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Abstract

Researchers classify critical neural events during sleep called spindles that are related to memory 

consolidation using the method of scalp electroencephalography (EEG). Manual classification is 

time consuming and is susceptible to low inter-rater agreement. This could be improved using an 

automated approach. This study presents an optimized filter based and thresholding (FBT) model 

to set up a baseline for comparison to evaluate machine learning models using naïve features, such 

as raw signals, peak frequency, and dominant power. The FBT model allows us to formally define 

sleep spindles using signal processing but may miss examples most human scorers would agree 

are spindles. Machine learning methods in theory should be able to approach performance of 

human raters but they require a large quantity of scored data, proper feature representation, 

intensive feature engineering, and model selection. We evaluate both the FBT model and machine 

learning models with naïve features. We show that the machine learning models derived from the 

FBT model improve classification performance. An automated approach designed for the current 

data was applied to the DREAMS dataset [1]. With one of the expert’s annotation as a gold 

standard, our pipeline yields an excellent sensitivity that is close to a second expert’s scores and 

with the advantage that it can classify spindles based on multiple channels if more channels are 

available. More importantly, our pipeline could be modified as a guide to aid manual annotation of 

sleep spindles based on multiple channels quickly (6–10 seconds for processing a 40-minute EEG 

recording), making spindle detection faster and more objective.
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Introduction

Background

The functional role of sleep in mammals remains a matter of debate [2–6]. One of the theories 

is that occurrences of particular neural events during sleep reflect the processes associated 

with memory consolidation [7, 8]. It has become a challenge to identify these neural events 

by simply viewing the data because it is time consuming and prone to different 

interpretations by different viewers, especially in high definition neural recordings, which 

contain thousands of data points in just a few seconds of data. One of the neural recording 

techniques is to record and monitor using scalp electroencephalography (EEG).

Macro and micro structures are typically found in segmented EEG recordings. Macro-

structured neural events refer to segments that are usually 20 to 30 seconds long and 

represent different sleep stages, or levels of sleep compared to the awake condition [9–11]. On 

the other hand, micro-structured neural events refer to local and short segments, such as 

sleep spindles. Sleep spindles typically occur during sleep stage 2, and they are believed to 

be generated from the thalamus [6, 12]. Based on the dominant frequency of a segment 

around a spindle, each is classified as a slow spindle (9–10 Hz [1314]; 10 – 12 Hz [13, 15, 16]) 

or a fast spindle (13 – 15 Hz [15, 17]; 12 – 14 Hz [16]), which are believed to occur during 

different phases of slow oscillations (< 1 Hz) [18]. Measuring sleep spindles and analyzing 

their relationship to behavior and cognition may provide insight into how these neural events 

influence memory performance, as well as provide diagnostic measurements for various 

sleep disorders. It is not completely understood how the brain integrates past information to 

generate new memories. Thus, the recording of sleep spindles provides common and 

quantifiable measurements of sleep so that we can connect sleep spindles with memory and 

describe how the brain processes information during sleep.

Related Work

Given that identifying these neural events may provide a powerful tool to study the 

relationship between sleep and memory, it is critical that we have a standard to define these 

events [45, 46]. Unfortunately, the definition of spindle features varies across studies. This 

complicates the aim to classify spindles automatically [19–23]. Studies that incorporate 

machine learning algorithms to classify these neural events usually make classifications 

based on a single EEG channel (i.e. Cz) and long period (> 7 hours) of recordings. Among 

all the automated algorithms, filtering based and thresholding (FBT) approaches have shown 

some promising results for classifying sleep stages, spindles, and k-complexes [24, 25]. 

Methods like template-based filtering and continuous wavelet transforms (CWTs) [12], 

Support Vector Machine classifiers (SVM) [26], decision-tree classifiers [27], and artificial 

neural networks (ANN) [28] have also been investigated. However, there are few studies that 

classify spindles and other neural events (k-complexes) simultaneously using a unified 

framework [29–33]. Visually, a typical spindle (11–16 Hz) has a unique symmetrical shape 

along the temporal axis, looking like a football, while other neural events, such as k-

complexes, usually have an asymmetrical shape. This difference limits regular approaches 

that rely on an explicitly characterizing both events using signal processing. While 

distinguishing different patterns is easy, it remains a challenge to recognize the different 
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patterns with the same system. The current study focused mainly on classifying sleep 

spindles and investigates how the current results might guide us to classify many other 

neural events, such as sleep stages and k-complexes.

Motivation

The studies mentioned above provide evidence that sophisticated machine learning 

algorithms perform better in classifying sleep spindles against “non-spindles” in segments of 

neural recordings. However, it is not useful for small datasets or practical use. First, machine 

learning algorithms, especially multi-layer neural networks, usually require a large amount 

of data (> 1000 training samples) and features besides raw signals are extracted to improve 

classification performance, but neither is a common approach in many clinical evaluations of 

sleep. As we mentioned above, features for defining a typical spindle varies from study to 

study, and features in time-frequency space are usually extracted to add to the feature list so 

that traditional single layer machine learning models learn better about the patterns between 

spindles and non spindles. Second, machine learning models take a structured segment of 

the data (namely an epoch) and return probabilities of whether this segment of data contains 

spindles or not. Applying a machine learning model is challenging for practical use in 

localizing spindles for several reasons.

The first reason is that it is difficult to localize and recognize neural events. Neural events 

like spindles can occur at any moment of a recording with varying duration (~ 0.5 – 2 

seconds), and this makes it difficult to define a segmenting window to sample representative 

training data for machine learning models [36]. It is difficult to construct sampling windows 

to sample segments containing a full cycle of spindle. With small windows, we might 

capture part of a spindle, while with large windows we might capture too much irrelevant 

signal around the spindle. To localize spindles, a model must take the varying duration of 

spindles into account and return the locations (time) and the durations (length) of the 

spindles. Such a goal could be achieved by using flexible kernels within a machine learning 

model and is usually easier to address in recurrent neural networks with long-short term 

memory (LSTM) neurons [34].

The second reason is that the sample size of spindles could be small while the sample size of 

non-spindles could be large, which are not optimal for machine learning models [6]. 

Researchers usually only are able to sample about 50 to 200 spindles in a 30-minute short 

nap [7], regardless of the duration of the spindles. The total sample size of spindles is usually 

a small fraction of the total recording. However, a sufficient machine learning training takes 

more than 1000 training samples, and a LSTM neural network would take more than 5000 

training samples. It is common in short nap periods to sample imbalanced sample sizes of 

spindles and non-spindles (e.g., 5 spindles and 95 non-spindles). Assuming a machine 

learning model is flexible to take the varying duration of spindle and non-spindle samples 

into account, the model could report at least 95% accuracy by claiming all the samples are 

“non-spindles”, but this is not we want to see in practical settings. Therefore, the imbalanced 

sample size of the spindle and non-spindle classes makes preparing training data a difficult 

problem in sleep studies [35].
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The third reason is that the classification of a spindle is usually made based on signals of a 

single channel. Classifying spindles based on a single channel could misrepresent the global 

characteristics of spindles, which we might capture better through a multi-channel approach. 

Studies have shown that spindles can be recorded across multiple channels [7]. The FBT 

approach includes particular spindle and non-spindle samples based on global signal patterns 

across multiple channels (n>2). Making classifications based on multiple channels, we could 

identify spindles that consistently occur in several regions of the brain.

Objectives

The objectives of the current study include implementing the FBT approaches [19] to classify 

spindles using a short period of high definition EEG recordings. The FBT approach is 

designed to classify spindles quickly with flexible parameters that capture temporal and 

spectral variations of the EEG representations of spindles (e.g., frequency, duration, 

amplitude, etc.) and serves as a classification bench mark for further investigation of 

machine learning models. Furthermore, this study aims to optimize feature parameters that 

are used to speed up and aid the sampling of enough data to train a more accurate fully 

automated process. With enough training data, we hope to eventually define spindles 

probabilistically by intuitive features. Thus, we applied our algorithms to the publically 

available DREAMS project data [1] with few human inputs to classify spindles based on a 

single EEG channel. An additional objective is to present a state of the art multi-channel 

FBT approach which encodes current characterization of spindles with a flexible range of 

features. To make a fair comparison among the FBT approach, machine learning models, 

and experts’ scores, a cross-validation criterion that is described in the Ray et al study [37] is 

used. We applied this algorithm to our data with six channels of interest to examine how 

machine learning models perform better than the FBT approach.

Novelty and Outline of the Present Study

There are two novel aspects in the current study. The first is that we propose a nested model 

of FBT and machine learning, using a fast processing FBT model to guide machine learning 

in model selection. The second is that we propose a nested machine learning model derived 

from the FBT model that can perform well by using simple signal information, such as raw 

signal values, peak frequencies, and corresponding power density values sampled across 

multiple recording channels. The paper is structured first by outlining the preprocessing of 

the EEG data. Then the implementation, optimization, and cross-validation is detailed. The 

development of the machine learning pipeline is then detailed followed lastly by a 

comparison of the FBT and machine learning models.

Methods

Data Acquisition

A total of 64-channels of EEG data, including 2 EOG electrodes, were continuously 

recorded at 1 kHz sampling with an antiCHamp active electrode system (Brain Products, 

GmbH) while subjects napped on a bed inside a sound-attenuated testing booth (IAC 

industries). Experiments were carried out in accordance with the The Code of Ethics of the 

World Medical Association (Declaration of Helsinki). Each subject provided written 
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informed consent and completed the study procedures according to a protocol approved by 

the Institutional Review Board of the City College of New York. Subjects were compensated 

$15 per hour for participation. Before EEG recordings began, the impedance of all 

electrodes was optimized to be < 25 kOhms by application of electrolytic gel between the 

scalp and the electrodes tips. The reference electrode during recording was T9 (left mastoid) 

and two additional flat electrodes were placed around the eye for electrooculography (EOG) 

recording. Data used in the current study are freely available (https://osf.io/chav7/) and 

included 28 healthy subjects recorded on two separate days. Data from 25 subjects were 

included (6 female, mean age 25.5 +/− 7.03 standard deviation, range 18 – 42 years old). 

Nine recordings (Both days of subject 7, 26, 27, day 1 of subject 5 and 12, day 2 of subject 

20) were excluded because they failed to reach stage 2 sleep or because their data was too 

noisy for processing. Thus, in total 22 subjects (41 recordings) were included in the 

following analyses. We focused on six electrodes of interest in applying the pipeline on data 

collected for the present study. These included the 10/20 international standard electrodes 

F3, F4, C3, C4, O1 and O2, Fig 1.). In the Schabus et al. [7] study, recording locations Fp1, 

Fp2, C3, C4, O1, and O2 were used to detect spindles in both hemispheres of the frontal, 

central, and occipital areas of the brain. Due to the high density 64 channel montage used in 

the present study, Fp1 and Fp2 were replaced by F3 and F4 to reduce contributions from 

artifacts.

Experimental Design

These data are part of a larger study examining the effect of memory load on the generation 

of sleep spindles and some brief details are provided here about the experimental design [49]. 

Subjects completed memory tasks before and after the nap EEG recordings. Over the course 

of two days, subjects came in at the same time each day, between the hours of 10 am to 5 

pm. Each session lasted two hours for a total experimental participation time of four hours. 

Before each recording session, subjects were instructed to sleep an hour and a half later than 

their usual sleep time so that they would be tired at the start of the experiment and therefore 

more likely to fall asleep. On each experimental day, subjects performed either a low or high 

load Sternberg scene working memory task with load order randomized between the two 

testing sessions separated by either one day or one week. They then completed a recognition 

task before they took a short nap in the sound attenuated chamber during continuous EEG 

recording. After the nap, subjects performed another recognition task.

Preprocessing

Standard preprocessing of each EEG recording included low-pass filtering [50], artifact 

correction, down sampling. The preprocessing code is available at https://osf.io/zxr8m/ and 

was implemented within an automatic pipeline using the MNE software [39, 40]. After down 

sampling each EEG recording from 1 kHz to 500 Hz, signals were re-referenced to a 

common average. Then we applied a bandpass filter between 0.1 to 200 Hz with a notch 

filter to remove line noise and harmonics at 60, 120, and 180 Hz. The filter employed was a 

zero-phase finite impulse response (FIR) filter with transition bandwidth of approximately 5 

Hz. Filtering was done in preparation for the ICA artifact correction process. Artifact 

correction was performed based on the MNE-python Independent Component Analysis 

(ICA) procedures [39, 40]. All the hyper-parameters for ICA processing were fixed except 
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peak to peak amplitude change, the peak to peak amplitude change that was used for 

rejecting bad segments of data. During the ICA artifact correction, eye blink and muscle 

movement artifact components were identified automatically without human inputs. These 

components were removed in the ICA space and projected back to the signal space after 

removal. A bandpass filter between 0.1 and 50 Hz was applied to the corrected signal. The 

bandpass filters used were zero-phase and the method was overlap-add FIR filtering. The 

filter length was chosen automatically based on the size of the transition region, which was 

6.6 times the reciprocal of the shortest transition band for the Hamming window. Otherwise 

default MNE-python filtering parameters were used. Processed data were saved for later 

used. No other human input was involved in the preprocessing stage. All processing was 

done on a computer with Window 7 Enterprise, Intel® Core™ i7-3770 CPU @ 3.40 GHz, 

7.68 usable RAM, and 64-bit operating system. The configuration of the system and python 

libraries are summarized in Table 1.

Filter Based and Thresholding Model

First, a bandpass filter was applied to the EEG signals with range 11 to 16 Hz, which is the 

full frequency range of the spindle band and includes both slow (11 – 13 Hz) and fast 

spindles (13.5 – 16 Hz). Root-Mean-Squares (RMSs) of individual selected channels were 

computed by convolving a Gaussian moving window (Eqs. 1 and 2).

(1)

W denotes the Gaussian window function, and n denotes the sample size of the 

window. The standard deviation of the function (σ) is defined by the sample size of 

the window, which was set to n/0.68.

(2)

RMS[s] denotes the nth sample of the computed Root-mean-square (RMS). S[k] 
denotes the kth sample of the signal, and W[n-k] denotes the (n-k)th sample of the 

Gaussian window kernel. Convolution was applied during computation of the RMS 
using Python.numpy.convolve and kept the same sample size as the target signal 

using a Gaussian window kernel defined in Eq. 1. For the current study, the length of 

the kernel was 500 samples.

After computing RMS of individual selected channels, the harmonic mean of all these RMSs 

was saved for later analysis [53]. In the next step, low and high boundaries for classifying 

spindles were computed according to Eq. 3.

(3.1)
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(3.2)

μτ denotes trimmed mean, and sigma;τ denotes trimmed standard deviation. Tl is the 

lower threshold value we define in the model and Th is the upper threshold value we 

define in the model. Eq 3.1 computes a lower boundary of the RMS values of interest, 

and 3.2 computes a higher boundary of the RMS values of interest. Trimmed mean 

(μτ) and trimmed standard deviation (στ) takes account 95% of the data to avoid 

influence of outliers (high amplitude fluctuation) [51].

If all values of a segment are between lower boundary and higher boundary and the duration 

of the segment is between 0.5 to 2 seconds, a possible spindle location will be marked at the 

peak of the segment. This was done on individual channels and/or the mean RMS (Eq. 3.1–

2). To determine that a spindle occurred at a given time in the mean RMS, the spindle 

criteria were required to be met in a minimum of 3 individual channels with a 1 second 

variation. Additionally, sleep stage information was added to the finalized spindle 

classification in order to reduce the false alarm rate. Spindles marked in the first 300 and last 

100 seconds are excluded because the duration of recordings differed across the two groups 

of subjects used in this report. An example of spindle segments classified by the filter based 

and thresholding model is shown in Supplemental Fig 1.

Optimization of the FBT model

Optimization of both the lower and upper threshold values in the FBT model was done using 

a grid search paradigm with respect to the Areas Under the Curve (AUC), where the curve is 

the receiver operating characteristic (ROC).

As we mentioned before, the training samples of the spindles and non-spindles would 

always be imbalanced. A skewed sample size of two classes would bias the classification 

towards the majority of the samples, which include the non-spindle class. Accuracy 

measures would be the least optimal metric in an imbalanced classification practice. 

Therefore, we choose AUC because it is a more sensitive and non-parametric criterion-free 

measure of classification performance [38]. AUC takes account of false positive and true 

positive classifications and returns a metric value between 0 and 1. An AUC of 0.5 or lower 

indicates a bad classification, while an AUC that is close to 1.0 indicates an excellent 

classification.

A grid search means testing a list of values of interest to determine the best value from the 

list of values. We fixed the other parameters in the thresholding pipeline (bandpass filter 

between 11 to 16 Hz, duration between 0.5 to 2 seconds, temporal toleration of 1 second, 

number of channels for decision making, etc.) and we classified spindles by iterating pairs of 

lower threshold (0.1 to 1) and upper threshold (2 to 3.5). For computational convenience, the 

AUC score for each of the 41 recordings were computed for each pair of possible pair of the 

lower and upper thresholds in the grid search.

With one particular pair of lower and upper thresholds, the FBT model would provide 

predicted information of the sleep spindle of one EEG recording, such as onsets and 
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durations of the spindles. Implementing Ray et al. [37] method, we segmented the original 

length of the EEG data by sliding a 3-second non-overlapping Hamming window. Using the 

onsets and durations, we predicted labels for each segmented signal to determine which 

segments held predicted spindles or not. With Python.Scit-kit learn.model_selection.k_folds
[41], we fitted our data with the predicted labels using Python.Scit-kit 
learn.linear_regression.logisticregressionCV [41] by 5-fold cross-validation so that we could 

determine the regularization value. The features matrix included three categories: 1) local 

thresholding values (Eq. 4), 2) the frequency at the peak power spectral density, and 3) the 

peak power spectral density. Local thresholding values were used to capture similar 

thresholding patterns as the FBT model, representing the normalized distance between the 

most typical spindle signal and current processing signal.

(4)

l and h are values of the lower and upper boundaries of the RMS criteria computed 

locally at each segment (Eq. 2). The numerator is the sum of samples that are in 

between the lower and upper boundaries. The denominator is the difference of 

samples that is less than the upper boundary and less than the lower boundary. When 

the denominator equals zero, it raises a divide by zero condition, at which point we 

do not divide by the denominator. Instead, only the computed value of the numerator 

would be included in the feature matrix.

It is important to note that the features extracted from six individual channels were converted 

to a number of features (6 threshold features, 6 frequency features, and 6 power spectral 

features) by the number of segments (varying over subjects) matrix. The feature matrix was 

standardized before being fed to a logistic regression machine learning classifier (Eq. 5). 

The label fed to the classifier with the feature matrix was made based on the spindles found 

by the prior steps in the FBT model. In other words, no information other than the signals 

and sleep stages were put into the FBT model.

(5)

The normalized feature matrix standardizes features by removing the mean and 

scaling it to unit variance. Centering and scaling happens independently on each 

feature by computing the relevant statistics on the sample features in the training set. i 
represents the ith row of the feature matrix and j represents jth column of the feature 

matrix. Each value in the matrix, M of the ith row and jth column, subtracts the mean 

and standard deviation of its corresponding row. The standardizing process was 

implemented by Python.Scit-kit learn.preprocessing.StamdardScaler [41].
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By doing this, we took the advantage of the decision function embedded in the Python.Scit-
kit learning.linear_model.logisticregressionCV [41] to compute the probabilistic AUCs, and 

generated a probabilistic ROC curve to represent the cross-validation results.

In the “Cross-validation of FBT Model”, we cross validated the optimization results using 

AUC as the metrics. The principle of optimizing both lower and upper thresholds is to 

maximize the average of between-subject AUC scores over the training/validation set.

Cross-validation of the FBT Model

The cross validation results of the FBT model was measured using ROC AUC scores and 

confusion matrices were also used. Using the Ray et al [37] method, we segmented the origin 

length of the whole EEG signal recording by a 3-second non-overlapping Hamming window. 

There were two reasons we implemented this method. The first was that a typical spindle 

could vary from 0.5 to 2 seconds so it was too convoluted to find the local matching rate 

between a manual marked and automatically marked spindle. The second was that the Ray et 

al [37] method produced fixed length windows to segment the data and this benefited us to 

prepare the data for machine learning. The FBT model provided us a list of onsets and 

durations of classified spindles for one particular pair of lower and upper thresholds. The 

information could be transformed to be predicted labels of each segmented signal. Based on 

the same principle, we could transform manually score spindle annotations to be true labels 

of each segmented signal. With each segmented signal, we labeled it “0” if this window did 

not overlap a designated spindle or “1” if this window overlapped a designated spindle.

According to Ray et al [37], we determined a “true positive” (TP) if a segment overlapped an 

expert scored spindle and an automated marked spindle; a “false negative” (FN) if a segment 

overlapped an expert scored spindle but not an automated marked spindle; a “false positive” 

(FP) if a segment overlapped an automated marked spindle but not an expert scored spindle; 

a “true negative” (TN) if a segment did not overlap any marked spindles. To better represent 

individual cross-validation results and compare between-subject performance, confusion 

matrices containing TN, FN, FP, and TP (from top to bottom and from left to right) were 

normalized, and TN, FN, FP, and TP became TN rate, FN rate, FP rate, and TP rate. After 

normalization, the TN rate and FN rate summed to 1, and the TP rate and FP rate summed to 

1. Sensitivity and specificity were computed (Eq. 6) and summarized with other measures 

(i.e. AUC) in Supplemental Fig 2. TP rate is equivalent to sensitivity and TN rate is 

equivalent to specificity.

(6.1)

(6.2)
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In order to evaluate the optimization results, we used a standard 10-fold cross validation 

(CV) [54]. There were 41 EEG recordings that were used in the evaluation. This yielded a 

partition into 9 groups of 4 recordings and 1 group of 5 recordings. The CV consisted of 10 

different folds, each fold with 9 groups in the fitting set, and 1 group in the evaluation group. 

For each of the 10 folds, we took the lower and upper threshold pair with the best average 

AUC score from the recordings in the fitting set. The evaluation error was the average AUC 

score of the evaluation set resulting from using the lower and upper threshold pair that 

maximizes the AUC score on the fitting set.

Machine Learning Pipeline

We segmented the data with a fixed length Hamming window (3 seconds) and labeled each 

depending on whether a segment overlapped any spindles based on the manually marked 

spindles. This provided us with labeled training data for supervised machine learning model 

selection. The training features contained three categories (same as in the probabilistic step 

of the FBT model): raw signal values (6 channels x 3 seconds x sampling rate), peak 

frequencies (6 channel x 1), and power spectral density at the peak frequencies (6 channels x 

1). Thus, the number of features was 9012 with a sampling rate of 500 Hz. To better 

represent our data and balance the sample sizes of the spindle and non-spindle classes, we 

fed the model selection algorithm mainly the FP (classified by FBT but not by experts) and 

FN (classified by experts but not by FBT) cases under the optimized FBT model. If in both 

cases the sample size of spindle and non-spindle classes were not balanced, we added either 

TP (true spindles classified by FBT and experts) or TN (true non-spindles classified by FBT 

and experts) cases. It is important to note that the TP and FN cases were labeled the 

“spindles” class, while the TN and FP cases were labeled the “non-spindles” class. The TP, 

TN, FP, and FN cases were determined by the optimized FBT model using 0.4 and 3.5 as the 

lower and upper thresholds. We searched the machine learning model selection using Tree-

based Pipeline Optimization Tool (TPOT [42]) on between-subject training data grouped by 

all subject samples. TPOT implements a generic algorithm to search over a broad range of 

supervised classification algorithms that follows the Python Scit-kit learn library [41], 

including preprocessors, transformers, feature selection techniques, estimators, and their 

hyperparameters, without any domain knowledge of human inputs of the data. The finalized 

machine learning pipeline was determined by AUC as the measure metric. After the model 

selection using TPOT [42], we implemented the finalized machine learning pipeline on 

individual subjects’ data. Within each individual data, a 5-fold cross-validation was 

implemented. A total of five AUCs were computed and we chose the interpolated average of 

the 5 ROC curves to represent the cross-validation results. The finalized machine learning 

model predicted class probabilities of instances of features. To compensate for the 

imbalanced sample sizes between the spindle and non-spindle classes, we defined the ratio 

between the spindle sample size and the total sample size because the default threshold was 

0.5 [52]. For example, if the model predicted that an instance of features had 0.5 probability 

to be a spindle and the ratio was 0.2 (20 spindles and 100 non-spindles), then the instance 

was classified as a spindle because the predicted probability exceeded the new threshold.
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Model Comparison: FBT Model and Machine Learning Pipeline

We computed AUCs for the FBT model and the finalized machine learning pipeline to 

compare the cross-validation results at the individual level. By doing so, we might lose the 

localization of individual spindles, but it gave us better resolution about how the FBT model 

and the machine learning model performed to provide probabilistic estimates of spindle 

occurrence. Measure metrics such as AUC, confusion matrix, sensitivity and specificity were 

used for the model comparison. A pseudo-cross-validation method was implemented for the 

FBT model within each individual data. Within each individual data, same set of parameters 

were applied (optimized lower threshold, optimized upper threshold, bandpass filter between 

11 to 16 Hz, duration between 0.5 to 2 seconds, temporal toleration of 1 second, number of 

channels for decision making, etc.), and onsets and durations of local spindles were marked. 

The predicted annotations were transformed to predicted labels of segmented signals using 

3-second Hamming non-overlapping window, same as in the Machine learning model. 

Manually scored annotations were also transformed to true labels of segmented signals. 

Predicted labels and true labels were split to major set (80%) and minor set (20%). The 

cross-validation measure was computed on the major set. Splitting labels were repeated 5 

times for each individual data. The comparison results were summarized in Fig. 6.

Manual Sleep Spindle Annotations

The EDF browser (http://www.teuniz.net/edfbrowser/) was used to manually annotate sleep 

stages and spindles. We defined spindles that had dominant power at 11 – 16 Hz with a 

duration varying between 0.5 – 2 seconds. Only those that occurred across several channels 

(n > 3) with minimal temporal variation (< 1 second) were marked. Channels of interest 

were F3, F4, C3, C4, O1, and O2 (Fig 2). These channels were chosen because their spatial 

representation covered most of the brain from frontal to occipital areas [7]. The filter used 

was a Bandpass Butterworth in the 2nd order. Each dataset was marked based on every 30 

second interval. Within each interval, a sleep stage and spindle locations were marked 

(https://osf.io/h68a3/). Decisions about locations of spindles were made based on visible 

spindle features occurring in more than three of the channels. Spindle markers were places at 

the beginning of the spindles. No information about durations of individual spindles was 

marked. Thus, all spindles were set to 2 seconds by default, with each beginning at 0.5 

seconds prior to where the spindle was marked (Fig 2). Example 1 and 2 are spindles 

marked in a dataset collected for the present study, and example 3 is a spindle marked in the 

DREAMS dataset. Preprocessed raw and filtered signals are shown. The duration of a 

spindle is shaded in red.

DREAMS Project Dataset

We applied our pipelines (FBT, machine learning, and cross-validation) to the publically 

available DREAMS project data [1] to investigate how the FBT model set a benchmark for 

deriving a machine learning pipeline. The DREAMS data were acquired in a sleep study and 

each recording contained only one channel (C3 or Cz). The data were given independently 

to two experts for manually marking sleep spindles. We applied our pipelines to find the best 

thresholds for the FBT model, construct training data to search for the best machine learning 

pipeline, and cross validate both the FBT model and finalized machine learning pipeline, as 
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well as manual annotations from the second expert and scores provided by Devuyst et al [1]. 

In other words, we considered the spindle annotations marked by the first expert as gold 

standard. Since each EEG recording in the DREAMS project data contained one channel, we 

determined spindles only based on one global RMS with the feature criteria we defined in 

“Filter Based and Thresholding Pipeline” section. The FBT model optimization and 

machine learning model selection were applied to all eight recordings, but the model 

comparison process was only applied to six recordings because the second expert only 

scored these recordings. It is important to note that we kept the 0.5 – 2 second duration 

assumption for the DREAMS datasets although the data contained spindle duration between 

0.61 to 1.89 seconds (M = 0.81, SD = 0.27).

Permutation Test

After we classified spindles using the FBT approach, a randomized permutation test (https://

osf.io/jnfk6/, permutation test.py) was used to compare average spindle counts for the low 

and high load working memory tasks. The randomized permutation test was chosen over a 

parametric test because of the small sample size (N = 30, 15 pairs) as such a small sample 

size might violate the normal distribution assumption. First, we computed the difference 

between two sets of classified spindles (set 1 low load and set 2 high load for each subject). 

Then we randomly shuffled the two sets of values so that some of the values in set 1 were in 

set 2 and some of the values in set 2 were in set 1. We computed the difference between the 

new set 1 and new set 2. After doing this 500 times, we computed the quartiles of the 

distribution of the differences computed in the randomization process to determine whether 

the value of the quartile exceeded an a priori threshold (p = 0.05). We repeated this process 

500 times to compute the confidence interval of the percentage quartile. The same 

computation process was implemented to compare cross-validation performance using data 

collected in the present study and also on data from the DREAMS study. Results reported 

are the mean and standard deviation of the posterior p values.

Results

Detected Sleep Spindles and Spindle Densities

Some examples of sleep spindles detected by the FBT model are shown in Fig. 3. Examples 

1 and 2 are spindles detected by the FBT model in our data, while example 3 is a spindle 

detected by the FBT model in the DREAMS data. The average duration of the auto-detected 

spindles was 1.12 seconds (SD = 0.36), where the minimum was 0.5 seconds and maximum 

was 1.99 seconds. Manually marked spindles are shown in Fig. 4 and a comparison of 

manually marked and automated classified spindles are shown in Fig. 5 in terms of spindle 

densities. Spindle densities were computed and visualized with Python Seaborn library [44]. 

The kernel density was 20 samples and the first 300 and last 100 seconds were excluded 

when manually annotating spindles. The best lower and higher thresholds for the FBT model 

were 0.4 and 3.5 based on AUC and accuracy. The reason we show spindle density is the 

FBT model took global patterns to detect spindles and spindle density represents variations 

of spindle count in terms of temporal dynamics [47].
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According to the manually marked scores, spindles occurred around 1000 to 1500 seconds 

(Fig. 4). Annotators classified 2.81 less spindles on days that subjects performed the high 

load task (M = 67.37, SD = 35.03) than on days that subjects performed the low load task 

(M = 70.18, SD = 39.51); however, the difference is not statistically significant (randomized 

permutation test, p values = 0.58 +/− 0.02, M +/− SD). The FBT model classified 14.25 

more spindles on days that subjects performed the high load task (M = 105.93, SD = 63.89) 

than on days that subjects performed the low load task (M = 91.68, SD = 63.81), a difference 

that is not statistically significant (randomized permutation test, p values = 0.272 +/− 0.204, 

M +/− SD).

Spindle densities by the FBT model visually matched manually marked scores for long 

recordings better than for short recordings. In the short recordings, the FBT model classified 

fewer spindles than the human annotators. However, there was no significant difference 

between the numbers of spindles detected by the FBT model in the long and short recordings 

(permutation test, p value = 0.245 +/− 0.018, M +/− SD). There was significant evidence to 

suggest that the machine learning model performed better for the long recordings than the 

short recordings in terms of AUC (permutation test, p values = 10−4 +/− 10−4, M +/− SD). 

One of the reasons that machine learning model performed better for the long recordings 

may be that machine learning models generally perform better with more data.

Machine Learning Pipeline

Based on the training data prepared by the FBT model, the finalized machine learning 

pipeline used in the present study included a feature selection and an estimate model 

determined by the TPOT library [42]. The feature selection union used a nested voting 

classifier (VC) and a decision tree classifier (DTC) and the estimate model was gradient 

boosting classifier (GBC). The VC is a soft maximum classifier for unfitted estimators and 

the DTC is a classifier with auto split and auto maximum stop point in choosing feature 

samples. The GBC allows for the optimization of arbitrary differentiable loss functions. The 

loss function used in the current study was logistic regression for classification with 

probabilistic outputs. Learning rate was chosen to be 0.24 and the number of gradient 

boosting was 500 stages to avoid overfitting and improve performance. Also, the maximum 

of feature selected was set to be 0.24 of all possible features. VC, DTC and GBC were all 

provided in the Python Scit-kit learn library [43]. Hyperparameters mentioned above were 

specified and the rest were left as default.

The average between-subject AUC score for the FBT model across the 10-fold was 0.58 +/

− 0.055 (M +/− SD), TP rate was 0.33 +/− 0.17 (M +/− SD), and FN rate was 0.16 +/− 0.12 

(M +/− SD). As for the average within-subject cross validation results, the machine learning 

pipeline (M = 0.65, SD = 0.112) was significantly better in classifying spindle segments than 

the FBT model (M = 0.59, SD = 0.051), t(40) = 9.12, p < 0.05 (Fig 6). Thirteen of 41 

recordings showed that results from the thresholding pipeline and the machine learning 

pipeline were matched. Particularly in Fig 6(a) we show the average of the 5-fold cross-

validation result of subject 29 at day 1 for the machine learning pipeline and of subject 25 at 

day 2 for the FBT model because these two subjects’ data represent the median performance 

in corresponding models. The ROC curves of the FBT model were generated by a softmax 
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decision function implementing logistic regression in order to provide probabilistic 

interpretation of the classifications. We observed that the FBT model generated less 

variability across subjects while the machine learning model generated more between-

subject variability (Fig 6a and b). This might be due to the fact that the FBT model 

implemented a pseudo “train-test-split” cross-validation, and the cross-validation was 

applied to 80% of the classified spindle segments, leaving the rest 20% untouched. Cross-

validation was applied to 20% of the available data for the machine learning pipeline, which 

produced more variability in randomly selecting the testing set of the data due to a small 

data sample size. The between-subject variations were also reflected by the confusion 

matrices shown in Fig 6(c). The machine learning pipeline had worse TN rate (upper left 

cell) and TP rate (lower right cell) than the FBT model. This could be due to how we 

randomly selected one of the 5 folds of cross-validation results. Detailed reports of within-

subject AUC, TP rate, FP rate, TN rate, FN rate, sensitivity, and specificity are summarized 

in Supplemental Figure 2.

DREAMS Project Data

The best lower and higher threshold values for the FBT model were 0.48 and 3.48. The 

finalized machine learning pipeline determined by TPOT contained an extra trees classifier 

(ETC). The ETC implemented a meta estimator that fit a range of randomized decision trees 

on various sub-samples of the training dataset and used averaging to improve the 

classification performance and control over-fitting. Entropy loss was chosen to be the loss 

function, measuring information gain through the model training iterations. A total of 500 

tree estimators and 0.32 of feature selection rate were set to control for the model training. 

Results of applying our pipelines (FBT, model selection, machine learning and cross-

validation) to the DREAMS project data were similar (Fig 7(a)). Machine learning pipeline 

(M = 0.67, SD = 0.03) marginally outperformed the FBT model (M = 0.59, SD = 0.03) 

(permutation test, p values = 0.052 +/− 10−3, M +/− SD), and it was not significantly 

different from the results of the second expert (M =0. 73, SD = 0.04) (permutation, p values 

= 0.190 +/− 10−3, M +/− SD). Results of Devuyst et al. (2011) thresholding approach (M = 

0.77, SD = 0.02) outperformed the machine learning pipeline (permutation, p values = 0.014 

+/− 10−3, M +/− SD), but did not significantly outperform the second expert (permutation, p 

values = 0.23 +/− 0.02, M +/− SD). Particularly, in Fig 7(b), we showed the cross-validation 

results of all datasets (preprocessed data, http://www.tcts.fpms.ac.be/~devuyst/Databases/

DatabaseSpindles/) among the thresholding pipeline, machine learning pipeline, the second 

expert, and the Devuyst et al. [1] results, and the median sample dataset within each method 

were highlighted in black. In Fig 7(c), we showed the normalized confusion matrices, 

annotating true negative rate, false negative rate, false positive rate, and true positive rate 

with mean +/− standard deviation. The FBT model had the lowest performance due to the 

low TP rate, meaning that the FBT model was not sensitive to detect sleep spindle segments. 

The machine learning pipeline performed similar to the second expert in terms of TP rate 

and TN rate, suggesting the machine learning pipeline derived from the FBT model improve 

the detecting sensitivity and achieved the goal of approximating human performance.
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Discussion

We have shown that automated pipelines with minimal human input were able to take 

flexible variables to provide a classification bench mark and sample suitable training data to 

determine a best one-layer machine learning pipeline using naïve features. Both between-

subject and within-subject cross-validation results were reported for the FBT model, and 

within-subject cross-validation results were reported for the selected machine learning 

model. The actual decision making in the FBT model relies on passing the signal RMSs 

through ranges of features of a typical spindle defined by experts, and the probabilistic 

decisions were made by a softmax function implementing a logistic regression classifier. 

With our long and short recordings, we implemented a multi-channel decision making 

criterion to the FBT model, and the results showed that we could optimize the FBT model 

significantly beyond chance level. The FBT model provided a better representation of “a 

typical sleep spindle” because the pre-defined feature parameters in the FBT model were 

more generative while capturing the critical statistics of the set of sleep spindles. With the 

knowledge gained from the FBT (i.e., the data statistics about the spindles) we implemented 

model selection and cross-validation of machine learning pipelines and significantly 

improved the classification performance with less flexible viewing windows (fixed 3-

second). Results of implementing these pipelines on our data provided evidence that the 

FBT model and the machine learning pipeline derived from the FBT model were able to 

classify sleep spindles among multiple EEG channels and provided probabilistic statistics of 

the classification. Results of implementing our pipelines to the DREAMS project data [1] 

supported that the FBT model and the machine learning pipeline derived from the FBT 

model captured perspectives of an expert annotator without intensive feature engineering 

and provided probabilistic statistics of the target classification. In general, the automated 

pipelines classified fewer spindles than expert annotators because the automated pipelines 

took global signal patterns and were restricted by annotated sleep stages (accepted spindle 

instances only in non-REM sleep stage 2 signals), while expert annotators took local 

information of the segmented signals.

Annotators classified 2.81 fewer spindles on days that subjects performed the high load task 

than on days that subjects performed the low load task. The FBT model classified 14.25 

more spindles on days that subjects performed the high load memory task than on days that 

subjects performed the low load memory task. In the Purcel et al. study [51], the average 

spindle density (spindle counts divided by total nap time) was 1.18, while it is 4.43 (SD = 

2.62) in the present study by manual annotating and 2.80 (SD = 1.45) by the FBT model, 

both of which are higher. One reason densities in the present study are higher than in the 

Purcel et al. study may be because we excluded subjects who had fewer than 5 spindles.

Four main concerns for implementing one-layer machine learning models to classify sleep 

spindles are 1) small sample size, 2) loss of information for localization of spindles, 3) 

imbalanced sampling, and 4) representing a general knowledge about the spindles. Most of 

the machine learning models require a large data set (N > 1000) and they take segmented 

EEG signals to determine the probability that a segment contains/overlaps a sleep spindle. It 

is difficult to record sleep activity long enough to meet the sample size criterion with a few 

subjects. On the other hand, segmenting continuous recordings might lead to loss of 
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localization information, while for sleep studies, the locations of sleep spindles are as 

important as the counts of the spindles.

In practice, with highly variable individual differences, the number of samples in the class 

“spindle” is often less than the number of samples in class “non-spindles” (about 1:15 in our 

data, and about 1:10 in the DREAMS data). Additionally, the definition of a “typical 

spindle” varies from study to study, as well as within the same study. Instead of flexibly 

defining a spindle, we usually need to feed machine learning models data that represent 

“spindle” and “non-spindle” discretely. An advantage of implementing a FBT approach is 

that it would provide a better understanding of the most important features, such as onsets, 

durations, and tempo-spectral information. Such an approach is equivalent to a “pre-trained” 

machine learning model, and the features are fed to the machine learning models in forms of 

feature vector representation, which reduces the computational difficulty of model selection 

in the machine learning approach.

In the current study, the FBT model implemented the multi-channel criterion used in 

Begmann et al. [19] study, taking account of the oscillation pattern among multiple channels, 

so that we can determine the most consistent spindles. By consistent, we aim to classify 

spindles that occur in more than half of the channels of interest. Because the FBT model 

takes global signal patterns, the FBT model would be easy to implement in clinical settings. 

With a cross-validation module, the FBT (M = 41.60 sec, SD = 16.34 sec) performed 

significantly faster than the best naïve machine learning pipeline (M = 115.16 sec, SD = 

82.29 sec) for our data, t(40) = −5.18, p < 0.001. It is noted that some of our data are more 

than 60 minutes long and some of the data are 30 minutes long with sampling rates of 1k Hz. 

We down sampled our data to 500 Hz to increase computing speed. For data that are less 

complex, it should be faster to compute.

Another advantage of implementing the FBT model is that feature parameters in the model 

are very flexible and users could define all of them based on their particular scientific needs. 

For example, with our preliminary test, the best window size to compute the RMS is the 

sampling rate of the data, and in our case, it was the down sampled frequency rate of 500 

Hz. However, it does not mean that this is the universally optimal value. Parameters in our 

pipelines were optimized via cross-validation, and we propose an exhaustive grid search 

paradigm to optimize most of the parameters. It would be easy for a clinical study to classify 

spindles with their feature parameters, feeding the FBT model raw EEG data and getting 

spindle annotation data frames in a short time. If a user wants to optimize the results, it will 

be very easy to implement the cross-validation pipeline to the FBT model with expert scored 

spindle annotations. By cross-validation, the optimized FBT model would capture an 

expert’s scoring statistics and help perform classifications on novel data automatically. Since 

the optimization takes grid search paradigms, the optimization process would take a long 

time to run. For our data, it took three days to process all possible pairs of lower and higher 

threshold values for all our data to have a summary containing cross-validation results. And 

we chose the best pair threshold values based on the cross-validation results using AUC and 

accuracy as the metrics.
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Additionally, our pipelines, including the FBT model, the machine learning pipeline, and the 

cross-validation pipeline, require minimal human input. We argue that this is good for 

replications because our pipelines take objective criteria, process raw signals, and provide 

interpretable annotation data frames containing onsets and durations of sleep spindles. The 

FBT model takes two inputs: the signals and the sleep stages, and produce the onsets and 

durations of classified sleep spindles. Many machine learning models mentioned in the 

introduction either do not provide this information or provide this information within a 

certain length of local windows, which is not flexible enough to view sleep spindles as 

independent Poisson events. Our machine learning pipeline performed similarly to one-layer 

machine learning models. It did not require intensive feature engineering to optimize the 

performance.

In the machine learning pipeline, we adapted a changing threshold to the probabilistic results 

of the classifying predictions. The threshold reflected the proportion of the spindle class in 

the total training samples. This was an adaptive decision-making criterion because we were 

working on highly imbalance classification problems [52]. We implemented the adaptive 

thresholding in the decision-making step instead of tuning the hyper parameters of the model 

because this was simpler and more intuitive in terms of interpreting the predicted results. 

Since the FBT model nested a decision-making function implementing logistic regression 

classifier to provide probabilistic predictions, it would be reasonable to implement the 

adaptive thresholding in the step and theoretically would improve the classification 

performance. The prediction that the performance would improve is that the adaptive 

thresholding takes account of the trade-off between specificity and sensitivity and accepts 

more spindle instances, which means sacrificing specificity to gain sensitivity (Supplemental 

Figure 3).

There are several future directions that could improve our models. The FBT model takes 

signal information and sleep stage as inputs and returns onsets, durations, and amplitude 

information as outputs. Implementing the changing thresholding method to its probabilistic 

decision-making step, we could feed the adjusted probabilities to the identified sleep 

spindles prior to this step, reducing the false negatives in classifying sleep spindles. The 

feedback loop could go through several iterations. As for the machine learning perspective, 

the current study focused on the model selection using only the naïve features that captured 

multi-channel statistics (i.e. signal, frequency, power). A feature engineering [48] could be 

performed to improve classification performance while using standard one-layer machine 

learning models (i.e. linear models, support vector machines, and ensemble models). 

Furthermore, in order to understand how statistical representations of the signals inform 

automated approaches in classifying sleep spindles, deep neural networks could be used to 

learn those statistics by implementing reconstruction network frameworks.

Conclusion

The objective of the current study was to design a FBT pipeline to process raw EEG 

recordings of sleep and return localized sleep spindle information. The process was 

completed on multiple channels quickly and provided statistical representations for machine 

learning model selection. By implementing a decision function on the detected spindles, 
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particular segments of the signals were sampled to form feature vectors that represented well 

knowledge of both spindles and non-spindles. With minimal human input, the pipelines are 

easy to implement and the results are intuitive because the goal of optimizing our pipelines 

is to learn the global patterns of the EEG signals through multiple channels. A future 

direction to improve this approach is to extract better feature representations via graphic 

models and to emulate the human annotator better. On the clinical side, future work should 

investigate extending the set of neural events and distinguishing different types of sleep 

spindles (i.e., slow and fast spindles), which can be automatically detected with models 

mentioned in the present study. Both of these approaches could make spindle detection more 

objective thereby improving the efficiency and reproducibility of both basic research and 

clinical studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

We developed an automated pipeline for sleep spindle classification.

Tested on multichannel EEG data collected during naps.

Spindle identification is quick; option to guide sophisticated machine learning 

model selection.

Pipeline is open source and easy to implement in practical settings for spindle 

classification.

Pipeline speeds manual spindle annotation process for larger EEG datasets.
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Figure 1. Spatial locations for electrodes of interest (10/20 international standard F3, F4, C3, C4, 
O1, and O2), EOG, and the reference electrode
Channel Fpz was used as the ground channel and channel TP9 was used as the reference 

channel during recording. We used a vertical EOG approach in our design. The “EOG L” 

electrode was placed under the left eye on the maxilla while the “EOG R” electrode was 

placed above the right eyebrow on the frontal bone. Both electrodes on either side were in 

line with the middle of the eyes. Recorded data was re-referenced to the average of the data 

during the preprocessing phase. Because the FBT model detects sleep spindles based on 

fluctuations relative to the individual channels after bandpass filtering, an asymmetrical 

amplitude distribution would not influence spindle detection.
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Figure 2. Three examples of manually marked sleep spindles
Each column represents one example of a manually annotated sleep spindle. The last column 

contains an example spindle signal from the DREAMS data. The first row contains 

preprocessed spindles without a bandpass filter at 11 to 16 Hz. Since the duration of spindles 

was not marked by the annotators in our data, these spindles were set to 2 seconds by default 

with each beginning at 0.5 seconds (start of the red shaded span) prior to the marked onset 

(red line). Duration information was provided in the DREAMS data and we specify the 

onset plus the duration on the x ticks.
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Figure 3. Three examples of sleep spindles detected by the FBT model
Example 1 (a, b) and 2 (c, d) are spindles of the dataset of the current study marked by the 

FBT model, and example 3 (e, f) is a spindle of the DREAMS dataset marked by the FBT 

model. Preprocessed raw and filtered signals are shown. The red shaded areas represent the 

durations of the spindle. The red lines are the peaks of the filtered spindle signals marked by 

the FBT model. (g) shows the distribution of the durations of the auto detected spindles in 

both our data and the DREAMS dataset. Average duration is shown as mean +/− standard 

deviation.

Mei et al. Page 24

Comput Biol Med. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Manual Annotation of Spindles Shown as Spindle Density
Onsets of sleep spindles were marked manually by 2 experts, but no information about the 

duration of each spindle was annotated. One of the experts annotated data for subjects 5 

through 10, which were long recordings that lasted more than 60 minutes (4000 seconds). 

The other expert annotated data for subjects 11 through 30, which were short recordings that 

lasted for 30 minutes (2000 seconds). Both days of subject 7 and day 1 of subject 5 were 

excluded from analysis due to excessive noise. Both days of subject 24, 26, 27 and day 2 of 

subject 20 were excluded because subjects did not reach to stage 2 sleep during the 

recordings on those days. The figure shows the temporal density of the annotated sleep 

spindles. Spindles marked in the first 300 seconds and the last 100 seconds were excluded to 

avoid false positive raised by artificial patterns. Spindle densities were computed by 

Python.Seaborn.violinplot using a kernel size of 20 samples. Both ends of the density 

distribution were cut by the first and the last occurrence of a spindle event. The three dashed 
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lines in one half of a violin plot represent 25%, 50%, and 75% quartile of the density 

distribution.
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Figure 5. Spindle densities for automated and manual classification
Automated classifications were made by the optimized FBT pipeline. The best lower 

threshold is 0.4 and higher threshold is 3.5. There was no significant evidence to support that 

the FBT model performed better for the long recordings than the short recordings 

(permutation test, p values = 0.245 +/− 0.018, M +/− SD). On the other hand, there was 

significant evidence to suggest that the machine learning model performed better for the 

long recordings than the short recordings (permutation test, p values = 10−4 +/−10−4, M +/− 

SD). Spindle density was computed by Python.Seaborn.violinplot with a kernel size of 20 

samples. In general, the FBT pipeline classified fewer spindles than human annotators.
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Figure 6. Validation Results
A comparison is shown between the best machine learning pipeline (nested voting classifier 

and decision tree classifier as feature selection component and a gradient boost classifier as 

an estimator, using naïve features) and the FBT model at individual level. (a) shows the 

cross-validation results of applying the machine learning pipeline and the FBT model to 

each subject, with standard errors across subjects shaded in corresponding colors (red for 

machine learning and blue for FBT). The machine learning pipeline determined by the 

TPOT library increased the within-subject AUC from 0.59 to 0.67, which was statistically 

significant using a two-sample t test. Variations within each individual captured the 

randomized selection of a training subset from all possible samples. While the FBT model 

contained strict criteria and was less flexible than the machine learning pipeline in terms of 

probabilistic decision functions, the AUCs of the machine learning pipeline showed higher 

variations than the FBT model within each individual. (b) and (c) show all the cross-

validation ROC curves, and the median sample subject is shown by average ROC and 

corresponding standard error. The difference between (b) and (c) also reflects the difference 

of variances between two models. (d) and (e) show the normalized confusion matrix across 

subjects. Two models have similar TP rate and TN rate on average.
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Figure 7. Applying the pipeline to the DREAMS project data
A comparison of cross-validation performance among the FBT model, the machine learning 

pipeline, the second expert who annotated spindles independently from the first expert, and 

Deyuyst et al. [1]. In (a) between subject standard errors are shaded in corresponding colors 

(purple for FBT, red for machine learning, green for the second expert, and grey for Deyuyst 

et al.). The FBT model set a benchmark and all other methods outperformed the FBT model. 

In (b) we show the ROC curves of all the cross-validation results. For the machine learning 

pipeline and the FBT model, probabilistic predictions were generated by the decision 

functions. Thus, the ROC curves show a step-wise trend. For the second expert and Deyuyst 

et al. no probabilistic estimate was made because data was derived from time stamps. The 

median cross-validation individuals are highlighted to represent the model performance 

estimate. In (c) from top to bottom and from left to right, the cells in the confusion matrices 

are TN rate, FN rate, FP rate, and TP rate. The confusion matrices suggested the machine 

learning pipeline and the second expert highly agreed on this dataset, but the second expert 

has higher TP rate and TN rate. The FBT model suffers from a high false negative rate but 

has a high TN rate. Devuyst et al. has both a high TP and TN rate.
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Table 1

Configuration of the system and versions of python libraries used in the following method section.

Property Description Property Description

Compiler MSC v.1900 64 bit System Windows

Release 7 Machine AMD 64

Processor Intel64 6-M-58-9 CPU cores 8

CPython 3.5.3 IPython 6.0.0

Numpy 1.12.1 Pandas 0.20.1

MNE 0.14 Seaborn 0.7.1

Scipy 0.19.0 Matplotlib 2.0.1

TPOT 0.8
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