filter. Using a monopolar configuration, a composite signal was

generated by applying a moving maximum filter across all channels, capturing

the true skin potential while accounting for poor electrode-skin contact. This

filtered EMG signal was normalized for each muscle group using the maximum

recorded peak during maximum voluntary contraction.

2.3. Neuro-musculoskeletal Model

The widely adopted Hill-type model can characterize active and passive prop-

erties of muscle fiber during contraction [4, 19]. The parameters of this model

are largely based on anatomical and physiological principles and are indicative

of physical characteristics such as muscle fiber damping and stiffness. Here,

an EMG-driven neuro-musculoskeletal model was developed to estimate mus-

cle forces in the biceps and triceps brachii during elbow flexion and extension.

These forces were passed to a forward kinematic joint model to predict joint

angle. An optimization routine, with an objective function to reduce the error

between predicted and measured joint angle, tunes model parameters to each

subject.

The filtered EMG signals are first transformed to muscular activation using

the procedure established by Buchanan et al. [20]. A Hill-type muscle model

of the elbow joint was adapted from [18] to estimate individual muscle forces

using muscle activation as input. This EMG-driven model can estimate both

active and passive muscle fiber force production during fiber shortening and

lengthening. The phenomenological model comprises of a contractile force unit,

passive elastic force and passive viscous force components, all in parallel. The

model assumes changes in tendon length are negligible.

An existing upper extremity computational model [21] was used to derive a

relationship between normalized muscle fiber lengths and moment arms against

the elbow joint angle for the biceps brachii (long and short head) and triceps

brachii (long, lateral and medial heads). These were used to relate force to the

velocity and fiber length relationships in the Hill model.
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2.4. Kinematic Joint Modeling

A kinematic model for the elbow joint was adapted from Pau et al. [18].

The model is capable of simulating joint movement, given a set of muscle forces.

The resulting moment (Mtotal) about the joint, in the sagittal plane (flex-

ion/extension), is given by (1),

Mtotal = MAbicep.Fbicep −MAtricep.Ftricep +Mviscous +Mexo (1)

where MA is the instantaneous muscle fiber moment arm, F is the total

muscle force from the summation of individual fibers for each group. Mexo is

the external torque exerted by the exoskeleton. Mviscous is the moment due to

passive damping forces exerted by biological tissue and fluid.

Mviscous is determined using the following equation [18], where ω is angular

velocity at the elbow joint and β is the subject-specific damping coefficient for

the elbow.

Mviscous = −βω (2)

Elbow joint angle, θ(n), and angular velocity can be predicted using the

following discrete time kinematic equations,

θ(n) = θ(n− 1) + ω(n− 1).∆t+
Mtotal

2I
.∆t2 (3)

ω(n) = ω(n− 1) +
Mtotal

I
.∆t (4)

where ∆t is the sampling time and I is the combined moment of inertia of

the forearm and hand (obtained using OpenSim [22]).

2.5. Subject-Specific Neuromuscular Characteristics

In this study, the neuromuscular characteristics of interest were derived from

subject-specific model parameters, that are based on well-known underlying

mechanical and electrophysiological properties of muscle and tissue [4, 20]. A

summary of all subject-specific characteristics is listed in Table 1. Boundary

constraints were enforced according to existing literature [20, 23].
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2.6. Neuromuscular Characterization

To evaluate neuromuscular characteristics, a set of experimental data was

recorded for each subject during a range of dynamic exercises. EMG, kinematic

and kinetic data were measured using the exoskeleton and HD-sEMG system,

after which an optimization algorithm calibrated the subject-specific parame-

ters to the individual. The objective for optimization was to reduce the root

mean square (RMS) error between the experimentally measured joint angles and

model-predicted joint angles. The process was split into two stages to achieve

a global optimum with a reduced time cost. First, a global stochastic genetic

algorithm optimization [25] defined a global minimum region in the search space

(as defined by the boundary constraints for each parameter), followed by an in-

terior point optimization to find the local minimum within this region [26]. The

genetic algorithm was set to a population size of 200 with a maximum gener-

ation limit of 1,300. A time limit of four hours was placed. When the genetic

algorithm finished, the interior point (local) optimization was implemented to

reach the final solution.

2.7. Experimental Procedure

In this pilot trial, a convenience sample of five healthy adult male partic-

ipants was recruited. The mean age was 24.2±2.9 years, and all participants

were right-hand dominant. This sample size was deemed satisfactory because

the assessment of neuromuscular characteristics is subject-specific and trends

regarding the general population are not inferred.

To test the reliability and efficacy of evaluating neuromuscular characteris-

tics participants were asked to carry out four different tasks while wearing the

elbow exoskeleton. The selected tasks require a certain degree of motor con-

trol and effort. The following tasks were chosen to simulate varying conditions,

e.g. changing velocity and muscle activation, in a controlled environment: T1)

continuous cyclic trajectory tracking; T2) chirp signal trajectory tracking; T3)

cyclic trajectory tracking with resistive torque; T4) maximum voluntary iso-

metric contraction. Each task was repeated 3 times, resulting in 12 trials per
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subject.

Prior to beginning the experiment, participants skin was prepared by light

abrading with sandpaper, followed by cleansing with acetone. Once the elec-

trodes were in place, participants donned the exoskeleton. Throughout the ex-

periment, five variables of interest were recorded, i) timestamps ii) elbow angle,

iii) elbow velocity, iv) biceps EMG signal, and v) triceps EMG signal. Ex-

oskeleton kinematics were logged on a LabView myRIO at a frequency of 1 kHz.

The exoskeleton was interfaced to PC via LabView to provide the participant

with visual feedback (real-time angle information) during each task. HD-sEMG

was acquired through the ActiveTwo measurement system and interfaced to a

PC using the ActiView software provided by BioSemi. Model implementation,

data processing and optimization were all done in Matlab.

Maximum voluntary contraction (MVC) for the biceps and triceps brachii

was recorded according to [27], with a two minute break enforced between mea-

surements. Participants performed a single static maximum contraction for each

muscle group, in separate tests, for 10 seconds. Following a two minute break,

participants were asked to relax their arm and the muscle tonus was measured.

This reading provides a baseline to offset the EMG dataset.

Task 1: Cyclic Trajectory Tracking. The first task involved cyclic motion of

the elbow. The exoskeleton was set to back-drivable mode (i.e. zero interac-

tion between the human and robot) and each participant was asked to perform

flexion/extension of the elbow through the full range-of-motion (ROM). Next,

participants were asked to move their forearm through 5 flexion-extension cy-

cles at a self-selected velocity and an amplitude that corresponded to 75% of

the maximum ROM, the latter chosen to avoid overexertion at limits of motion.

This period of motion was recorded and used to derive a self-selected frequency

of motion.

The self-selected frequency was used to create a sinusoidal set point, with an

amplitude again equal to 75% of ROM. The sinusoid was displayed to the user

as a graph on the computer screen, along with their elbow angle. Participants

8



were asked to track this motion for 5 cycles. The task was repeated three times,

each separated by at least 30s rest.

Task 2: Chirp Signal Trajectory Tracking. A sinusoidal chirp signal was created

as a set point. The amplitude was chosen to be 75% of the recorded ROM

from Task 1 and the frequency ranged from 0 Hz to 1.5 times the self-selected

frequency obtained from Task 1. Each chirp signal was programmed to increase

to the maximum frequency linearly over a period of 20s. The task was repeated

three times, each separated by at least 30s rest.

Task 3: Cyclic Trajectory Tracking with Resistive Torque. The exoskeleton was

set to apply a resistive anticlockwise torque of 3 Nm. Participants were asked to

follow a cyclic trajectory at the self-selected frequency for 20s, with an amplitude

equal to 75% of ROM. The task was repeated three times, each separated by at

least one minute rest period.

Task 4: Maximum Isometric Contraction. The final task involved recording

participants maximum isometric contraction. Participants were asked to fully

contract both their biceps and triceps for 20s, whilst holding a constant angle.

Three repetitions were performed, separated by two minute rest periods.

Each participant was seated upright during the experiment and the upper arm

(humerus) was positioned vertically. Participants were asked to extend and

flex their elbow in the sagittal plane and limit shoulder recruitment. To de-

termine the repeatability of neuromuscular characterization, all tasks were re-

peated three times with a rest period of at least one minute between each task

to minimize muscle fatigue.

The number of cycles achieved during some tasks differed across subjects

due to differences in self-selected frequency. To standardize the datasets for

optimization, the trial data for Task 2 and Task 3 were trimmed to three full

cycles. For isometric contraction tasks, the datasets were trimmed when partic-

ipants began to fatigue during the trial i.e. they could not hold the same angle
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any longer.

The University of Auckland Human Participants Ethics Committee (UAH-

PEC #010810) approved all experimental procedures, and all subjects gave

informed consent before participating.

3. Results

3.1. Validation of Model Prediction

The assessment procedure, from data collection to neuro-musculoskeletal

modeling, was validated by evaluating the ability to predict joint kinematics

across a range of dynamic and isometric tasks. Fig. 2 illustrates the typical

results of the four tasks for one subject. The mean RMS error, for predicted

vs. robot-measured joint angle, across all subjects were 9.02◦, 10.27◦, 7.48◦and

0.70◦for the cyclic, chirp, resistive and isometric contraction tasks, respectively.

Fig. 3 summarizes the RMS error for each task across all subjects. The errors

are well within the range of existing literature [17, 18, 28].

3.2. Assessment of Neuromuscular Characteristics

The proposed technique optimized the musculoskeletal model to each sub-

ject, for each trial of each task, in order to predict neuromuscular characteristics.

The neuromuscular characteristics for Subject A are collated in Fig. 4 as a repre-

sentative example. An additional optimization was carried out using combined

data from all recorded trials for each subject as EMG-driven neuromuscular

models are often optimized using data from different movement tasks to avoid

overfitting [29, 30]. The result from this optimization was compared against the

task-specific optimizations for each subject and is summarized in Table 2.

The individual variability (measured as full-scale variation with respect to

each characteristic constraint) of the evaluated neuromuscular characteristics

for each subject, across each task is illustrated in Fig. 5. The variation in each

task highlights the model’s low repeatability with the experiments that were

performed. In addition, variation in evaluated characteristics does not obviously
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improve with increasing accuracy of the dynamic prediction, suggesting an over-

fit model.

The variability across all recorded trials is summarized in Fig. 6. It can be

seen that there is a high degree of variability (low repeatability) of the model-

predicted neuromuscular characteristics, with almost all, excluding Ct, experi-

encing more than 50% variation across repeated protocols. It should be noted

that trials were conducted in laboratory conditions with controlled tasks, and

thus raises serious concerns about how the model would perform in real-world

scenarios that are prone to even greater experimental error and noise.

In order to determine the task dependency of the model and optimization,

optimized parameters from one task were used to predict the kinematics in the

other three tasks. The summary of these between task predictions for each

subject are outlined in Table 2. Here, the best trial (lowest RMS error) from

each task was used to predict the other tasks. In cases where the best trial

could not predict all tasks, the next best was used. The table is populated with

the average RMS error from all trials recorded for that task. Because of this,

some outliers are present where the within-task result is comparatively worse

compared to the overall optimization results (bold in the table); not all within-

trial optimizations had a low RMS error thus the average RMS error for that

task was skewed.

To summarize, using parameters optimized from one task to predict another

task resulted in increased kinematic error. This result supports the notion that

optimization is a curve fitting exercise for each specific task (or class of tasks e.g.

dynamic vs. isometric) and is not transferable to different tasks. These results

add evidence to the conclusion that this approach, with such a phenomenological

model, is not capable of providing a global solution to a range of diverse tasks,

at least not without a much larger experimental data set to use in the parameter

optimization. Without evidence that this approach can accurately predict joint

behavior with repeatable parameter identification, the approach cannot feasibly

be thought to provide accurate information on the underlying neuromuscular

characteristics of a wearer.
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4. Discussion

We have proposed a new approach for evaluating neuromuscular charac-

teristics in vivo. The proposed method combined three major areas of reha-

bilitation research; robotics, electrophysiology and musculoskeletal modeling.

To our knowledge, the integration of an exoskeleton, HD-sEMG and neuro-

musculoskeletal modeling is a first, laying the foundation for further research

involving these advanced tools.

The model demonstrated the ability to predict joint kinematics relatively

accurately thus validating the assessment and experimental procedure. How-

ever, pilot trials have highlighted the poor repeatability of the system when

evaluating neuromuscular characteristics. Considering the study was limited

to healthy participants, the high output variation has exposed the unreliability

of the model. Without larger studies and big data sets to prove its efficacy,

this model and optimization routine cannot be used to accurately determine

characteristics of patients with neurological injuries.

Despite the unfavorable result, this work has highlighted a new potential

technique for non-invasive neuromuscular characterization. The use of neuro-

musculoskeletal modeling to gain insights into underlying physiological prop-

erties in the biceps and triceps brachii was yet to be explored. Typically this

modeling approach is focused on predicting joint kinetics or kinematics, how-

ever, here we have proposed an inverse approach, working backwards to assess

subject-specific properties. Alongside this, we have integrated this modeling

technique with a robotic assistive device to demonstrate the potential for a

fully self-contained rehabilitation tool; combining diagnosis and physical ther-

apy into a single device without, for example, the need for external motion

capture cameras. Unlike existing medical imaging systems, such as MRI and ul-

trasound, neuromuscular assessment through the proposed approach will enable

unskilled/untrained users, i.e. patients, to carry out rehabilitative training at

home while their performance is continuously monitored remotely. In addition

to monitoring structural changes, this technique also enables tracking of neural
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activity in the muscle. It is also important to note that this research provides

valuable insight into this combined modeling approach and offers a base for

other researchers to advance.

High quality HD-sEMG signals were successfully collected while participants

performed tasks wearing the upper arm exoskeleton. The robotic system was

comfortable during tasks and provided accurate measurement readings of el-

bow joint angle and torque. The setup time for each subject took up to 20

minutes, mostly due to skin and electrode preparation required for HD-sEMG.

Running the data through the optimization routine to evaluate neuromuscular

characteristics took up to 5 hours per trial.

There are aspects of the system hardware that need improving before clinical

implementation, i.e., to reduce setup and optimization time. Despite this, this

work has proved the concept and technical feasibility of combining robotics

with neuro-musculoskeletal modeling techniques to provide a potential tool for

clinical assessment.

The full-scale variation plot in Fig. 6 yields insight into the experimental

sensitivity of the model parameters. It shows the majority of subject-specific

characteristics have low sensitivity, i.e., can vary a great deal without affecting

the model prediction, which suggests they are more dependent on the specific

experimental trial data as opposed to actual neuromuscular characteristics.

In this study, we specifically utilized a global optimization method to search

the entire workspace. If this modeling technique is to be used, the global opti-

mum must be found to justify accurate characterization. As such, these findings

are a step forward in understanding new potential limitations of this technique.

In particular, we have observed there may be certain states of the model that

allow for a local minimum to give accurate model prediction with potentially

inaccurate estimates of neuromuscular characteristics.

The offline calibration process is essentially a curve-fitting problem to the

lumped-parameter, grey box model. This method has typical modeling trade-

off implications, where increasing the number of parameters results in a more

accurate model prediction with less accurate parameter estimation [5]. The
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findings in this research strongly advocate the need for an alternative modeling

approach in order to accurately and repeatedly predict neuromuscular charac-

teristics. White box (physiological) approaches, such Huxley models, could be

investigated or, alternatively, the existing model could be simplified by experi-

mentally measuring a number of model parameters; for example, physiological

cross sectional area of the muscle, calculated by measuring arm circumference

[31], can be used to determine active contractile force gain.

The study focused on subject-specific characterization, and therefore, the

analysis is performed on individuals as opposed to between subjects. Five par-

ticipants were included to reduce any individual effects on the repeatability

analysis. Between-subject analysis was deemed meaningless due to the high

variation of characterization within the same participant. The analysis was

based on three trials per task, with rest periods between trials to reduce the

effect of fatigue on the results. During the initial pilot trials, significant varia-

tion in neuromuscular characteristics was apparent. It was, therefore, evident

that three trials per task would be sufficient to provide insights into the models

repeatability.

Neuromuscular characterization is largely based on the Hill-type muscle

model. While these models are physiologically derived, they contain major sim-

plifying assumptions. The model parameters in question indirectly infer prop-

erties about the underlying muscle based on these physiological and anatomical

principles. The omission of more detailed physiological properties may limit

the usefulness of the assessment. For example, the non-linear activator fac-

tors (Ab/At) are dependent on many other factors such as motoneuron health

and nerve conduction delay. Omitting these subtleties may impact the overall

accuracy of the evaluated neuromuscular characteristics. This is a potential

drawback of using conventional Hill-type models for this proposed approach.

Increasing the number of physiological parameters is possible, however as dis-

cussed earlier, care needs to be taken when adding more parameters to a model

that is arguably already overfitted.

The muscle fiber length and moment arm relationships were derived from an
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upper extremity model [21]. Motion capture is required to accurately scale this

model [22]. As we are focused on providing a system for in home rehabilitation

robotics to become accessible, we used the OpenSim model database to obtain

an average healthy male adult for scaling to match the participants selected.

The focus of the study was to test the repeatability of the system and methods,

which is not affected by accurate scaling of the model.

HD-sEMG was utilized to ensure a high quality and robust electrophysi-

ological signal was recorded along the length of the muscle, even in dynamic

movements where the muscle moves under the skin. Findings from preliminary

trials showed the HD-sEMG redundancy was necessary to achieve robust mea-

surements. The greater number of measurement channels increased redundancy

against signal artefacts compared to single channel electrode pairs. High-density

EMG can glean more detailed information regarding the underlying electrome-

chanical mechanisms of muscle contraction such as number of motor units, in-

nervation zones [32], and conduction velocities [33]. While using this additional

information to improve the accuracy of muscle force estimation was considered

out-of-scope for this study, in future research we aim to utilize HD-sEMG to

its full potential as well as explore the feasibility of real-time neuromuscular

characterization.

5. Conclusion

A novel approach for robotic assessment of neuromuscular characteristics

using an EMG-based musculoskeletal modeling technique has been proposed.

This pilot study has highlighted the potential for poor repeatability of this ap-

proach. Optimization of the system resulted in many neuromuscular parameter

combinations capable of producing minimal kinematic error. This research has

revealed insights into the efficacy of optimizing many design variables of a Hill-

type muscle model and will set the foundation to explore new models that are

capable of evaluating, in vivo, the underlying characteristics of muscle.
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Figure 1: Non-invasive in-vivo neuromuscular characterization using neuro-musculoskeletal

modeling techniques.

Table 1: Subject-Specific Neuromuscular Characteristics

Symbol Subject-Specific Characteristic

Rb, Rt Active contractile force gain [24, 18]

Cb, Ct Passive fiber elasticity [18]

Bb, Bt Passive fiber viscosity [18]

Ab, At Non-linear activation factor [20]

C1b, C1t Muscle twitch response [20]

C2b, C2t

β Passive elbow joint damping [18]

b = biceps brachii, t = triceps brachii
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Figure 2: Model predictions for elbow joint angle during a) cyclic b) chirp c) resistive and d)

isometric contraction tasks with RMS error of 4.41◦, 8.83◦, 3.53◦and 0.31◦, respectively, for

Subject A.

Figure 3: Box plot illustrating the spread of RMS error for each task across all five subjects.
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Figure 4: Comparison of neuromuscular characteristics within a) cyclic b) chirp c) resistive and

d) isometric contraction tasks, for Subject A. An overall optimization was also performed on

all task data, this is illustrated alongside the individually optimized task parameters. Shaded

area illustrates boundary constraints for each characteristic.
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Figure 5: The full scale variation of each parameter recorded for a) cyclic b) chirp c) resistive

and d) isometric contraction tasks, for each subject. The average RMS error (in degrees)

across trials is also included for all tasks, for each subject. The five subjects are numbered

from A to E.

Figure 6: Box plot illustrating the variation spread, with respect to the full scale range, of each

subject-specific neuromuscular characteristic across all five subjects for all recorded trials.
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Table 2: Summary of Kinematic Predictions (Average RMSE)

Predicted Kinematics

Subject Optimized Model Cyclic Chirp Resistive Isometric Contraction

A Cyclic 16.4 27.1 110.6 17.1

Chirp 17.6 15.4 17.4 29.4*

Resistive 15.9 17.7 12.8 22.5

Isometric Contraction 48.4 42.7 110.9 2.4

Overall 13.4 16.4 15.1 12.4

B Cyclic 23.2 15.8 37.1 84.5

Chirp 41.7* 15.2 23.4 11.7

Resistive - 26.1 17.7 -

Isometric Contraction 38.1 29.6 60.5 4.1

Overall 26.0 18.5 21.0 6.9

C Cyclic 8.7 27.6 42.4 17.2

Chirp 19.5 14.6 25.6 -

Resistive 80.0 56.8 31.9 -

Isometric Contraction 22.9 28.7 48.2 1.8

Overall 18.1 18.2 30.1 8.3

D Cyclic 24.8 29.3 24.8* 22.9*

Chirp 34.1* 20.1 81.6 13.5*

Resistive 45.2* 31.4 22.5* 28.7*

Isometric Contraction 32.9 20.8 67.8 4.5

Overall 32.5 22.0 20.8 9.7

E Cyclic 18.1 26.8 42.7 19.1

Chirp 27.5 14.0 26.5 17.3

Resistive 26.0 14.3 22.4 18.0

Isometric Contraction 33.5 23.6 29.8 5.0

Overall 27.6 18.6 27.7 5.5

Values reported in degrees

* = one or more trials for the task could not be predicted

- = the task could not be predicted

bold = Overall optimization lower than within-task optimization
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