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Abstract: 

Due to the limitations of experimental approaches, comparison of the internal 

deformation and stresses of the human man foot between forefoot and rearfoot landing 

is not fully established. The objective of this work is to develop an effective FE 

modelling approach to comparatively study the stresses and energy in the foot during 

forefoot strike (FS) and rearfoot strike(RS). The stress level and rate of stress increase 

in the Metatarsals are established and the injury risk between these two landing styles 

is evaluated and discussed. A detailed subject specific FE foot model is developed and 

validated. A hexahedral dominated meshing scheme was applied on the surface of the 

foot bones and skin. An explicit solver (Abaqus/Explicit) was used to stimulate the 

transient landing process. The deformation and internal energy of the foot and stresses 

in the metatarsals are comparatively investigated. The results for forefoot strike tests 

showed an overall higher average stress level in the metatarsals during the entire 

landing cycle than that for rearfoot strike. The increase rate of the metatarsal stress from 

the 0.5 body weight (BW) to 2 BW load point is 30.76% for forefoot strike and 21.39% 

for rearfoot strike. The maximum rate of stress increase among the five metatarsals is 

observed on the 1st metatarsal in both landing modes. The results indicate that high 

stress level during forefoot landing phase may increase potential of metatarsal injuries. 

 

Keywords: Finite element analysis, metatarsal stress, forefoot strike, rearfoot strike 
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INTRODUCTION 

 

Foot strike pattern is a major issue influencing the lower extremity biomechanics 

during running. Forefoot strike and rearfoot strike are two common landing styles of 

running [1, 2]. In a forefoot strike, the ball of foot impacts with the ground first, during 

which, the foot was initially landed with a plantarflexion posture, followed by a 

dorsiflexion movement. Compared to rearfoot strike, forefoot strike cuts down the 

impact and reduces the shock passing to the brain as the impact is absorbed by the 

compression of the foot arch, eccentric contraction of the triceps surae, calf muscles 

and Achilles tendon stretch [3]. The pressure excursion during forefoot strike that 

moves backward was once considered to be an energy waste but was later proven to 

provide cushioning for runners [4]. Recent researches showed that the vertical loading 

rate of a habitual barefoot runner can be significantly reduced by changing the landing 

pattern from rearfoot strike to non-rearfoot strike [5, 6].  

 

In the work by Lieberman [3], no obvious impact transient was found in the typical 

force-time data of forefoot strike. Conversely, the force-time curve of classic rearfoot 

strike always shows an impact transient before the vertical ground reaction approaches 

its peak. During the impact period of a rearfoot landing, the vertical Ground Reaction 

Force (GRF) can be 3 times higher than that for forefoot landing of habitual barefoot 

runners [3]. In rearfoot strike running, impact absorption is limited to the rearfoot pad 

and the shoe, leading to a higher peak impact, generating a shock wave, This could lead 

to high stress and strain directly contributing to injuries [7]. This is one of the reasons 

that running in minimalist footwear has been considered as a mean to reduce or 

eliminate running injuries by returning to a more natural gait. 

 

A forefoot landing style put metatarsals at the first place of impact, in which the 

metatarsal bones would bear more load compared to the load level in a rearfoot strike 

or midfoot landing styles. This has been proved to be the case by insole pressure loading 

measurement [8]. In addition, it was also reported that the GRF and plantar pressure 

under the metatarsals were greater in the forefoot and phalanges during non-rear foot 

strike [8]. Running in a forefoot landing pattern may also increase the potential of 

metatarsal injuries such as fracture. Recent case studies revealed that the use of 

minimalist footwear by novices with a habit of  rearfoot strike, could cause higher 

occurrence of metatarsal stress fractures [9, 10]. 

In order to understand the biomechanical mechanism of metatarsal injuries, it is 

important to quantify the internal stresses. Numerical modelling provides the prediction 
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of internal stress distribution of the foot under different loading conditions. FEM is 

commonly used in many biomechanical investigations with great success due to its 

ability to model complex material properties and irregular geometry as well as the 

capacity of simulating the internal stress in bones and tissue. Many published studies 

have focused on the foot stress under static standing load [11-13]. Stress in the bony 

foot structure was simulated during balance standing by Cheung noting a clear effect 

of the soft tissue stiffening and of the use of different types of foot support design [12, 

13], including the modelling of foot with medical conditions such as diabetic foot [14]. 

Edwards et al. successfully used a probabilistic model coupled with the FE method to 

estimate the probability of stress fracture under a training scheme in which subjects ran 

at 3.5 and 4.5m/s over a period of 100 days [15]. 

In both cases, forefoot or rearfoot strikes, the high intensity impact induced when 

landing is a major factor for potential injury of foot bones or soft tissues. A comparative 

study of the foot deformations in these two landing phases will provide important data 

and impact characteristics within the relatively short time between foot-ground 

interaction. The improved understanding of the impact process simulated by FEM can 

also provide the information for enhancing the protection of the foot, designing devices 

embedded in shoe sole for smart shoes or implanted sensors. Wearable technology has 

been a popular topic in the field of public health science, with more and more footwear 

set a space aside for embedding a sensor to record plantar pressure and even foot 

movement in gait. The impact during landing is the most vulnerable phase for the 

sensors among the whole gait cycle. Consideration of different landing styles (i.e. 

forefoot and rearfoot strike) in the design of embedded or implanted sensors is 

necessary to balance the function of the sensors such as shoe sole stiffness, sensor 

reliability and wearing experience for the users with different strike patterns.   

 

The purpose of this study is to investigate the internal stresses in metatarsals during 

forefoot and rearfoot strike. The stress level and stress increase rate in the metatarsals 

during a forefoot strike would be higher in forefoot strike than that for rearfoot strike 

and FEA will help to quantify these differences.  
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FE MODEL AND METHODS 

 

Morphometrical analysis: virtual solid and finite element models 

The subject-specific FE foot model was acquired by the reconstruction of 3D 

Computer Tomography (CT) and Magnetic resonance imaging (MRI) images of a male 

subject (age: 26, height: 180 cm, weight: 70 kg and foot length: 265 mm foot length). 

The subject is healthy without any known injury or foot problem in the past 3 years. 

Coronal CT images were taken with a space interval of 2 mm in the neutral unloaded 

position. The images of 28 bones (i.e. talus, calcaneus, cuboid, navicular, 3 cuneiforms, 

5 metatarsals, and 14 components of the phalanges) and an encapsulated volume were 

segmented using MIMICS 16.0 (Materialise, Leuven, Belgium) together with the 

cartilages between bones to obtain the boundaries of the skeleton and exterior surfaces 

for assembling the model in .STL format. Coronal MR (magnetic resonance) imaging 

(Philips Achieva) of the same supine volunteer was used to segment the detail dataset 

with a lower density than the bones (soft tissue, cartilage, skin, and ligament) acquired 

at a slice thickness of 1.5mm (200 slices) and pixel spacing of 0.8594 mm from 256 × 

256 captured pixels while the foot is at a natural unload state (ankle angle90°). 

 

Solidworks (SolidWorks Corporation, Massachusetts) was used to convert all volume 

into solid parts in the format of .STEP files. Each part of bone was partitioned (see the 

flow chart in Fig. 1) in order to assign brick elements with gradual changes in the cross 

section between each partitioned cell based on its anatomy structure. Most of the 

published FE foot models were meshed by tetrahedral element due to the limitation of 

common FE packages such as Abaqus and Ansys in order to cope with the highly 

irregular shapes of the parts. In this work, the foot model was properly partitioned based 

on the anatomical features and meshed in Hypermesh (13.0), in which hexahedral 

elements can be applied on the irregular geometries such as bones and other organs. 

The number of hexahedral elements applied to solid bones and foot is highly dependent 

on the quality of the partitions. In this model, 90% of the surface layers of the foot and 

bones was successfully meshed by hexahedral elements which provide a smooth foot-

floor interaction during striking with much high local accuracy and use less elements 

compared to that of a model solely with tetrahedral elements. In all other parts, 

hexahedral and tetrahedral elements were jointly employed, in which the aspect ratio 

of the brick elements was close to 1, this approach could improve the local accuracy of 

the FE model. All elements were imported into the commercial FE package Abaqus 

(6.14) as an .INP file to apply the loading and boundary conditions before simulation 
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and analysis mimicking forefoot landing and rearfoot strike. Two types of elements 

have been used in the main structure of the final foot model: four-node tetrahedral 

element (C3D4) elements and general purpose linear brick elements (C3D8R) with 

reduced integration. Use of reduced integration in Abaqus explicit could help dealing 

with incompressible behaviours. Detailed meshes sensitivity tests have been conducted 

in the preliminary work by gradually reducing the element sizes until the difference of 

resulted force-displacement data between two meshes is within 3%. The final model 

consists of 273123 elements. Due to the impact character of the foot landing and small 

time step required, Abaqus explicit solver is used [16-19]. A recent published work [16] 

used explicit solver for a 2D foot model. In previous works, Abaqus explicit solver has 

been used for modelling indentation of soft materials and deformation of structures 

embedded in a soft matrix and many other soft material systems [17, 18, 19, 20, 21]. 

For a 3D foot model with complex bony structures and different components of soft 

tissues, an explicit solver offers a more efficient choice for dealing with contact and 

impact [22]. One key issue is the achievement of stability/convergences of the model, 

which is controlled by the damping factor and/or mass scaling. Many key factors have 

been properly developed including mesh, mass, damping, contact as well calculation 

step. Further details will be presented in the boundary and loading conditions and 

convergence studies.  

 

Materials Properties  

A range of material properties and models are used for different foot structures 

and parts. An analytical rigid plate was used to represent the ground to simulate the 

foot–ground interaction during landing. This is close to the biomechanical testing 

condition, it is also representative of a more damaging situation to the metatarsals. The 

bones are defined as a linear elastic isotropic material (Young’s Modulus=7300 MPa, 

Poisson’s ratio=0.3) [23]. As in previous works [11] and other literatures [24], the 

stiffness of the Cartilage, Plantar Fascia and Ligament is set at 1, 350 and 250 MPa, 

respectively; the Poisson’s ratio is set as 0.4. The phalanges are assumed to have the 

same material properties as the bones [16]. The density for the bone is 1500kg/m3, the 

density of the tissue is 940 kg/m3. A Rayleigh material damping coefficient (alpha) 6.7 

was defined to represent the viscous behaviour of the soft tissue in ABAQUS [16]. The 

remaining soft tissues which encapsulated the bony structures was described by a 

hyperelastic model with a second-order polynomial strain energy potential obtained 

from in vivo ultrasonic measurements [25].  
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Where U is the strain energy per unit reference volume; Cij and Di are material 

parameters. J is the volume ratio; I1 and I2 are the first and second deviatoric strain 

invariants. The coefficients of the hyperelastic material used for the encapsulated soft 

tissue is C10=0.08556, C01=-0.0841, C11=-0.02319, C02=0.00851, D1 = 3.65273, D2=0. 

[11, 25]. The data was obtained through an in vivo compression measurement with 

several cohorts and inverse parameter fitting, the model had been used in serval 

published biomechanical works [11, 12, 13]. When D2=0, it represents full 

incompressibility. Theoretically incompressibility can cause volume locking. For linear 

elastic models, this can be practically dealt with by using a Poisson’s ratio close to 0.5. 

For hyperelastic model, full volume locking with an incompressible material can be 

avoided by using elements with reduced integrations. High quality meshes are also 

important for dealing with modelling problem due to incompressible behaviours [26].  

 

Boundary, loading conditions and convergence studies 

The main bony foot components were embedded in the encapsulated soft tissue volume 

using “Constraint of Embedded Region” [26] The procedure used constraint type of 

“Embedded Region” to model the interaction between the thin layer within the “whole 

model”. This approach allows the user to insert a structure within a “host” region of the 

model or within the whole model [26]. The overall bony foot structure was treated as 

the embedded elements. This is an effective approach in dealing with multiple 

components system such as embedded systems structures in soft matrix [18]. In the 

model, the displacement-history data from kinematical experiments was applied on the 

cross section of tibia and fibula, following the displacement-history obtained from 

biomechanical tests using high speed camera and reflective markers. This is more 

realistic loading with an explicit solver to compare forefoot and rearfoot strike, rather 

than moving the plate upwards as used in other publications [27, 28]. The collision 

force of touching down is 1.5-3 times of the body weight [3]. Full contact was defined 

between the foot surface and the ground, with a surface to surface contact condition and 

the friction coefficient between foot plantar and the rigid plate was 0.6 [11, 16, 29]. 

Foot deformation under static standing load is usually simulated by standard implicit 

solver. For example, Gu [11] built a full foot model to compare the effect of different 

mat thicknesses on the metatarsal stress by using the standard solver. However, during 

running gait, the time period of landing will dramatically affect the result of GRF, 

plantar pressure, and stresses, etc., therefore, explicit Solver (Abaqus/Explicit) was 
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used to avoid convergence problem. The time period of landing phase was also 

considered, it took 0.1s from half body weight to reach twice body weight. The 

displacement history on the foot is applied as kinematical data of ankle (including tibia 

and fibula) following the displacement-time captured by a high-speed camera system. 

In the experimental work, we used reflective markers to record the displacement of the 

ankle and deformation of the foot. The averaged displacement history at top surface of 

the model (including tibia, fibula and soft tissue) was used to control the foot landing 

in the model, this is more realistic than moving the plate [27, 28, 30]. The initial 

touchdown angle in forefoot and rearfoot strike between the foot plantar and the ground 

was defined as 5° by gait measurement with reflective markers. Convergence studies 

are influenced by the mesh quality, linear damping parameters and time steps used, etc. 

We have evaluated the effect of the damping parameters using a trial and error process 

to minimise the ground reaction force oscillations. In the meantime, as a unique 

problem of the foot structure, the continuity (localized instability) of the foot 

deformation is also analysed as the system consists of regions with significantly 

different material properties. The final value consists of a linear bulk viscosity 

parameter of 0.035 and a quadratic bulk viscosity parameter of 0.6. The minimum target 

time increment is set at 1E-7, which is found to be applicable to all the three loading 

conditions (i.e. standing, forefoot landing and rear foot landing). These parameters 

combined produced give a reliable force-displacement curve and deformation mode. 

Sensitivity studies show that the combination of material properties and simulation 

parameter offers a relative robust modelling performance (i.e. No significant/abrupt 

drifting with a small range of perturbation (±10%) in the parameters)  

 

RESULTS 

 

Validation of the FE foot model with foot deformation and plantar pressure 

distribution data 

 

Standing condition was stimulated and compared to the experimentally measured 

deformation of the bony structure in order to verify the FE foot model. The 

displacement of navicular bone represents the foot deformation index in clinical aspect. 

The node at tuberosity of the navicular bone in medial side was selected, which is 

normally used as the reference point in manual measurement. The vertical displacement 

from this node was plotted while the whole bodyweight is applied. Fig. 2 showed the 

result between the measured navicular drop [31, 32] and FE stimulated result. As shown 

in the figure, the numerical data showed a reasonable agreement with published data 
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[31, 32, 33]. Plantar pressure measurement is another common way to analyse different 

gaits or running styles. Distribution of the pressure on the foot plantar indicates the 

pattern of gaits and provide a mean to assess the validity and accuracy of the FEM. Fig. 

3 shows the distribution of plantar pressure from FEA and platform pressure 

measurement (Emed pedography platform. Novel GmbH, Munich, Germany) under the 

static standing load. As shown in the figure, two frames of standing were selected when 

the GRF is equal to 0.5 body weight (BW), and 1BW, respectively. Pressure distribution 

from the FE result showed a good agreement with the experimental result measured on 

the Emed pedography platform. The value of peak pressure between FE and test data 

match at both the point of 0.5 BW and the full BW load. For the pressure measurement 

(Fig.3), it should be noted that the system used discrete electrical sensors, then the 

distribution/contour is formulated through the homogenisation of the reading of all the 

pressure sensors. From the pressure distribution, it is clear that the global distribution 

of maxima and minima is similar and maximal stresses are also similar. This suggests 

that the model is valid in terms of the key aspects of the foot model such as geometry, 

position of the bones and materials, etc. The pressure values for the heel and forefoot 

region are also in a general agreement with published data, which will be analysed in 

details in the discussion section. Navicular bone is the pivoting point of the foot. Its 

displacement provides a good mean for model validation [34] on works focusing on 

metatarsals. In the static standing tests, the load was 1BW, for dynamic test, the load 

was around 2.1BW. During the experiment, for the static standing test, the subject 

slowly stands on the platform, while for the dynamic test, the subject was asked to hold 

two parallel bars to lift himself up straight before landing from 100mm height (distance 

from foot plantar level over the ground) to the rigid ground with full foot contact (i.e. 

forefoot and rearfoot touching ground at the same time) where the Emed pressure 

measurement plate was placed. Ground reaction force from Emed plate showed 

maximum reaction force around average 2.1 body weight. The GRF for standing test is 

much more reliable, while there is clearly variation in the GRF between different 

dynamic landing tests as represented by the error bar. However, the average value 

showed a reasonable agreement between the FE modelling and the tests. The close 

agreement between the displacement measured in the static standing and dynamic 

vertical landing tests shows that the model is geometrically sound. The displacement of 

the proximal end of 1st metatarsal has also been evaluated, the modelling results shows 

a reasonable agreement with the tests, but the repeatability of the Proximal end of 1st 

metatarsal is not very reliable, the data was not shown to preserve clarity. These results 

give more confidence in using the computational model to predict the deformation of 

the internal bones such as the metatarsals, which cannot be measured directly. Further 
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discussion on the data is presented in the discussion section to compare the predicted 

results with other published data under comparable conditions or more challenging 

situation as well as the limitations of the approach.  

 

Stress distribution on the metatarsals 

 

During the initial touchdown (up to half BW) for forefoot and rearfoot strike, the 

averaged metatarsal stress is similar around 6MPa. The stress level in the 4th metatarsal 

in forefoot strike is higher (7.62MPa, Fig. 4), the stress in the 5th metatarsal in rearfoot 

strike has a much lower value (4.67MPa, Fig. 6). At full contact (2BW), there is a more 

significant increase in the metatarsal stresses in the forefoot strike, than that for the 

rearfoot strike. The percentage stress increase from initial touchdown to full contact 

during rearfoot strike (21.39%) is lower than the rate of increase for forefoot landing 

(30.76%).  

 

Fig. 4 shows the stress data in the metatarsals between 0.5 BW and 2 BW in 

forefoot landing. The average metatarsal stress increase is about 30.76% from the initial 

contact to full contact during forefoot strike. The data shows that the 1st metatarsal 

experienced the lowest stress at initial touchdown, but the stress increases more 

significantly with the highest increase rate of 48.21% at full contact. The data for the 

5th metatarsal represents the lowest stress increase rate (18%) from the initial 

touchdown to full contact. Fig. 6 shows the stress data for the rearfoot strike. It can be 

seen from the data that the 1st metatarsal had the highest stress under both half body 

weight and twice BW. The highest stress increase rate was presented on the 1st 

metatarsal during rearfoot strike. The lateral side during rearfoot strike (the 4th and 5th 

metatarsals) also showed relatively high stress increase rate (10.4% and 11.8%). The 

stress increases among the five metatarsals shows a more evenly spread along the 

coronal axis during rearfoot strike than that for forefoot strike. 

 

Deformation of the foot at initial touchdown during forefoot and rearfoot landing 

is shown in Fig. 5(a) and Fig. 7(a), respectively, the vertical GRF was equal to half BW 

(350N) at this point. The foot deformation at full contact during forefoot and rearfoot 

landing is shown in Fig. 5(c) and Fig. 7(c), respectively, the GRF was twice BW (1400N) 

at this point. Fig. 5(b) and Fig. 5(d) show the stress distribution on the bones at the 

moment of initial touchdown and full contact, respectively during forefoot landing. Fig. 

7(b) and Fig. 7(d) present the bony stress distribution at the moment of initial 

touchdown and full contact, respectively during rearfoot strike. Compared to full 
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contact, stress distribution on metatarsals are more evenly distributed at initial 

touchdown for both landing styles. The 3rd and 4th metatarsals bear higher stress at 

initial touchdown during forefoot landing (Fig. 5(b)). During rearfoot landing, stress on 

the metatarsals showed more even distribution at initial touchdown (Fig. 7(b)). For both 

landing styles, 1st metatarsal showed the highest stress increase rate from the initial 

touch down to the full contact stage (Fig. 5(d), Fig. 7(d)). 

 

DISCUSSION 

 

As shown in Fig. 2, the numerical results of the FE model are in a good agreement 

with the experimental data and published works [11,12,13]. The plantar pressure 

distribution also showed a good agreement between the FE modelling and 

biomechanical tests. These are commonly used approaches to check the validity and 

accuracy of FEMs [14, 29, 30]. These will provide confidence in the prediction of the 

stresses in the metatarsals in forefoot and rearfoot strike, which is the main focus of the 

work. The GRF on the reference point of rigid plate is used to represent the ground 

reaction force during whole phase of strike. The trend of the GRF predicted is found to 

be comparable to other published works [1,3]. The numerical data predicted for both 

forefoot and rearfoot strike are close to the GRF tests results on the same subject. The 

peak GRF observed at the end of landing phase for both forefoot and rearfoot strike 

reaches a similar level (~2.5BW). This is also in agreement with published data, which 

reported a maximum force of 2.2-2.5 BW [3,5,6]. This load level is also observed by 

the human body modelling investigating the response of the human body to the collision 

with the ground during hopping, trotting, or running [35, 36, 37]. In the models, the 

mass, spring, and damper elements are used to represent the masses, stiffness properties, 

and damping properties of hard and soft tissues. The reaction force is a combination of 

the influence of the bodyweight, muscle action, and velocity. The reaction force 

predicted by the mass-spring-damper model is in a similar range to the load used in the 

FE models of this work. 

 

The efficiency and stability of an FE explicit model can be verified by checking 

the ratio between the artificial strain energy and internal energy level (ALLAE/ALLIE), 

which is commonly used in dynamic situations [38, 39]. It is an indicator for the quality 

of the mesh size, contact, viscous damping and stabilisation, thus reflecting the 

accuracy of the solution. In the models developed in this work, the ALLAE/ALLIE 

ratio is always less than 2% during either forefoot landing or rearfoot strike. This 

suggests that the FE is effective and stable. As shown in Fig. 8, at 0.5BW load, the 
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strain energy level stored in the foot is similar between different conditions, and then 

at 1 BW, the energy for rearfoot strike is slightly higher. While at 2 BW (which is close 

to the maximum (2.2-2.6 BW) [1], the energy in the foot during rearfoot strike is much 

higher, this is due to the fact that for rearfoot, the main force is sustained by the bony 

structure, the heel pad is the main deformable part. For forefoot strike, the soft tissue 

has a much higher deformation around the metatarsals, which increases the energy 

stored in the system. These highly strained tissues will cause high stress within the 

metatarsals as shown in the main results.  

 

This study comparatively evaluated the stress distribution in the metatarsals 

between forefoot landing and rearfoot strike. As hypothesized, the stress level and 

increase rate of the metatarsals stresses during forefoot landing is higher than that in 

rearfoot strike especially. the stress in the 1st metatarsal during forefoot landing is much 

higher. The results show that a forefoot strike pattern put metatarsals at high stress level 

along with high rate of stress increase than that for rearfoot strike. The stress 

distribution and stress level are in agreement with some published data [11, 40]. The 

case study by Cheung et al. observed a similar result that metatarsal stress increased 

during barefoot running, which results in severe running injuries, such as metatarsal 

and calcaneal stress fractures [41]. Giuliani et al [9] reported that metatarsal fracture 

occurred on novice barefoot runners, which can be explained by the higher loading rate 

during impact. The landing pattern transition to a forefoot landing style put the 

metatarsals as the first impact section of the foot [9]. Comparative study of the landing 

styles revealed the 1st metatarsal has a dominate role bearing relatively high stress and 

greatest stress increase rate in both forefoot and rearfoot strikes, which is associated 

with its wider anatomy structure than the other four metatarsals. This is agreeable with 

the finding of Muehleman et al [42], who mentioned that first Metatarsal bone as a 

major weight-bearing structure is of important biomechanical function within the foot 

[42]. During forefoot strike, higher stress increase rate was observed in the medial area 

of the metatarsals at the 2 BW load point. Whereas, the stresses level at initial contact 

between each metatarsal during forefoot strike are at a comparable level (around 6MPa). 

This indicates the automatical pronation has happened under mechanical downwards 

boundary conditions. In contrast, stress increase is relatively uniform between the five 

metatarsals during a rearfoot strike. 

 

The model used constraint of ‘embedded region’ to model the key internal foot 

components encapsulated by hyperelastic material for the soft tissues. The embedded 

element technique is used to specify that an element or group of elements is embedded 
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in “host” elements [26]. This offers an effective way of modelling the foot focused on 

the stresses in the metatarsals with improved efficiency and resource saving. 

Comparing this with a full perfect contact model without using the embedded region, 

the number of elements is much lower. For the full modelling approach, the number of 

element for the whole foot is typically being around 1200000-1300000 [30, 43], which 

is around 4-5 times the element number used in the current explicit model (273123 

elements). 

 

The mechanical response of human foot in different landing conditions have been the 

subject of many research works [16, 27, 28, 43], in which different procedures have 

been used to suit the technical focus of the studies. Fontanella et al [27] investigated 

the mechanical behaviour of the plantar soft tissue during gait cycle using Abaqus 

implicit modelling. The work considered detailed viscoelastic effects with a specific 

visco-hyperelastic constitutive model, the mean value of the loading rate during impact 

is 0.033BW/s, which is close to the loading conditions (0.1s for 2 BW) for this work. 

In another model by Fontanella et al [43], the tibia and the fibula were considered to be 

fully fixed, and the boundary and loading condition is simplified by fixing the relative 

motion between the foot and the plate. Similarly, in the work on the effects of Ankle 

arthrodesis on biomechanical performance of the entire foot [44, 45], the superior 

surfaces of the tibia, fibula, and encapsulated soft tissue were fixed throughout the 

simulation. The ground reaction forces were applied through moving the rigid plate 

beneath the foot. The pressure at the heel region reported in the works is 0.3-0.33MPa, 

and 0.22-0.26MPa under the metatarsals. These pressure values are similar to the data 

predicted in this work. Yu et al [24] conducted biomechanical simulation of high-heeled 

shoe donning and walking. The work used linear elastic properties for the bone and soft 

tissues. The average stress in the first metatarsals during the push off phase is around 

6.5 MPa at a 1.2 BW, which is similar to the value in this work for forefoot landing. 

All the works mentioned above used Abaqus implicit, which has limitations in dealing 

with fast dynamics with small time steps in the landing phase and normally a much 

higher number of elements are required. Qian [16] used an Abaqus explicit solver with 

a two-dimensional model to study the human foot complex in the sagittal plane during 

level walking. Their analysis showed that a dynamic FE simulation can improve the 

prediction accuracy of the peak plantar pressures at some parts of the foot complex by 

10%–33% compared to a quasi-static FE simulation. However, the proposed model is 

confined only to the sagittal plane and has a simplified representation of foot structure, 

in which the plane stress section thickness was set to 60 mm representing the 

approximate foot width of the subject. The FE modelling in this work used a full 3D 

model, the results show that an explicit model has the advantage of dealing with 

complex modelling with a more flexible loading to suit different foot loading situations.  
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The comparison of the stress level between forefoot and rearfoot strike with a 

subject specific model will provide important information for understanding the loading 

of metatarsals in different movements. Different peak stress areas indicate the areas 

more prone to injure on the metatarsals with high stress and increase rate. In particular 

in forefoot strike, a 9.67% higher stress increase rate in the metatarsals than that for 

rearfoot strike indicates a higher chance of stress fracture. This agrees with the 

observation that the forces and stresses experienced in the metatarsal region are 

increased when using a non-heel strike pattern during running [46]. The bending strain 

of metatarsals reported by these authors would potentially be increased even higher in 

those runners selecting to use a non-heel strike running pattern [47]. This may 

contribute to a higher incidence of metatarsal stress fractures in runners converting to 

minimalist footwear [9, 10]. 

 

Limitation 

The work has shown that the use of subject specific modelling can provide a 

useful tool to compare the foot deformation and stresses in the metatarsals during 

forefoot and rearfoot strike, in particular for bare foot or with minimalist shoes. There 

are some limitations of the results, which should be noted and some of which is open 

to future studies. This paper has been focused on a situation with a rigid ground, this is 

the same situation as the experiments and represent the most dangerous/relevant 

situation for metatarsals damage. The results can be extended to more complex 

situations such as with soils, turfs, etc. This can be either conducted with a layered soft 

materials system, or more realistically using a discrete element model for modelling the 

soil. The latter will be able to distinguish the effect of soft ground on the stresses in 

different metatarsals. The tissue for foot modelling is a complex problem, an optimum 

scheme has to balance representing the realistic structure, the practicality and efficiency 

of the modelling. A particular area for the human foot modelling which should be noted 

is the use of regional properties or age/medical related properties [48]; Our previous 

work used in vivo indentation tests to characterise the soft tissue over different foot 

zones and used detailed properties in foot modelling [11]; such a process with detailed 

skin behaviours [27] and heel pad properties [43, 49, 50, 51] should be adapted when 

the plantar pressure is the main focus of the modelling for situation such as diabetes 

feet. Another area should be noted is the modelling of the bone. This study has focused 

on the whole deformation of the foot bony structure in standing, forefoot and rearfoot 

landing. The bone has been modelled with a uniform property. This is probably 

sufficient for studying the general stress levels in the metatarsals, further details are 

required to extend the modelling to more complex loading conditions or more 
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challenging landing situations such as inversion and eversion landing. For detailed 

modelling of the metatarsals, more detailed works are required, ideally using 

submodelling to extract the boundary condition and force around the metatarsals, in 

which the individual muscle, even nerve can be considered. This is will be addressed 

in future works. 

 

CONCLUSION 

 

This work presents a detailed study in developing an effective finite element (FE) 

modelling approach to comparatively study the stresses and energy in the foot during 

forefoot strike (FS) and rearfoot strike (RS). An explicit solver was used to stimulate 

the transient landing process of the foot to improve the convergence and modelling 

efficiency. The results for the forefoot strike tests showed an overall higher average 

stress level in the metatarsals during forefoot landing than that for rearfoot strike. The 

metatarsal stress increased 30.76% for forefoot strike and 21.39% for rearfoot strike 

when the load is increased from 0.5 body weight (BW) to 2 BW. The maximum rate of 

stress increase in the five metatarsals is observed on the first metatarsal in both landing 

modes. During forefoot landing, the average stress on the first metatarsal is increased 

by 48.21% from 0.5BW to 2BW. The results indicate that changing strike pattern from 

rearfoot strike to forefoot may increase the potential of metatarsals injuries due to the 

high stress level and stress increase rate. 
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Fig. 1 Process of building FE model with hexahedral elements from 2D CT image to 

Abaqus Explicit. 

Fig. 2 Comparison of vertical navicular displacement between FE prediction, 

experimental data and published data. 

Fig. 3 Comparison between FE prediction and experimental data of Plantar pressure 

under standing load. 

Fig. 4 Stress on metatarsals at half and twice Body weight (BW) during forefoot strike. 

Fig. 5 Typical FE data for Forefoot strike. (a) Deformation in sagittal plane at initial 

touchdown (0.5BW), (b) stress distribution in axial plane at initial touching-down, (c) 

deformation in sagittal plane at full contact (2BW), (d) stress distribution in axial plane 

at full contact. 

Fig. 6 Stress on metatarsals at half and twice BW during rearfoot strike. 

Fig. 7 Typical FE data for Rearfoot strike. (a) Deformation in sagittal plane at initial 

touchdown (0.5BW), (b) stress distribution in axial plane at initial touching-down, (c) 

deformation in sagittal plane at full contact (2BW), (d) stress distribution in axial plane 

at full contact. 

Fig. 8 Comparison of the strain energy level of the foot during standing, forefoot and 

rearfoot strike. The strain energy of the foot represents the nature energy absorption. 
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