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Abstract 

B-mode ultrasound imaging is used extensively in medicine. Hence, there is a need to have efficient 
segmentation tools to aid in computer-aided diagnosis, image-guided interventions, and therapy. This 
paper presents a comprehensive review on automated localization and segmentation techniques for B-
mode ultrasound images. The paper first describes the general characteristics of B-mode ultrasound 
images. Then insight on the localization and segmentation of tissues is provided, both in the case in which 
the organ/tissue localization provides the final segmentation and in the case in which a two-step 
segmentation process is needed, due to the desired boundaries being too fine to locate from within the 
entire ultrasound frame.  In this section, examples of some main techniques found in literature are shown, 
including but not limited to shape priors, superpixel and classification, local pixel statistics,  active contours, 
edge-tracking, dynamic programming, and data mining. Ten selected applications (abdomen/kidney, breast, 
cardiology, thyroid, liver, vascular, musculoskeletal, obstetrics, gynecology, prostate) are then investigated 
in depth, and the performances of a few specific applications are compared. In conclusion, future 
perspectives for B-mode based segmentation, such as the integration of RF information, the employment 
of higher frequency probes when possible, the focus on completely automatic algorithms, and the increase 
in available data are discussed.  
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1. Introduction and overview 

B-mode ultrasound imaging is widely used in medicine as a diagnostic tool. It is capable of acquiring images 
in real-time, uses non-ionizing radiation, presents no risk to patients, and is inexpensive compared to other 
imaging modalities [1].  

An ultrasound B-mode image results from various physical phenomena. In particular, a short ultrasound 
pulse is emitted from the probe, and some waves are then reflected back to the transducer after 
encountering a tissue with different acoustic impedance, while the rest penetrate deeper into the tissue.  
The back scattered ultrasound waves are then electronically detected again by the probe and displayed as 
an image, where the intensity is proportional to the strength of the return echo [1].  

Ultrasound imaging continues to grow and advances are continuously being made in transducer design, 
digital systems, spatial/temporal resolution, and portability.  Alongside these developments, ultrasound 
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image processing and segmentation also continue to find their place in providing an important tool in 
computer-aided diagnosis, therapy, and image-guided interventions.  

More recently, the importance of providing fully automated localization and segmentation techniques has 
shown to be a hot topic in ultrasound, as the amount of data to be analyzed continues to grow and the 
capability of processing large multi-institutional databases proves to be an asset for large projects and 
studies. Clinically, these techniques can also aid in the diagnosis and treatment of patients, providing both a 
tool for locating potential areas of interest and for quantitatively measuring important clinical information. 
Automated localization techniques refer to those methods that provide an initial segmentation and 
localization of an object of interest within which a fine segmentation technique is used to obtain the final 
quantitative information. Depending on the specific application, fine segmentation techniques can be 
employed within a determined ROI or on the entire ultrasound frame without the use of a localization 
method to first isolate the general area.  

A few reviews and surveys have been done regarding ultrasound image segmentation [2], [3], and many 
reviews are found when considering specific clinical applications [4]–[7]. However, to the best of our 
knowledge, this is the first thorough review on automated localization and segmentation techniques for B-
mode ultrasound images. Importantly, this review provides insight on both coarse localization and fine 
segmentation techniques, analyzing the various methods’ robustness to noise and artifacts. This review can 
serve as a manual for the numerous types of ultrasound B-mode segmentation algorithms and clearly 
states the advantages and disadvantages of the different methods. It is important to note that in this 
review only B-mode ultrasound image segmentation techniques are considered. The techniques based on 
color, Doppler ultrasound images, elasticity images, or functional ultrasound contrast image sequences are 
not considered.  

The overview of this review is as follows. The second section reports the general characteristics of B-Mode 
ultrasound images and challenges these images may present for automatic segmentation techniques. The 
third section describes the main coarse localization and fine segmentation techniques found in literature, 
describing when a method can be used for either coarse localization or fine segmentation or both. The 
fourth section concentrates on selected possible applications, providing a brief overview of recent 
techniques in their corresponding specific fields. Quantitative performance results are compared and 
investigated for a few specific applications. A discussion on the methods and clinical applications presented 
and future perspectives of B-mode ultrasound image segmentation concludes the paper.  

2. General characteristics and challenges of B-mode ultrasound images and the role of image pre-
processing 

The ultrasound display equipment depends on specific physical assumptions to allocate the intensity and 
location of each received echo during the construction of the ultrasound (US) B-mode image. When these 
certain assumptions are not met, echoes can be displayed erroneously in the B-mode image and perceived 
as artifacts in the image. It is important to understand some of these basic artifacts before diving deeper 
into automatic ultrasound image analysis as these artifacts can affect the way strategies and methods 
perform. Briefly, when the detected echoes do not actually originate from within the main ultrasound 
beam, a beam width artifact or side lobe artifact can be noticed in the B-mode image [8]. These 
phenomena can be identified as extraneous echoes that are present within an expected anechoic structure. 
Similarly, US image formation presumes that an echo returns back to the transducer after one reflection 
and how deep the object is found is directly related to the time elapsed for the round trip. When this 
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assumption is not met, various artifacts such as reverberation, comet tail, ring-down, mirror image, 
producing multiple echoes deriving from the same structure are produced. B-mode ultrasound image 
formation also assumes that the speed of sound is constant in all human tissues; when imaging a tissue that 
has a speed of ultrasound significantly different from the assumed average value (1540 m/s), echoes can be 
displayed either deeper or shallower in the image, depending on if the actual velocity is either slower or 
faster than the average assumed value. Similarly, when there is a change in the velocity between adjacent 
tissues, a refraction artifact may be produced. Finally, the last type of artifact is formed when the 
ultrasound beam comes across a focal material that attenuates either more or less when compared to the 
surrounding tissue. This phenomenon produces the well-known shadowing effect below the high-absorbing 
tissue and bright band effect below the low-absorbing tissue. 

All of the ultrasound artifacts described above can have different appearances in images based on the 
operator that acquires the image, which is a first main challenge with ultrasound imaging: it is heavily user-
dependent. B-mode images of the same tissue acquired by different users can be visually different, if 
different gain settings and time-gain compensation settings are used. This can be mitigated by using the 
same imaging presets whenever possible.  

An important feature for all types of imaging modalities is image resolution. In ultrasound imaging, image 
resolution is directly related to the transducer frequency, if the same pulse duration is considered. High-
frequency ultrasound waves generate images with a higher axial resolution; however, when considering a 
given distance, low-frequency waves attenuate less than high-frequency waves. High frequency (10-
15MHz) and low-frequency (2-5 MHz) transducers are preferred to scan superficial and deeper structures 
respectively [1].  

B-mode ultrasound images can be distinguished from other imaging techniques due to the presence of 
speckle, a typical granular appearance in US images. Speckle presents both a deterministic and a random 
nature because it is created from the reflected echoes of either coherently or randomly distributed tissue 
scatterers [9]. The signal that is received (therefore also the echo envelope) exhibits statistical properties 
that are determined by important factors, such as the scatterer spatial distribution and density in the 
tissue. 

The scattered waves deriving from different scatterers interfere when multiple small scatterers are present 
in an insonifying ultrasound pulse. The interference pattern is random because the scatterers spacing 
between each other is also random, producing in some locations a constructive pattern (generating a bright 
spot in the image) and in other adjacent locations a destructive pattern (generating a dark spot). The 
resulting pattern then produces this “grainy” speckle effect.  

Speckle contains important information on scatterer statistics and is fundamental for many techniques that 
have been developed for the real-time tracking of structures, where a specific speckle pattern is followed in 
time [10], [11]. Still, when considering the automatic localization and segmentation in non-temporal B-
mode ultrasound images, speckle is typically considered to be an image-degrading artifact [12]. In fact, 
much research effort is precisely aimed at developing effective methods in minimizing the speckle artifact 
while maintaining the true detail of the morphology in the image.  

Image Preprocessing 
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As can be seen from the previous paragraphs, there are various challenges that present a hurdle to be 
overcome when segmenting B-mode ultrasound images. Image pre-processing techniques can mitigate 
some of these issues and should be employed when possible.  

A way to partially overcome user-dependency in ultrasound images is to intensity normalize the image so 
as to exploit the entire dynamic range (i.e. having pixels range from 0 to 255 for 8bit images) and make it so 
that specific tissues of interest always assume the same average pixel intensity value. 

Despeckling is also an important primary pre-processing step in ultrasound image analysis, but the 
application should be considered when attempting to find the most effective despeckle filter. The first 
order statistical filter has shown to provide the best results for despeckle filtering in carotid artery using 
ultrasound images [12]. Singh et al. [13], on the other hand, found that the best performing despeckle filter 
in breast ultrasound images is a wavelet filter. Other very useful techniques are speckle reducing 
anisotropic diffusion methods [14], [15], which are diffusion methods that encourage intra-region 
smoothing in preference to inter-region smoothing. 

3. Automated organ/tissue localization and segmentation in ultrasound images 

The main step in automatic ultrasound B-mode image analysis is the identification of the organ or tissue of 
interest, which at times also coincides with the final segmentation depending on the application. The 
ultrasound image always includes surrounding tissue or organs in the frame; occasionally the specific organ 
or tissue may present a very distinct morphology and characteristics as compared to the surrounding tissue, 
making the automatic detection a simpler phase. However, at times the organ or tissue of interest can 
present similar morphology and characteristics to the other surrounding tissue, but still can be 
automatically detectable with a priori anatomical knowledge (i.e., identification of the common carotid 
artery when the jugular vein is present in in the ultrasound frame) [16]. 

When the final desired segmentation is too fine to be obtained starting from the entire ultrasound frame, a 
two-step segmentation process must be followed. An example application that requires a two-step 
segmentation process is vascular ultrasound imaging and the automatic measurement of the carotid artery 
intima-media thickness. First of all, a coarse localization of the entire tissue/organ must be done, which 
corresponds to roughly locating the carotid artery in the ultrasound frame in the example of vascular 
ultrasound imaging.  This step can also be compared with the manual delineation of a specific region-of-
interest (ROI) within the ultrasound frame, so as to limit the fine segmentation process in only a certain 
portion of the image. This is often the step that is manual in semi-automated segmentation techniques 
[17]–[20]. Once the ROI has been defined either automatically or manually, the second step is the 
employment of a fine segmentation technique to obtain the final segmentation and desired quantitative 
information. Considering the same example of vascular ultrasound imaging, the fine segmentation 
technique must automatically delineate the borders of the lumen-intima and media-adventitia borders so 
as to then calculate the distance between the borders, corresponding to the intima-media thickness. 

Automated techniques for both the localization of organs and tissues and segmentation in ultrasound 
images can be divided into the following macro-areas, which are listed in no particular order of importance: 

- Active Contours 
- Shape priors  
- Superpixel or patch-based and classification  
- Texture and classification  
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- Pixel intensity and/or local statistics based  
- Edge tracking  
- Optimization techniques 
- Transform-based 
- Data-mining 
- Heuristics 
- Neural Networks and Deep Learning 

It is important to note that while these techniques can be considered the mainstream segmentation 
methods that are available in literature, a combination of these methods are often employed in order to 
develop a specific algorithm for the desired application. 

Active Contours 

Active parametric contours can be either parametric, which also go under the name of snakes, or 
geometric, which are based on the level set method. Active contours (or deformable models) rely on the 
definition of internal and external energy and the evolution of an initial contour until the two energy 
functions reach a balance. Geometric deformable models can also be easily extended to 3D images. Both 
parametric and geometric deformable models require some sort of initialization which then evolves in time, 
so this segmentation technique can be considered as a fine-grain segmentation technique.  

Active contours under the form of snakes have been employed widely in the second step of carotid 
ultrasound image fine segmentation and the subsequent calculation of the intima-media thickness. 
Considering this vascular application, an initial deformable model that is straight should be able to adapt to 
the carotid artery wall borders after the snake’s parameters are properly tuned.  Most studies adopt 
Williams and Shah’s traditional formulation of a snake [21]. A 2D snake can be represented by 𝑣(𝑠) =
[𝑥(𝑠), 𝑦(𝑠)], where (𝑥, 𝑦) represents the spatial coordinates of an image and 𝑠 ∈ [0,1] denotes the 
parametric domain. The snake then evolves dynamically by reducing a global energy function: 

𝐸[𝑣(𝑠)] = 𝐸!"#[𝑣(𝑠)] + 𝐸$%#[𝑣(𝑠)]                                                                                                                        (3) 

where: 

• 𝐸!"#[𝑣(𝑠)] constrains the shape of the curve and is known as the “internal energy”. This term is 
typically proportional to the curve derivatives so as to regularize the curvature and elasticity of the 
curve. 

• 𝐸$%#[𝑣(𝑠)] drives the curve towards the image intensity edges and is known as the “external 
energy”. This term is often modeled by image gradients in some form. 

A comprehensive study of carotid segmentation using snakes was done [22]. The same research team 
further improved their snake-based algorithm and made it completely automated [23] and suitable to 
process carotid arteries that present plaques [24].  

A new approach to segmenting carotid ultrasound images with snakes was proposed by Molinari et al. in 
2012 [25], [26]. Their approach consisted of a dual-snake system with two different active contours (for the 
two carotid wall borders, the lumen-intima and media-adventitia interface) evolving together. The energy 
functional that was defined for this snake 𝑣(𝑠) was: 
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𝐸0𝑣(𝑠)1 = ∫ 𝛼|𝑣′(𝑠)|& + 𝛽𝑒0𝑣(𝑠)1'
( + 𝛾9𝑣(𝑠) − 𝑒0𝑣(𝑠)19𝑑𝑠                                                                            (4) 

In this formulation, the first term represents the internal energy, 𝐸!"#0𝑣(𝑠)1 = ∫ 𝛼|𝑣′(𝑠)|&𝑑𝑠'
(  where 𝑣′(𝑠) 

is the first-order derivative of the snake curve 𝑣(𝑠). The second and third terms, instead, represent the 

external energy: 𝐸$%#0𝑣(𝑠)1 = ∫ 𝛽𝑒0𝑣(𝑠)1'
( + 𝛾9𝑣(𝑠) − 𝑒0𝑣(𝑠)19𝑑𝑠. In this formula, the functional 𝑒(𝑥, 𝑦) 

is an edge operator called FOAM (First Order Absolute Moment) [27], [28]. Since the FOAM operator, and 
therefore the first term of the external energy 𝛽𝑒0𝑣(𝑠)1, is equal to zero when the snake is found to be 
distant from edges, a second external energy term was added  𝛾9𝑣(𝑠) − 𝑒0𝑣(𝑠)19. This energy term acts as 
an attraction term that brings the snake vertices closer when they are found to be distant from the actual 
boundaries. Another important and new feature of this dual snake was the introduction of a mutual 
constraint that compels the snakes to keep a specific constrained distance from each other, preventing the 
two active contours from collapsing onto or diverging from one another. Figure 1 is an example of snake 
initialization and final segmentation. 

 

Figure 1. Example of active contour (snakes) initialization and segmentation. (A) Initialization of the 
lumen-intima (LI) and media-adventitia (MA) snakes. (B) Final segmentation after convergence 
(maximum 200 iterations). The MA snake moved by 1.8 mm, the LI snake moved by 1.5 mm. CMUDS = 
Carotid Measurement Using Dual Snakes (automatic algorithm). Figure taken with permission from [25]. 

As can be seen from the dual snake formulation, each snake has a total of three parameters that need to be 
optimized: 𝛼, 𝛽, 𝛾. Parameter optimization represents a downfall for this segmentation technique, since (a) 
they must be fine-tuned in order to obtain an accurate segmentation, and (b) the parameters found to be 
optimal for one image database may have to be tweaked to work with images deriving from another 
database, if gain settings are very different and/or a different amount of noise is present.   

Shape priors 

Anatomical shape prior methods for ultrasound image segmentation are based on the fact that the 
expected anatomical structure is already known, offering a great advantage for segmenting them from the 
US images. These types of techniques can cope very well with suboptimal images, such as those with 
shadows and weak edges. They are also typically built from a large database of training samples to 
determine the final shape prior. On the other hand, however, this can present a major drawback, as the 
shape model can only be as good as the training samples and the chosen shape-space model framework. 
With this in mind, it should not be forgotten that pathology often presents itself as a variation in structure, 
shape, and size of lesions, making it challenging for the model to correctly adapt to the variety of 
pathologies that may be present. These methods are also often computationally expensive.  
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Depending on the application and implementation, this segmentation technique is quite versatile and can 
be used either to locate the tissue/organ of interest or to obtain the fine segmentation in two-step 
segmentation algorithms. 

Ni et al. [29] recently demonstrated an improvement in the performance of active contour models by using 
shapes correlation in uterine fibroid images. The innovation in the proposed method is that while it uses 
shape prior to aid the final segmentation, no additional training samples are needed because the object 
shapes correlation is built as a patient-specific prior knowledge. In the method, active contours are used on 
every image individually to segment the borders. This technique showed consistent improvement 
compared to active contours without shape constraints in both synthetic and clinical images, but it should 
be underlined that this technique is only applicable with sequences of ultrasound images.  

Superpixel or patch-based and classification 

Superpixel or patch-based techniques for segmentation are mainly based on the division of the original 
image into superpixels or patches which are then labeled as belonging to either the object or background, 
using graph cuts. Dividing the image into superpixels can improve the robustness of segmentation methods 
to noise and reduce the complexity of the image from hundreds of thousands of pixels to only a few 
hundred superpixels. 

This technique typically provides only a coarse segmentation which needs refining, so it is often used to 
determine the general area of the tissue/organ of interest in two-step segmentation algorithms.  

An example of using this type of automatic segmentation technique can be found in the work by Wang et 
al. [30]. In this paper, the authors propose an automatic energy-based region growing method to 
automatically segment the lesion region in liver ultrasound images. After speckle reduction using the 
speckle reducing anisotropic diffusion method [14], a superpixels map was generated by using the simple 
linear iterative clustering algorithm [31] in order to segment the original input image into many (200 in this 
study) uniform and small compact regions. As a second step, the authors then implemented an automatic 
seed selection and energy-based region growing algorithm to obtain the final segmentation. The authors 
compared the proposed algorithm with manual segmentations and with the results obtained from four 
other popular segmentation techniques on 40 liver ultrasound images. The proposed algorithm was found 
to produce better segmentation accuracy than the other segmentation techniques. 

Texture and classification 

Texture and classification methods are based on finding the features of the microstructure of the tissue 
being imaged and consequently classifying the pixels or sections of the image into different regions based 
on these features [32]. A benefit of texture techniques is that they are typically based on pixel intensity 
statistical patterns, so they are more independent of the imaging system physics. Many of these texture 
techniques are based on the calculation of Haralick’s co-occurrence matrices which, despite being 
computationally intensive, have performed favorably in various applications and studies [33]–[38]. 

This technique typically provides only a coarse segmentation which needs refining, so it is often used to 
determine the general area of the tissue/organ of interest in two-step segmentation algorithms. 

Liu et al. [39] used local texture information to automatically generate ROIs that contain breast lesions in 
the ultrasound image. Instead of using the technique of modeling and classifying every single pixel that are 
present in earlier studies, such as the one by Boukerroui et al. [40], here the authors divided the image into 
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lattices of the same size and extracted the texture information of each lattice. In their study, the co-
occurrence matrix was calculated and four texture descriptors (entropy, contrast, sum average, and sum 
entropy) were used in 4 directions (0°, 45°, 90° and 135°). Finally, the mean and variance of the intensities 
of each lattice were used as features, so a total of 18 features were extracted. To classify the lattices, the 
authors then employed a support vector machine (SVM) for classification. The ROI is then produced based 
on the outcome of classification and background knowledge-based rules.    

Local statistics and/or pixel intensity 

Pixel intensity and/or local statistics techniques rely on and exploit the specific appearance of the desired 
tissue in the ultrasound image. The object representation can be perceived as a mixture model with 
different intensity distributions, so the neighborhood of a pixel can be explored to determine whether it 
belongs to a certain structure/tissue or the background based on its intensity value, the mean intensity of 
its neighborhood and the neighborhood standard deviation. Segmentation techniques based on 
thresholding or region growing also fall within this category. 

This segmentation method typically provides only a coarse segmentation which needs refining, so it is often 
used to determine the general area of the tissue/organ of interest in two-step segmentation algorithms. On 
the other hand, however, specific region growing techniques are often employed for fine segmentation in 
two-step strategies. 

An example of this type of technique can be found in carotid artery ultrasound imaging, where (a) the 
pixels within the lumen region have an intensity value that is close to zero and a low neighborhood 
intensity standard deviation, (b) pixels of the carotid wall adventitial layer have a high intensity and a low 
neighborhood intensity standard deviation, and (c) the rest of the pixels have a different average intensity 
and a higher neighborhood intensity standard deviation. Molinari et al. [41]–[43] described such an 
approach in their works, where the authors considered a bi-dimensional histogram in order to mark all the 
pixels possibly corresponding to blood in the image. Then, the center of the lumen and the far adventitial 
wall can be easily marked by using simple conditions on the obtained mask. Figure 2 illustrates the results 
using this strategy for the carotid artery localization in ultrasound images.  

Another example of determining the lumen area in carotid artery ultrasound images is presented by Sifakis 
and Golemati [44]. The algorithm the authors proposed combines simple anatomical knowledge and 
statistics. Specifically, a statistics-based procedure using the local mean and variance is used on vertical 
intensity profiles (VIP) of the image to determine a single lumen center point. Then the lumen center points 
are further processed and refined to accurately estimate the location of the carotid artery lumen.  
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Figure 2. Strategy for localization of the carotid artery; tracing of the far wall adventitial layer. (a) Original 
image. (b) Bi-dimensional histogram (2DH). The gray portion of the 2DH highlights the locality in which it 
is supposed to only find lumen pixels. (c) Original image with lumen pixels overlaid in gray. (d) Typical 
processing of one column, showing the indicative points of the lumen and of the far adventitia layer. JV = 
jugular vein, CCA = common carotid artery. Figure taken with permission from [45]. 
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 Table 1. Summary of localization and segmentation techniques. 

Type Simple description Advantages Disadvantages Coarse/fine 
segmentation Examples 

Active 
contours 

Deformable model that 
evolves under the 
action of various forces 

- considers both 
edge strength and 
shape together 

- sensitive to 
parameter selection 
 Fine 

[21]–[23], 
[25], [26], 
[46]–
[54],[55]–
[58] 

Shape priors 

Based on a priori 
knowledge of the 
expected anatomical 
structure 

- robust to noise 
and artifacts 

- computationally 
expensive 
- needs training set 
- sensitive to 
presence of 
pathology 

Coarse  
Fine 

[29], [59]–
[65] 

Superpixel 
and 

classification 

Based on the division of 
the original image into 
superpixels and then 
classification into 
regions 

- improved 
robustness to noise 
- reduction of 
complexity 

- need to decide size 
of superpixel/patch 

Coarse 

[30], [61], 
[66], [67] 

Texture and 
classification 

Based on finding tissue 
microstructure features 
and then classification 
into regions 

- more 
independent of 
physics of imaging 
system 

- computationally 
expensive 

Coarse 

[39], [46], 
[68]–[70] 

Local 
statistics/pixel 

intensity 

Based on exploiting the 
specific appearance of 
the desired object in 
the ultrasound image 

- simple 
implementation 
- not 
computationally 
expensive  

- sensitive to noise 
and artifacts Coarse 

Fine 

[41]–[44], 
[65], [71]–
[73] 

Edge-tracking 

Based on calculating 
the gradient or other 
edge detector of the 
image 

- simple 
implementation 

- sensitive to noise 
and artifacts 
- sensitive to 
orientation of 
boundary to 
transducer 

Fine 

[14], [15], 
[74]–[76] 

Optimization 
techniques 

Based on the search for 
the global optimum or 
best path by minimizing 
or maximizing specific 
functions 

- reduces variability 
in ultrasound 
measurements 
- computational 
cost reduction 

- need to correctly 
formulate function 
and parameters Fine 

[64], [74], 
[75], [77]–
[79] 

Transform-
based/ 

modeling 

Based on modeling 
techniques or 
calculating specific 
mathematical 
transformations.  

- considers shape 
- robust to noise 
and artifacts 
 

- sensitive to 
presence of 
pathology 
- sensitive to the 
chosen model 

Coarse 
Fine 

[61], [80]–
[92], [93] 

Data-mining 

Based on feature 
extraction, feature 
reduction/selection, 
classification, and 
boundary refinement 

- analyzes much 
data and can find 
hidden and useful 
knowledge 

- computationally 
expensive 
- sensitive to feature 
selection method 

Coarse 

[4], [94]–
[96] 

Heuristics Based on heuristics 
when a search must be 

- simple 
implementation 

- sensitive to noise 
and artifacts 

Coarse 
Fine 

[97], [98] 
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Edge-tracking and gradient-based 

Edge tracking and gradient-based techniques for ultrasound segmentation are appropriate if the aim is to 
locate acoustic disruptions. This type of method, however, assumes stable intensity on both sides of the 
boundary and suffers from image acquisition anisotropy, since the edge strength in an ultrasound image 
depends on the relative orientation of the probe to the border. Moreover, two other potential problems of 
these techniques are that deeper objects have weaker edges because of greater signal attenuation, and 
speckle produces an intensity gradient response that is quite strong. To overcome these problems, speckle 
reducing anisotropic diffusion (SRAD) methods are often employed [14], [15].  

Due to these challenges with edge-tracking in ultrasound images, these segmentation techniques are often 
used only once a specific ROI has been determined, so as a second fine segmentation algorithm in two-step 
methods in order to reduce the number of plausible edges that make up the desired object. 

An example of a SRAD method for ultrasound image edge detection is provided by Yu and Acton [14], [15], 
using the Instantaneous Coefficient of Variation (ICOV). The ICOV is based on normalized gradient and 
Laplacian operators. Considering the image intensity at a certain position (𝑖, 𝑗) as 𝐼!,*, the instantaneous 
coefficient of variation 𝑞!,*  is given by: 

𝑞!,* = @
+,!"-.∇0#,%.

"1, !!&-23
"0#,%4

"+

,0#,%5,
!
'-3

"0#,%-
"                                                                                                                                    (1) 

where 𝛻, 𝛻&,	‖ ‖, and | | are the gradient, Laplacian, gradient magnitude, and absolute value, 

respectively. Specifically, D∇𝐼!,*D
& = 0.5 HD𝛻1𝐼!,*D

& + D𝛻5𝐼!,*D
&I where 𝛻1𝐼!,* = J𝐼!,* − 𝐼!1',* , 𝐼!,* − 𝐼!,*1'K, 

𝛻5𝐼!,* = J𝐼!5',* − 𝐼!,* , 𝐼!,*5' − 𝐼!,*K; and ∇&𝐼!,* = 𝐼!5',* + 𝐼!1',* + 𝐼!,*5' + 𝐼!,*1' + 4𝐼!,*.  

From this definition, it can be seen how homogeneous regions of the ultrasound image should present low 
ICOV values, while boundaries will have large ICOV values, appearing as outliers. This operator also allows 
for edge detection in dark and bright regions. Figure 3 shows a few examples of ultrasound images and 
their resulting ICOV edge strength images. 
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Figure 3. Experimental results of the ICOV-based edge detection method using four B-mode US images. 
First column, from top to bottom: ultrasound images of a human throat, a human prostate, a prostate 
phantom with implanted radioactive seeds, and the left ventricle of a murine heart, respectively. Second 
column: Diffused images. Third column: ICOV edge-strength images. Figure taken with permission from 
[15]). 

Optimization techniques 

Optimization techniques are used to search for the best path or the global optimum by either minimizing or 
maximizing a specific cost function or other specific functions. Dynamic programming is a commonly used 
optimization method that was first developed in the early 90’s to lower the variability in ultrasound 
measurements [100] and to help minimize the computational cost of algorithms by not needing to inspect 
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all points of the image. Dynamic programming was first used for automated identification of echo 
interfaces by  Wendelhag et al. [101].  

Based on the application, this type of segmentation algorithm is often used only once a specific ROI has 
been determined, so as a second fine segmentation algorithm in two-step methods.  

Timp and Karssemeijer [78] introduced a 2D dynamic programming method for the segmentation of masses 
in breast ultrasonography. Their technique relied on the manual insertion of one point in the center of the 
mass, after which a circular ROI large enough to contain suspect lesions was automatically generated. In 
their study, the local cost components formed the following cost function: 

𝑐(𝑖, 𝑗) = 𝑤6𝑠(𝑖, 𝑗) + 𝑤7𝑑(𝑖, 𝑗) + 𝑤8𝑔(𝑖, 𝑗)                                                                                                           (2) 

where 𝑠 denotes the edge strength, 𝑑 and g are the deviation from an expected size, and gray level 
respectively. Also, 𝑤6, 𝑤7 , 𝑤8 are the weights for the components. 

Transform-based and modeling 

Other methods that accurately segment objects in ultrasound images rely on modeling techniques or 
mathematical transformations.  

A commonly used transformation approach is the Hough transform [80] which enables an efficient 
detection of specific shapes in an image. This transform is typically employed to detect (a) lines, such as the 
carotid artery borders [81] or muscle fascicles [82] and (b) circles, such as thyroid nodules [83] or the fetal 
cerebellum in 3D ultrasound volumes [102]. Another common transform used in image segmentation is the 
watershed transform. 

Based on the application, these types of segmentation algorithms can be employed both to locate the final 
tissue/organ of interest within the entire ultrasound frame or within a specific ROI as the second step in 
two step segmentation algorithms.  

A hybrid multi-scale model was employed using the Hough transform for thyroid nodule boundary 
detection in the study by Tsantis et al. [84].  Their proposed technique involved three main steps. Speckle 
reduction and edge map estimation was first done using wavelet edge detection.  Then a contour 
representation was obtained from a multiscale structure model using local maxima. Finally, the constrained 
Hough transform was used to discriminate it from its neighboring structures thanks to the a priori 
knowledge of the nodule’s circular shape. Figure 4 shows the summary of this technique and final 
delineated boundary. 
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Figure 4. Example of Hough transform and automatic thyroid segmentation. (A) Ultrasound image with a 
hypoechoic thyroid nodule, (B) contour representation, (C) constrained Hough transform, (D) 
accumulator array, (E) hybrid model outcome, and (F) manually traced boundary. Figure taken with 
permission from [83]. 

As far as modeling approaches go, the image is considered as the combination of the intensity of the 
desired object plus noise. Taking vascular ultrasound imaging as an example, an image region containing a 
portion of the vessel lumen, the wall, and some surrounding tissues could be characterized by the specific 
distributions mimicking the intensity distributions of the three components. An example that has been 
extensively used for US image segmentation is the Markov random field (MRF) model [103]–[105]. The MRF 
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tries to identify regions of similar intensity inhomogeneity, and alternatively approximates the 
maximization of the posterior estimation of the class labels, and estimates the class parameters. Many 
other modeling techniques require the RF lines of the ultrasound image and not the B-mode beamformed 
image, so in this work we will not go into detail about these RF methods. It is important, however, for the 
reader to be aware that these techniques exist and that there are many model distributions such as the 
Weibull, normal and log-normal and gamma  [106], Rayleigh, Nakagami, Rice, inverse Gaussian, and K-
distribution [60], [107].  

Data mining 

These techniques have recently been applied to ultrasound image segmentation thanks to the growing 
interest in data mining and big data. The majority of these methods follow the same general pipeline: (1) 
feature extraction, (2) feature reduction/selection, (3) classification, and finally (4) boundary refinement.  

As the pipeline suggests, the actual results from data mining algorithms typically provide results that need 
refining, so this type of segmentation technique can be used as a way to locate the initial organ/tissue of 
interest or also within a specific ROI to provide an initial segmentation that is then refined. 

Cheng et al. [4] provided a comprehensive review on automated breast cancer detection with ultrasound 
images. In their work, features of breast US images are separated into four groups: descriptor, model-
based, morphologic, and texture features.  First of all, various image features are extracted from the image 
(step 1). Since there are many different features available, there is the risk of having collinear variables that 
could lead to an over-constrained system. So, a mandatory task is to find the optimal set of features with 
relative low dimensions. Collinear and strongly correlated variables are taken out, whereas variables with 
negligible variance are ignored. To do so, either feature extraction (i.e., principal component analysis) or 
feature selection (i.e., linear stepwise feature selection) is employed (step 2). Rosati et al. [94] also recently 
revised the most performing and widely used feature reduction and selection techniques for vascular 
ultrasound images. Once the features have been extracted and selected, a classification process must occur 
to categorize the pixels of the image into specific image components (step 3). Pixels with borderline 
conditions are typically kept in an “uncertainty” class and ignored. Common classifiers are: linear classifiers, 
fuzzy classifiers and neural networks (Bayesian, artificial, back-propagation). Finally, the boundaries 
obtained from the classification process are usually not accurate enough to be considered as the final 
segmentation, so a boundary refinement process is typically done (step 4). 

Heuristics 

Heuristic functions, also called heuristics, are a type of segmentation method that ranks alternatives in 
search algorithms at every branching step based on the available information in order to decide which 
branch to follow.  

These kinds of techniques are employed when the same sort of search must be done along, for example, 
the entire width of the image. In this way, a heuristic search examines each column of the image using the 
same rules to detect the desired tissue. Depending on the application, the heuristic search can be either 
employed along the entire original ultrasound frame or within a specific ROI that contains the object of 
interest. 

An example of a heuristic search used for segmentation can be found in the muscle ultrasound analysis 
(MUSA) algorithm proposed by Caresio et al. [98]. In this automated algorithm, a binary FODG (First Order 
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Derivative Gaussian) mask is first obtained to find all possible aponeuroses candidates. Once potential 
fascicles and very small candidates are removed from the mask, the image is considered column-wise and 
the candidates are considered starting from the deepest. First of all, the deepest candidate and the closest 
candidate upwards are found and a ROI is determined. If the height of the ROI is found to be too small, the 
closest candidate found previously is discarded and the next closest candidate is determined. Then, once 
this condition is fulfilled, the two candidates are segmented as the final deep and superficial aponeurosis 
only if a large enough number of muscle fascicles is found between them. If this condition is not met, then 
the deep aponeuroses candidate is discarded and the process starts again. Figure 5 illustrates this process. 

 

Figure 5. Heuristic strategy for segmentation of muscle aponeuroses.  (a) Binary mask obtained with 
image equalization and Otsu thresholding; (b) cleaned fascicle mask; (c) Final fascicles mask overlaid on 
original image. The fascicles are portrayed in green, whereas the endpoints of the fascicles are in yellow; 
(d) sketch of the heuristic search. The fascicles are shown in green, the endpoints in yellow and three 
example ROIs are drawn in dotted rectangles. Figure taken with permission from [98]. 

Neural Networks and Deep Learning 
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Neural networks (NNs) and deep learning is a technique used for implementing machine learning, the 
science of having computers act without being directly programmed, and is an advancement of data mining 
techniques [108]–[111]. Deep learning, or a deep neural network, allows multiple processing layer 
computational models to learn representations of data with multiple levels of abstraction [109], [112]–
[114]. NNs can learn a hierarchical representation of input data without requiring the design of handcrafted 
features, but do require a large amount of training images in order to correctly learn the network 
parameters.  If there is a higher amount of training data available, it is possible to see a significant 
performance increase [115]. NNs can be either employed using the entire original ultrasound frame or 
within a specific ROI that contains the object of interest, so they can be applied both as a coarse or fine 
segmentation technique. 

Milletari et al. [116] proposed an approach to segment transcranial ultrasound volumes using convolutional 
neural networks (CNNs). Their approach used CNN classification outcomes along with voting by exploiting 
the features obtained by the deepest section of the network, and they studied the impact of the amount of 
training data and the data dimensionality using six different architectures. The proposed method 
outperformed voxel-wise semantic segmentation of CNNs with all of the different parameters settings and 
found a best Dice similarity coefficient (DSC) to be equal to 0.85 with 0% failures. 

 

5. Selected applications 

In this section, we will discuss semi-automated or automated segmentation algorithms of ultrasound 
images in abdomen/kidney, breast, cardiology, thyroid, liver, vascular, musculoskeletal, obstetrics, 
gynecology, and prostate. 

1. Abdomen/Kidney 
Ultrasound imaging is commonly used for kidney analysis, and specifically for renal calculi 
diagnosis, kidney cyst or tumor detection, and measurement of kidney size.  During the ultrasound 
scan, kidneys appear either as a football shaped or a C-shaped structure, depending on whether it 
is scanned in a longitudinal or transverse view, respectively. Normally the kidney presents a more 
hyperechoic region around it, which consists of perinephric fat and Gerota’s fascia [92]. The 
peripheral zone typically appears grainy gray, and consists of the renal cortex and pyramids, 
whereas the kidney’s central area, the renal sinus, appears brighter. Figure 6 shows some sample 
images for abdomen and kidney ultrasound images.  
The automatic segmentation of the entire kidney is necessary for accurate kidney morphology 
measurements, which can help discriminate between chronic and acute kidney failure and is also 
useful in determining hydronephrosis in children [117]. Kidney segmentation is challenging due to 
the fact that the kidney shape and size is very variable, and that there is a weak contrast of the 
actual kidney boundaries, whereas there are often strong edges at the diaphragm and fat layers 
[118]. 
Due to these challenges, kidney segmentation techniques almost always rely on some sort of shape 
prior or model, both considering 2D and 3D kidney images [119]. Much focus is also given to 
texture analysis, which can help overcome some of these challenges as well. Older techniques 
often require some kind of user interaction, by manually placing markers to delineate in some way 
the initial segmenting curve or model [46], [59], whereas more recent research has focused on 
completely automatic techniques on 3D ultrasound images, often integrating ad-hoc or patient-
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specific functions  [57], [58], [117], as personalized medicine is becoming a main focus in medical 
imaging. 
To note are the completely automatic kidney segmentation techniques from 3D US images 
developed by Cerrolaza et al. [117], based on fuzzy appearance models and patient-specific alpha 
shapes that allows to control an ad-hoc stopping function created from the adipose tissue bands 
within the kidney, and by Marsousi et al. [58], who developed a technique that offers a new shape 
model representation that combines anatomical knowledge with prior knowledge of training 
shapes. The first method by Cerrolaza et al. tested the algorithm on a dataset of 39 cases, showing 
an average Dice similarity coefficient equal to 0.86±0.05; the method proposed by Marsousi et al. 
instead showed a Dice similarity coefficient of 0.81±0.04 on a database of 46 ultrasound volumes. 
The second study also included an important inter-operator variability analysis, showing a DSC 
agreement equal to 0.83, and a comparison with other state of the art methodologies (deformable 
model, fast marching method and level set [55] with DSC = 0.57±0.08; shape prior based on manual 
segmentations and level set [56] with DSC = 0.42±0.08).  
 
Going more into detail and segmenting lesions within the kidney or other abdomen organs, tumor 
segmentation has not been a main focus in B-mode ultrasound kidney imaging. In fact, research has 
mainly focused here on contrast-enhanced ultrasound imaging for the characterization of kidney 
lesions [119] and on the direct classification of kidney lesions [120], [121]. Still, Li et al. [122] 
compared the performance of five categories of techniques for kidney tumor segmentation: (1) 
Edge or boundary based, (2) Region based, (3) Texture based, (4) Active contours, and (5) Model 
based [123]–[127]. The algorithms were tested, however, on a very small database consisting of 
forty phantom images and only one in-vivo patient kidney cyst image. In any case, the results 
showed a comparable Dice similarity coefficient greater than 0.94 for all techniques for the 
phantom data. For the in-vivo kidney cyst image, on the other hand, the texture-based 
segmentation showed the best results with DSC = 0.91. Edge-based and Region growing algorithms 
presented good results with DSC = 0.89, whereas the MRF model-based and active contour-based 
algorithms showed acceptable results with a DSC equal to 0.87 and 0.83, respectively. 
 
Another focus in kidney and abdomen ultrasound imaging is in the automatic detection of renal 
calculi, which typically are present in the ultrasound image as hyperechoic structures with acoustic 
shadowing. The proper segmentation and localization of renal calculi is clinically extremely 
important for monitoring and following the kidney stone in extracorporeal shock wave lithotripsy 
[128]. While not an extremely hot topic in ultrasound segmentation research, different types of 
techniques are present in literature, varying from techniques based on the watershed transform 
[93], entropy analysis [129], and seeded region growing based on texture features [130].  
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Figure 6. Abdominal ultrasound sample images containing stones. (A) Kidney stone (B) 
Gallstones. Taken with permission from [93]. 
 
 

2. Breast 
Ultrasound imaging is currently employed to observe and diagnose abnormalities in the breast. 
Studies have shown that ultrasound can identify and distinguish benign and malignant masses 
accurately and minimize the number of unnecessary biopsies [131]–[134]. Breast tumors typically 
appear as a hypoechoic structure in the ultrasound image, with a more or less circular form. The 
presence of various ultrasound artifacts, such as high speckle presence, blurry boundaries, low 
signal-to-noise ratio, low contrast, and intensity inhomogeneity make this segmentation process 
not an easy task. Due to this, the principal segmentation techniques focus on the characterization 
of the lesion’s textured appearance and geometry as compared to normal tissue and typically 
incorporate various higher-level segmentation techniques.   
Figure 7 shows an example breast ultrasound image and preliminary results of a segmentation 
technique that will be discussed in the following paragraphs.  
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Figure 7. Example breast ultrasound image and abnormality extraction. (A) Ultrasound image 
with circled tumor. (B) Illustration of skin, muscle, and shadows in the image. (C) Result after 
applying watershed transform. (D) Extracted suspicious abnormalities. Figure taken with 
permission from [135]. 
 
Much research has also focused not only on the segmentation of the breast tumor but on the 
feature extraction and subsequent classification of the tumor, which is outside of the scope of this 
paper. For more information on this subject, refer to the survey of automated breast cancer 
identification and classification in ultrasound images done by Cheng et al. [4].   
 
Recently, Huang et al. [136] published a survey on breast ultrasound image segmentation, focusing 
on techniques adopted over the last 10 years. In this study, segmentation techniques were divided 
into seven classes, based on: thresholding, clustering, watershed, graphs, active contour models, 
Markov random fields, and neural networks. As the comparison found in Huang et al.’s study, the 
three completely automatic best performing algorithms in terms of True Positives (TP) of the 
segmentation lesion were those based on neural networks [137] with TP = 92.8%, clustering [138] 
with TP = 92.4% and Markov random fields [104] with TP = 90.1%. Many of the algorithms that 
were compared were also only semi-automatic, requiring some user interaction to obtain the final 
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segmentation. For more details and comparison, the readers are redirected to the complete study 
[136].   
 
A new point of research is the analysis of B-mode ultrasound volumes coming from automated 
whole breast US (ABUS) scans. Automatically imaging the entire breast volume produces 
ultrasound images that are not as operator dependent and have a better reproducibility for follow-
up studies [135]. Having an entire volume of images to analyze makes the automated processing of 
the images an even more critical aspect, since it can accelerate the review process and reduce 
oversight errors [139]–[143].  
The majority of segmentation techniques for ABUS lesions are based on the extraction of image 
features, such as topological texture features [70] or voxel-specific morphology, intensity and 
texture features [135], [144], and then the subsequent classification of voxels as breast mass or 
normal tissue (Figure 7). The fact of combining numerous image features to classify voxels often 
overcomes artifact issues that are present in ABUS images, but at the same time increases the 
computational complexity of the algorithms which are not real-time and could therefore not be as 
practical for clinical use.  Another disadvantage of these types of techniques is that they generally 
focus on the segmentation of the most common presentation of invasive carcinomas (i.e., with 
hypoechoic properties). Therefore, tumors that present little mass, such as lobular carcinoma, or 
tumors that are hyper/iso-echoic, such as mucinous or colloid carcinomas are overlooked and not 
segmented correctly with the algorithms. 
A method worthy to note here is a technique presented by Ye et al. [70] which along with 
extracting texture features, also included 3D region-based features and multi-view information 
through the application of a 3D geodesic active contour framework. This implementation includes 
more anatomical and multi-view information when compared to other techniques found in 
literature, and provided good final results, which can be seen in Table 2 along with validation 
results of other ABUS segmentation techniques. 
 
A performance measure that is often used with ABUS segmentation techniques is the sensitivity of 
tumor detection obtained guaranteeing a certain number of false positives (FP). As Table 2 shows, 
the algorithm presented by Ye et al. [70] based on topological texture features and a geodesic 
active contour presented the best results of sensitivity with the lowest rate of FPs, 70% at 1.6 FPs 
per volume. The technique by Lo et al. [135] was able to obtain a sensitivity of 100% but had a 
higher FP per volume rate, going up to 9.44.  
 

Table 2. Validation of ABUS segmentation methods 

Reference Year Segmentation method 
Database 

size 

Performance 

Measure 
(Metric) 

Value 

Tan et al. 
 [144] [95] 

2013 

Voxel feature 
extraction, likelihood 

map local maxima 
extraction, region 
segmentation and 

classification 

169 volumes 
(malignant) 

 
154 volumes 

(benign) 

Sensitivity 
(FROC analysis) 

70% 
(FPs/volume=2) 

64% 
(FPs/volume=1) 
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Lo et al.  
[135] 

2014 

Topographic 
Watershed and image 
feature false positive 

reduction 

65 volumes 
(malignant) 

 
68 volume 
(benign) 

Sensitivity 
(False positive (FP) 

reduction) 

100%  
(FPs/pass=9.44) 

90% 
(FPs/pass=5.42) 

80% 
(FPs/pass=3.33) 

Figure of Merit 0.46 

Ye et al.  
[70] 

2014 

Topological texture 
features (Minkowski) 
and geodesic active 

contour 

51 volumes 

Sensitivity 
(False positive (FP) 

reduction) 

95% 
(FPs/volume=4.3) 

90% 
(FPs/volume=3.8) 

70% 
(FPs/volume=1.6) 

Detection rate 95% 

 
 
Along with actual breast tumor segmentation in ABUS images, a few research groups have also 
focused on the automatic chest wall segmentation in 3D breast ultrasound scans, so as to be able 
to automatically remove identified cancer candidates beyond the chest wall, and to permit an 
easier intra- and inter-modal image registration process [86].  
 

3. Cardiology 
Cardiac imaging mainly involves segmentation and registration methods which are widely used to 
evaluate heart functionality [3], [145]. The segmentation of the heart within the ultrasound image 
provides structural information and registration methods typically evaluate the local functional 
analysis which aids in the treatment and diagnosis of patients. Recent research has focused largely 
on 3D cardiac modeling techniques and segmentation [145]–[147].  
Cardiac segmentation involves the delineation of the epicardium and endocardium of ventricles 
and atria. The epicardial segmentation is typically more challenging due to poor contrast and the 
similarity of the tissue of interest and its surroundings. The endocardial border instead presents a 
good contrast between blood and the myocardium. However, the presence of the papillary muscles 
creates an extra challenge in automatic cardiac segmentation, since they are considered as part of 
the blood pool and should be avoided in the segmentation process [3].  
The majority of segmentation techniques have focused on the segmentation of the left ventricle, 
but the right ventricle’s role in cardiovascular diseases has been gaining more recognition over the 
last 10 years, making the segmentation of the right ventricle of more and more clinical interest 
[148], [149]. Figure 8 shows an illustration and example ultrasound image of the apical long-axis 
view of the heart. 
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Figure 8. Two-chamber apical long-axis view of the human heart. Figure taken with permission 
from [60].  
 
Noble and Boukerroui [3] presented a comprehensive overview of cardiac ultrasound imaging 
techniques until 2006  [39], [141]–[147]. Recently, Tavakoli and Amini [145] also presented a review 
on various segmentation and registration techniques applied to  cardiac images.  
The focus here in these next few paragraphs will be on recent advances and specifically 3D or 
temporal segmentation techniques. 
 
The majority of 3D segmentation strategies are either based on pixel value regions or deformable 
models and shape priors, with a high tendency towards the employment of active contours. There 
are also a few biophysical/mechanical models that can be used as constraints for segmentation and 
motion estimation of cardiac ultrasound images, specifically isotropic cardiac mechanic models 
which consider the heart as a homogeneous medium and the incompressibility of the myocardium 
during systole and diastole [145], [157]. The segmentation techniques based on active contours or 
some sort of motion model often also incorporate some sort of shape constraint that must be 
identified by manual segmentations or assuming a specific geometry. This introduces a learning 
phase in the segmentation process that could require adjustments when images from other 
datasets or of different pathologies are analyzed. Moreover, as the complexity of the algorithm 
increases, the computational cost of the technique also increases, often times providing perhaps 
more accurate results but requiring much longer processing times. 
 To note here are two different methods, both including some advantageous points when 
compared to other methods found in literature. First of all, Barbosa et al. [49] developed a novel 3D 
level set method depending on the global intensity within and outside the object borders. 
Importantly, this method was also based on an additional local regional intensity term and on 
limiting the topology and shape of the interface. This technique had a very low computational cost, 
making it applicable for analysis of 4D ultrasound data as well (i.e., 3D volumes over time), but in 
this study the algorithm was tested on a very limited dataset. Secondly, Hansson et al. [60] 
proposed a new Bayesian formulation that incorporated priors for preferred shapes and position, 
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including also spatial and temporal smoothness. A novel addition in this group’s work is the 
application of a censored gamma mixture model that is robust to artifacts. The method does not 
produce just a final segmentation but highlights uncertain areas and suggests possible 
segmentations for the operator. The authors tested the algorithm on a larger dataset (28 
ultrasound videos) but required some user-interaction and was also computationally expensive 
(total running time = 2.5h).  
 

4. Thyroid 
The thyroid gland is a butterfly-shaped organ composed of two cone-like lobes. This gland controls 
the secretion of the thyroid hormone, whose intensity fluctuation causes pathological changes in 
the thyroid (too large or too small). For this reason, physicians often diagnose abnormal thyroid 
gland symptoms by its volume [66]. The presence of echo perturbations and speckle throughout 
the image make the segmentation of the thyroid more challenging, but in a longitudinal US image, 
the thyroid is also always contained between a bright strip and a dark area, which facilitates the 
coarse localization of the organ. 
Similarly, ultrasound imaging is also employed for the diagnosis of thyroid nodules. Thyroid nodules 
are generally characterized as hypo-, iso-, or hyperechoic. Hypoechogenicity is generally associated 
with thyroid malignancy [158], however most thyroid nodules are heterogeneous with various 
internal components, which makes the automatic segmentation of nodules not an easy task.  
Figure 4 shows an example of a thyroid ultrasound image. 
 
Thyroid volume 
The thyroid volume can be estimated by taking 2D ultrasound images of each lobe and multiplying 
its dimensions lengthmax, widthmax and depthmax and a correction factor, f (typically 0.5 in clinical 
routine) or by using 3D ultrasound images for a direct volume measurement. As far as thyroid 
volume estimation segmentation algorithms are concerned, techniques found in literature a 
typically deformable model-based or pixel classification/machine learning-based [66].  
A few papers comparing 2D ultrasound thyroid segmentation methods have been published, 
showing that an improved normalized graph cut [159] or a localized region-based active contour 
algorithm [160] provided satisfying results when compared to other basic segmentation 
techniques. However, little information about the testing procedure for both studies is provided.  
 
Regarding 3D thyroid segmentation techniques, Wunderling et al. [159] recently published a 
comparison between three basic segmentation algorithms on healthy patients: active contours 
(level set), graph cuts and feature classification. All three techniques required a various amount of 
user interaction for initialization, however, and the volume was segmented by independently 
segmenting each 2D slice. A main point of this study was how future work will focus on combining 
the segmentation methods to improve accuracy.  
 
Thyroid nodule detection 
Recent studies have shown that the 3D ultrasound analysis of thyroid nodules has a higher 
sensitivity than 2D in predicting malignancy [160], [161], but 3D segmentation techniques for 
thyroid ultrasound images have up to now focused mainly on thyroid volume and not nodules. 
Here we will therefore analyze 2D segmentation techniques, whose validation results can be seen 
in Table 3. 
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The variability of thyroid nodule appearance in ultrasound images makes automatic segmentation 
quite difficult, and the US images are often affected by intensity inhomogeneity and weak edge 
borders of the nodules, often creating the problem of boundary leakage into adjoining tissue. The 
majority of techniques for thyroid nodule segmentation are based on level sets or feature selection 
and classification.  
Active contour models typically show a low evolution efficiency and by themselves are not capable 
of accurately segmenting the weak edges of thyroid nodules, so they have often been used in 
combination with some other technique either for an accurate rough initialization or to control the 
evolution of the model, such as fuzzy C-means [162], neutrosophic L-means [163], adaptive 
diffusion flow [164], or joint echogenicity- texture [165]. The majority of these techniques, 
however, tend to deal with thyroid nodules that all present the same general appearance in 
ultrasound images, typically hypoechoic nodules.  
A method that distinguishes itself in this area is the one proposed by Savelonas et al. [165], based 
on active contours guided by both texture and echogenicity.  This technique integrates statistical 
texture information encoded by feature distributions along with regional image intensity and was 
also completely automatic thanks to an automatic ROI estimation [97]. In this study, the authors 
confronted both lesions that were hypoechoic as well as those that were isoechoic, showing a good 
performance for both. 
 
As can be seen by Table 3, it can be difficult to make a direct comparison between thyroid nodule 
segmentation techniques since different performance metrics are used, while still portraying in 
some way the accuracy of the segmentation. The accuracy can be calculated by measured the 
mean absolute distance between the manual and automatic border, by calculating the overlap 
between the area of the two segmentations, or by simply calculating the percentage of nodules 
segmented and classified correctly.  
 

Table 3. Validation of ultrasound thyroid nodule segmentation methods 

Reference Year 
Segmentation 

method 
Database 

size 
Performance 

Measure Value 

Tsantis et al. 
[83]  

2006 
Wavelet transform 

and Hough 
transform 

40 
Accuracy  

(percentage mean 
absolute distance) 

90% (operator 1) 
89% (operator 2) 

Savelonas et 
al. [165] 2009 

Joint echogenicity-
texture (JET) active 

contour 
74 Accuracy 

(Overlap) 
91 ± 4 % 

Legakis et al. 
[51] 

2011 
Texture and shape, 

active contours 
142 Accuracy 

(Overlap) 
92 ± 4% 

Bibicu et al. 
[95] 2012 

Feature selection 
and pixel 

classification 
40 Accuracy 

(% correctly classified) 
83% (whole image) 

91% (ROI) 
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Chang et al. 
[164] 2016 

Adaptive diffusion 
flow for active 

contours 
118 Accuracy 

(% correctly classified) 84.7% 

Xin and Wen-
Jie [162] 2016 

Kernel fuzzy c-
means and distance 
regularized level set 

evolution (DRLSE) 

4 Dice similiarity 
coefficient 96.6 ± 1.1% 

Koundal et al. 
[163] 

2017 
Neutrosophic-based 
distance regularized 

level set (NDRLS) 
138 

Dice similiarity 
coefficient 

93.8 ± 3.14% 

 

 
5. Liver 

In the ultrasound scan, livers typically appear as a structure with average echogenicity and a 
homogeneous texture, and ultrasound imaging is commonly used in diagnosing focal liver lesions 
(FLLs). A typical cyst in the liver appears as a thin walled anechoic lesion with posterior acoustic 
enhancement; a typical hemangioma (HEM), the most common primary benign FLL, instead 
appears with a well circumscribed uniformly hyperechoic area; finally a typical metastasis (MET) 
presents a “target” or “bull’s-eye” appearance, with a hyperechoic rim and hypoechoic center 
(Figure 9) [166].   
Research has also focused on distinguishing normal liver from fatty liver disease, but the majority of 
these techniques are based on texture analysis of the entire ultrasound image, precluding a 
segmentation phase, so these methods will not be analyzed here [167].  
The variability of lesions and their respective appearance makes automatic segmentation a 
challenging task. The majority of segmentation methods present in literature are regional-based, 
employing techniques that either extract regional features to determine where lesions are present  
[168], use region growing methods [30], adaptive thresholding [169], or regional difference filters 
[170]. Many of these segmentation methods require some sort of initialization or decision-making 
process for parameters, such as the seed points for region growing or the optimal threshold for 
adaptive thresholding, which are often chosen through optimization algorithms such as the sparse 
reconstruction algorithm or particle swarm optimization. 
Similarly to segmentation techniques for thyroid nodules, many methods here focus on the typical 
liver cyst appearance in ultrasound images, often overseeing the automatic segmentation of 
hemangioma or metastasis. Jain and Kumar [170] in their study focused on the automatic 
segmentation of both typical liver cyst as well as hemangioma, using region-difference filters that 
evaluate the maximum difference of the average of two regions of the window around the middle 
pixel. The authors analyzed 56 images and also compared their results with traditional maximum a 
posteriori-Markov random field, Chan-Vese active contours, and active contour region-scalable 
fitting energy methods and found the highest accuracy and the fastest implementation when 
compared to these other methods. The downside of this algorithm is the fact that the parameters 
necessary for a correct implementation of the method were determined empirically. 
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Figure 9. Conventional gray scale B-mode liver US images. (A) Normal liver. (B) Typical cyst. (C) 
Typical hemangioma. (D) Typical metastasis. Figure taken with permission from [166]. 
 
 

6. Vascular ultrasound imaging 
Ultrasound imaging is extensively used in vascular studies and can be divided into three main 
categories: (1) Plaque and 3D carotid artery imaging, (2) intravascular ultrasound (IVUS) imaging 
and (3) common carotid artery (CCA) imaging and intima-media thickness (IMT) measurement. 
Figure 10 shows some example images and segmentation for each of these three categories. 
Artery geometry is well defined and repeatable, having a circular transverse section, a three-
layered wall and lumen filled with blood. In ultrasound imaging, blood is anechoic so the lumen of 
the artery is typically black in the image, whereas the first two layers (going outwards from the 
lumen) of the artery wall, the intima and media layers, are typically merged together due to image 
resolution to form the intima-media complex. Based on the projection of the acquired ultrasound 
image, the artery can appear either as a circular black region with the surrounding walls or as a 
black “rectangle” surrounded by the proximal and distal wall regions, in transverse and longitudinal 
projections, respectively. 
 

 
Figure 10. Examples of segmentation in vascular ultrasound imaging. (A) Example transverse view 
of the CCA with overlaid manual segmentations of the MAB (yellow) and LIB (red) from 3DUS 
images. Taken and modified with permission from [171]. (B) Example intravascular ultrasound 
image with segmentation. Red contours: borders detected with algorithm. Dashed curves: 
manually traced boundaries. Figure taken with permission from [74]. (C) Common carotid artery 
wall layers segmentation by dual snake algorithm. CMUDS: Carotid Measurement Using Dual 
Snakes; LI: lumen-intima; MA: media-adventitia. Figure taken with permission from [25]. 
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Plaque and 3D 
Carotid plaque segmentation was first proposed on 2D longitudinal images [24], [172]–[174]. 
Subsequently, using the automatic segmentations, plaque characterization using the pixel 
intensities has been studied to obtain a sort of “virtual histology” analysis of the plaque [175]–
[178], and atherosclerotic risk stratification can be done using, for example, texture-based features 
[179].  
Recently, research in this area has instead focused more on 3D ultrasound imaging of the plaque. In 
fact, 3D carotid artery ultrasound imaging helps the visualization, measurement (volume) and a 
more comprehensive characterization of the plaque [180]. Moreover, it also provides the ability to 
monitor both plaque progression and regression in addition to identifying vulnerable plaques 
[181]–[183]. With these 3D ultrasound scans, the slices making up the volume typically present the 
artery in a transverse position. The variability of plaque composition, including calcium-rich plaques 
which appear hyperechoic in the US image or more lipid-rich plaques which appear hypoechoic, 
and the very high variability in shape and size of plaques make the automatic segmentation a very 
challenging task. 
In fact, the majority of algorithms found in literature are based on active contours but require some 
user-interaction to initialize the segmentation by placing anchor points, either by manually 
segmenting the carotid artery walls or an existing plaque in 3D ultrasound images [158]. Active 
contour or level set models are the technique of choice in this application due to the fact that they 
can incorporate various features of the image and can typically adapt well to the different shapes 
of plaque that may be present. 
The active contour models that are used for fine segmentation typically incorporate both image 
intensity but also other features of the image, such as structural information [184], local region-
based image information [171], or a smoothness energy [53] in order to try to reduce leaking at 
low-contrast boundaries and provide an accurate segmentation. 
A technique worthy of being mentioned here is the one presented by Ukwatta et al. [171] in 2013. 
Their study is the first direct 3D algorithm for segmenting both the media-adventitia boundary 
(MAB) and the lumen-intima boundary (LIB) presented in literature. Moreover, their algorithm 
implemented a number of interesting features to provide an accurate segmentation, including 
integrating both regional and boundary-based image statistics, expert initializations, a smoothness 
term, and an anatomically motivated boundary separation which constrains the LIB segmentation 
based on the MAB segmentation which is obtained first. The technique heavily relies on the manual 
placement of anchor points, but still reduces the complexity of the manual interaction and provides 
a noticeable time reduction in elaboration, reporting a decrease from average 8.3 minutes for 
manual segmentation to 1.72 minutes for semi-automatic segmentation.  
 
Intravascular ultrasound imaging (IVUS) 
Intravascular ultrasound imaging is the most extensively used imaging modality for coronary 
plaques because (1) it supports real-time cross-sectional arterial wall grayscale images, (2) the 
images combined with processing of RF reflected signals are used for the identification of  plaques, 
and (3) these IVUS images can help in making accurate therapeutic decision [185]. Virtual histology 
of IVUS images has also been extensively researched, but is outside this paper’s scope.  
IVUS images present high scattering from red blood cells inside the lumen, making the detection of 
the luminal border challenging, whereas the hyperechogenic border of the adventitia layer 
provides an easier interface to segment. 
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IVUS images suffer from numerous acquisition artifacts which make segmentation more 
challenging. Specifically, the five main artifacts that are present in these images are: guide wire 
presence, ring-down, non-uniform rotational distortion, reverberation and discontinuity at 0° in the 
Cartesian domain [185]. The presence of calcified plaques and motion of both the catheter and 
heart also add challenges to the segmentation process.  
 
Katouzian et al. [185] provided a comprehensive up to date review on segmentation methods in 
intravascular ultrasound images in 2012. Here the segmentation techniques were divided into: (1) 
edge tracking and gradient-based, (2) active contours-based, (3) statistical and probabilistic-based, 
and (4) multiscale expansion-based. Research over the last few years has shown the development 
of other techniques that are typically statistical and probabilistic-based, focusing on the use of the 
fast-marching method (FMM) [75], [186].  
Edge-tracking and gradient-based techniques are typically semi-automatic and require a precise 
initialization. They also typically rely on an energy minimization (optimization) framework in order 
to achieve an accurate segmentation [187], [188]. Classic active contours typically do not perform 
well on IVUS images due to the numerous challenges listed previously, so authors employing these 
methods almost always modify the energy terms or incorporate some kind of pre-processing 
technique prior to the use of a deformable model [189]. Statistical and probabilistic-based 
techniques typically assume that grayscale values corresponding to lumen and plaque regions are 
generated from two different reflector distributions and can be modeled parametrically. This 
assumption, however, may not be applicable in all situations [190], [191]. Multiscale expansion-
based techniques take advantage of spectral analysis or spatial-frequency-localized expansions, 
showing however some limitations due to the attenuation of signals in regions far from the 
transducer [192]. 
 
Common carotid artery (CCA) and intima-media thickness (IMT) measurement 
Common carotid artery ultrasound imaging is extensively used for the calculation of the intima-
media thickness (IMT), a widely-used indicator of cerebrovascular and cardiovascular risk [193]. 
Segmentation algorithms that focus on the IMT measurement almost always focus on the 
automatic identification of two important artery wall boundaries on the far wall in longitudinal 
ultrasound images: the lumen-intima (LI) border and the media-adventitia (MA) border.  
Longitudinal US images of the carotid artery are typically quite well-defined and repeatable, with 
the general structure of the hypoechoic lumen and the hyperechoic adventitia far wall. However, 
different carotid geometry, the possible presence of the jugular vein, and the possible presence of 
backscattering in the lumen make automatic segmentation not an easy task.  
 
Molinari et al. [7] presented a comprehensive review on IMT measurement and carotid wall 
segmentation strategies  in 2010. Loizou [194] also provided a review of on segmentation methods 
of carotid artery image and videos in 2014.  
The most common techniques used for the coarse localization of the carotid artery within the 
ultrasound image frame take advantage of the fact that the lumen is echogenic or that the 
adventitial wall is hyperechoic, often implementing techniques based on local statistics [41], [44].   
On the other hand, fine segmentation techniques used to segment the actual lumen-intima (LI) and 
media-adventitia (MA) borders vary greatly, ranging from methods based on edge tracking or 
gradient-based [28], optimization and dynamic programming [195]–[197] active contours [22], 
transform-based [81], [198] and more recently also neural networks [99]. Each of these techniques 
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present their own pros and cons. Specifically, edge tracking and gradient-based techniques are 
typically computationally inexpensive and can be easily implemented in real time. However, carotid 
geometry variability and vessels that are not horizontal in the image present a challenge and these 
techniques rely greatly also on the operator’s ability to select a correct focus position, which 
drastically changes the image grayscale representation. Dynamic programming and active contour 
methods are both iterative and therefore are a bit more computationally expensive, but have the 
upside of being able to also include morphological features of the artery, by giving more weight or 
setting parameters to control the final “shape” of the border. Because of the necessity of fine-
tuning, however, carotid artery images with a variable amount of lumen noise or with a very 
different geometry can present segmentation errors. Active contours also have the issue of being 
very dependent on the initialization, which dynamic programming techniques do not present. 
Transform-based techniques are intrinsically less sensitive to the presence of noise, but rely heavily 
on the fact that the artery must be present in the image as horizontal and straight. Methods based 
on machine learning and neural networks present the typical advantages and disadvantages of 
these types of systems, being able to learn in time and incorporate more complex features of the 
image, but being heavily dependent on the images used to train the neural network and perhaps 
not being able to adapt very well to images coming from a different database or with various levels 
of noise and artery geometry. 
 
Another point to mention is that according to the Mannheim consensus, the carotid IMT should be 
measured within a region free of plaque with a clearly identified double-line pattern along a 10 mm 
segment [199]. Most automated techniques calculate one specific value for the IMT found on the 
entire image. Regarding this point, a method that can be noted is the one developed by Ikeda et al. 
[200], which detects the carotid bulb edge, a reference marker for measurements of the carotid 
IMT. The method then automatically calculates segment-based IMT measurements, using 10 mm 
segments proximal to the bulb edge. The methodology used an integrated approach which 
combines carotid geometry and pixel-classification paradigms.  
Table 4 shows some validation results of IMT segmentation methods found in literature. It should 
be noted that while almost all IMT algorithms show performance results in terms of IMT error 
(absolute or not), a direct comparison can still be difficult because of the numerous methods 
available to calculate the distance between two boundaries. Some metrics include the mean 
absolute distance which is extensively used but is based on the vertical distance between the two 
borders, which can present an error when the carotid artery is not horizontal in the ultrasound 
image. Another metric that has been used extensively is the Polyline distance, which calculates the 
distance between the points on one border and segments of the other, making it less sensitive to 
carotid geometry and position in the ultrasound frame. 
 

Table 4. Validation of ultrasound vascular intima-media thickness (IMT) segmentation methods 

Reference Year 
Segmentation 

method 
Database 

size 

Performance 

Measure 
(distance metric) 

Value 



31 
 

Molinari et al. 
[201] 2010 

Feature extraction, 
line fitting and 
classification 

665 IMT error  
(Polyline distance metric) 

-0.050 ± 0.285 
mm 

Molinari et al. 
[16] 2011 Edge flow and 

heuristics 300 IMT error 
(Polyline distance metric) 

0.043 ± 0.097 mm 

Loizou et al. 
[23] 2015 Active contours 

976  
(no CVD) 

Wilcoxon rank sum 
(Mean absolute distance) 

Left CCA: p=0.72 
Right CCA: p=0.67 

125 (CVD) Wilcoxon rank sum 
(Mean absolute distance) 

Left CCA: p=0.92 
Right CCA: p=0.64 

Xiao et al. [91] 2015 
Markov random 

field models 80 IMT absolute error 
(Mean absolute distance) 

0.024 ± 0.023 mm 

Menchòn-Lara 
et al. [96] 

2016 
Machine learning 

and artificial neural 
networks 

67 IMT error 
(Mean absolute distance) 

0.058 ± 0.034 mm 

Zahnd et al. 
[79] 

2017 
Dynamic 

programming in 3D 
space 

60 – 
training 
184 – 

validation 

IMT error 
(Median radial distance) 

0.066 ± 0.090 mm 

Ikeda et al. 
[65] 

2017 
Carotid geometry 

and pixel 
classification 

649 IMT error 
(Polyline distance metric) 

0.011 ± 0.003 mm 

 

 
7. Musculoskeletal 

Musculoskeletal ultrasound analysis can be divided into two macro sectors: automatic muscle 
thickness calculation and fascicle segmentation and tracking. In the ultrasound image, the muscle is 
typically segmented by identifying the superficial and deep aponeuroses, which are both typically 
present in the ultrasound image as hyperechoic bands that go across the image width in a 
traditional longitudinal scanning. Similarly, muscle fascicles in the ultrasound image are present in 
between two aponeuroses and are displayed as hyperechoic bands which are often interrupted. 
The muscle fascicles present a certain angle with respect to the deep aponeuros, which is called the 
pennation angle. Figure 5 shows an example of a musculoskeletal ultrasound image. 
 
As far as muscle thickness calculation goes, this measurement has been extensively used in  
physiological and clinical studies to investigate the adaptations in muscle size occurring with 
training, disuse atrophy, aging, and pathological conditions [202]–[208].  
The presence of speckle and pathology conditions, such as sarcopenia or loss of muscle mass due to 
ageing, can affect the quality of the images and present a challenge in automatic muscle thickness 
measurement. 
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Most works present in literature are focused on the automatic segmentation of a specific muscle, 
and the techniques are typically based on finding the upper and lower aponeurosis through the 
Hough transform or other similar line detection algorithms [88], [89] in longitudinal muscle US 
images. These techniques rely on the fact that the aponeurosis are hyperechoic and run across the 
entire image width, and segmentation results can be improved by enhancing these hyperechoic 
regions [88], but could present an issue when considering pathology cases.  
An important work found in literature regarding muscle thickness measurement is the one 
proposed by Caresio et al. [98], a fully automated MUSA algorithm (Muscle UltraSound Algorithm) 
that considered four different muscles. Their approach first located the aponeuroses candidates 
through the application of a Sobel gradient, a vertical first-order derivative Gaussian filter. A 
heuristic process was then applied to select the final aponeuroses locations. The MUSA algorithm 
was tested on rectus femoris, vastus lateralis, tibialis anterior, and medial gastrocnemius muscle 
ultrasound images and compared with the manual measurements obtained by three operators. 
 
Table 5 summarizes the validation results of a few muscle thickness segmentation techniques. As 
can be seen, the intraclass correlation coefficient is often used to validate the performance of the 
segmentation algorithm in muscle ultrasonography. Using this metric, it can be noted that the 
method developed by Caresio et al. [98] not only showed the highest ICC among the other 
algorithms, but was also more versatile, providing very promising results on four muscles whereas 
all the other techniques focused on measuring the muscle thickness for only one muscle.  
 

Table 5. Validation of ultrasound muscle thickness segmentation methods. 

Reference Year 
Segmentation 

method 
Database size 
(Distance metric) 

Performance 

Measure Value 

Han et al. [88] 2013 
Gabor filtering and 

Revoting Hough 
Transform 

300  
(3 subjects,  
1 muscle) 

 
(Mean Euclidean 

distance) 

Intraclass 
correlation 
coefficient 

0.975 

Standard Error of 
measurements 

0.27 
 

Minimal 
detectable 

changes 
0.75 

Han et al. [88] 2013 

Multiscale vessel 
enhancement and 

Revoting Hough 
Transform 

300  
(3 subjects,  
1 muscle) 

 
(Mean Euclidean 

distance) 

Intraclass 
correlation 
coefficient 

0.966 

Standard Error of 
measurements 0.31 

Minimal 
detectable 

changes 
0.86 

Li et al. [89] 2013 Radon transform 
6 sequences 
(250 frames/ 

Correlation 
coefficient 

0.95 ± 0.01 
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and optical flow sequence, 1 
muscle) 

 
(Vertical distance 
between points) 

Difference -0.05 ± 0.22 mm 

Caresio et al. 
[98]  

2017 
First order 

derivative filtering 
and Heuristics 

200 
(50 subjects, 
4 muscles) 

 
(Centerline distance) 

Intraclass 
correlation 

coefficient (2,1) 

0.99 
for all 4 muscles 

 

 
As far as fascicle recognition goes in B-mode ultrasound images, research has mainly focused on 
either fascicle length or fascicle orientation tracking in ultrasound image sequences [209]. The 
majority of these techniques, however, either (1) require a manual initialization for the successive 
tracking or the manual placement of a region of interest, or (2) do not present a real segmentation 
issue but the extraction of the main orientation of objects in the image through radon transforms 
or wavelet analysis [82], [209]–[214]. 
 
A few other musculoskeletal applications include: spinous process and its acoustic shadow 
segmentation in vertebral ultrasound images [71], knee meniscus segmentation [215], peripheral 
nerve segmentation [72], [90], [216], and supraspinatus tendon segmentation [217]. 
 

8. Obstetrics 
Ultrasound imaging has been used since its establishment in the early 1980s for monitoring fetal 
growth during pregnancy [218]. Fetal age, fetal growth, fetal aneuploidy or down syndrome [219] 
can be determined or possibly diagnosed based on biometric measurements taken from the 
ultrasound image, such as the head circumference and nuchal translucency. Figure 11 shows some 
example ultrasound images of the fetal head, femur, abdomen and whole fetus. 
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Figure 11. Ultrasound images of the (A) fetal head, (B) fetal femur, (C) fetal abdomen, and (D) the 
whole fetus. Figure taken with permission from [220]. 
 
The majority of research in the automatic localization of fetal structures has focused on the head 
and femur detection.  
In the ultrasound image, the fetal head presents clear boundaries and texture similarities in 
individuals, making it a common target to automatic segmentation. However, due to ultrasound 
contrast physics, the left and right borders of the skull are often not clearly portrayed. The fetal 
femur can tend to lack internal texture but usually presents strong edges in most of the contour 
except for in the extremities [220].  
Segmentation methods for the fetal head and femur detection vary greatly, including the Hough 
transform, morphologic operators, and active contours, but recent research has focused a lot on 
the calculation of features and subsequent classification, including Haar-like features [61], texton 
cues [221],  and shape information of pixel groups and local statistics [67]. These methods have the 
advantage of being able to incorporate many different types of image features and prior 
knowledge, making the final segmentation more robust.  
An interesting work in literature in this research field is the ultrasound grand challenge that was 
organized during the International Symposium on Biomedical Imaging (ISBI) 2012. The organizers of 
the challenge then summarized the findings from this challenge in a later publication, evaluating 
and comparing the segmentation methods presented by the teams that participated in the 
challenge [220]. For head segmentation, the techniques were based on a signal processing and 
optimization framework [222], graph-based approaches [223], [224], a boundary fragment model 
[225], and shape-based recognition and edge detection with multiple thresholds [76]. Two teams 
presented their works in the femur sub-challenge, based on an adapted shape-based recognition 
and edge detection with multiple thresholds [76], and a morphology-based approach [226].  
A general finding from the grand challenge was that signal processing, machine learning and graph-
based methods achieved good results as they used the entire image. Contrarily, intensity and 
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gradient-based methods showed a lower performance, due to the fact that they focused  more on 
the appearance of the objects of interest, which indicate high variability [220].  
 
A few other applications include nuchal translucency detection [227]–[231], cerebral segmentation 
on ultrasound volumes [102], [232], [233], the standard plane localization [234], [235], and the 
segmentation of the fetal aorta [236], [237]. 
 
 

9. Gynecology 
Gynecologic ultrasonography, in which the female pelvic organs are imaged, is another important 
application for ultrasound imaging. In fact, it is commonly used to image the uterus, the ovaries, 
and the Fallopian tubes. Ultrasound image segmentation in gynecologic applications usually focuses 
on detecting and/or segmenting uterine fibroids [29], [238]–[241] and ovary follicles [73], [242]–
[244]. The segmentation of ovarian follicles is important for assessing the physiological status of 
individual follicles and monitoring their growth in women undergoing assisted reproductive 
therapy. Figure 12 shows some example ultrasound images of ovarian follicles and their automatic 
and manual segmentation [73]. Research on the segmentation of uterine fibroids has recently 
mostly focused on its necessity for a correct High Intensity Focused Ultrasound (HIFU) therapy.  
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Figure 12. Example ultrasound images of ovarian follicles. Left column: follicles segmented by a 
computer algorithm. Right column: manual segmentation of follicles. Figure taken with 
permission from [73]. 
 
In ultrasound images, the ovary is typically presented as a medium intensity and homogeneous 
structure, whereas the ovarian follicles are hypoechoic structures within the ovary. Clinically, it is 
important to count the number of follicles and calculate their diameter; if there are more than 12 
follicles present, a Poly Cystic Ovarian Syndrome (PCOS) is diagnosed. Small follicles can often 
overlap within the ultrasound image, making a manual counting prone to error and complicating 
the automatic segmentation process. Moreover, the presence of artifacts, especially if hyperechoic 
structures are present towards the top of the image, and the variability of follicle shape present 
other challenges to overcome during an automatic segmentation procedure. Another clinical 
interest is the analysis of follicle walls during reproductive therapy, since those that are destined to 
ovulate are thinner and have a higher ultrasonographic signal intensity and a smoother and more 
even texture.  
In this application, thresholding is very commonly used. Due to the complexity of the analyzed 
images, the best threshold is often found through an optimization technique, such as an entropy 
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method [243], or a particle swarm optimization [242]. Region growing has also been used as a 
solution for this segmentation problem [73]. These types of methods often perform reasonably 
well but also require a segmentation refinement, since thresholding the image will often include 
some noise. Nevertheless, these issues can typically be mitigated through morphological 
operations or by extracting some features from the segmented objects, such as the area, shape, 
etc. The majority of methods found in literature focus on only the follicle inner border 
segmentation. 
To note here is the method presented almost 20 years ago by Krivanek and Sonka [62], which semi-
automatically segmented both the inner and the outer border of the follicles. The method was 
based on the watershed transform and thresholding and required the user to identify the follicle of 
interest. While presenting interesting results and a technique that could now be rendered 
completely automatic, not many advances in this field focusing on inner and outer follicle 
boundaries were found in literature.  
 
When considering the uterine fibroid application, research has focused much on accurate fibroid 
segmentation in order to correctly guide HIFU treatment. Fibroids appear in the ultrasound image 
as a hypoechoic region, and the main challenge here is dealing with the fact that a HIFU guidance 
device produces images that have a much lower quality and signal-to-noise ratio when compared 
to traditional ultrasound images. 
In this application, segmentation methods often incorporate active contours or shape priors in 
some way [29], [239], [240], but many of these techniques still require manually inserting the 
target area or are based on US image sequences.   
A recent work that is completely automatic was presented by Zhang et al. [245] in 2016. Their 
method took a different approach compared to those found in literature and was based on dividing 
the image into superpixels and extracting features from homogeneous regions. Their method 
showed good results on 50 images, but was not real time, requiring approximately 13 seconds to 
process one image. 
 

10. Prostate 
Three-dimensional trans-rectal ultrasound (TRUS) imaging is a necessary tool to diagnose prostate 
cancer, as prostate boundaries assist in cancer diagnosis and treatment. Specifically, real-time 
target anatomy segmentation is crucial in brachytherapy, which consists in the permanent 
implantation of small radioactive seeds and adjacent tissue, and in TRUS-guided biopsies.  
The main challenges in this segmentation problem are due to the fact that prostate shape and size 
varies greatly, due to bladder and rectum fillings, the patient conditions, prostate deformation, the 
development of edema during the procedure, and also cancer evolution rate and characteristics 
[246]. 
Figure 12 shows an example ultrasound image of the prostate obtained at apex, mid-gland, and 
base regions.◘ 
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Figure 13. Example prostate ultrasound images obtained at (A) apex, (B) mid-gland and (C) base 
regions. Figure taken with permission from [54]. 
 
In prostate ultrasound imaging, there is a vast selection of segmentation strategies, ranging from 
simple edge-guided to shape prior and classification techniques. Noble and Boukerroui [3]  
presented a comprehensive overview of prostate ultrasound imaging techniques until 2006, but 
many of them are semi-automatic [217]–[219], and more recently Ghose et. al [6], [250] also 
presented a survey on segmentation methodologies using various imaging modalities, including 
ultrasound. 
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More recent developments have seen more of a focus on supervised learning frameworks, based 
on shape and probability priors or level sets [54], [63], [64] and less focus on edge-guided or pixel 
region-based techniques. The implementation of these more advanced segmentation techniques 
make the method typically more robust to shape, contrast, and size of the object within the image. 
The segmentation algorithms based on shape priors obviously require the construction of prior 
models which constrain image segmentation and also require more computational cost. Many 
prostate segmentation techniques also tend to evaluate segmentation results in the mid-gland 
area, where the prostate boundaries are clearer.  
An interesting work in this application was presented by Yu et al. [54] in 2016. Their technique was 
completely automatic, in which the initial first contour of the volume was found using a radial bas-
relief technique [251]. Subsequently, the initial contour was deformed using the detailed and 
approximate coefficients generated using dyadic wavelet transforms, and the segmented border on 
the first frame was then propagated to the next frame as the initial boundary until all frames were 
segmented. This study also presented an important comprehensive comparison with other 
published TRUS segmentation methodologies that is also presented here in Table 6 along with the 
comparison with the other segmentation techniques. 
 
As can been seen from Table 6, the mean absolute difference (MAD) is often used as a way to 
evaluate the performance of TRUS segmentation techniques, along with the use of the Dice 
similarity coefficient, which is also extensively used in other applications. The semi-automated 
techniques show some of the best performing results, which is to be expected as user-interaction 
can mitigate many segmentation challenges. Still, the completely automatic technique by Ghose et 
al. [252] that is based on posterior probability and multiple mean parametric models showed very 
promising results with a MAD = 0.49 ± 0.20 mm; however, the database that was used was quite 
small, consisting of only 46 images. Of the completely automatic techniques with a decent sized 
database, it is to note that the technique by Yu et al. [54] showed an important increase in 
performance results (i.e., decrease in MAD) from the other previous techniques. 
 
 
 

Table 6. Validation of TRUS segmentation methods 

Reference Year Segmentation method Database size 
Performance 

Measure Value 

Knoll et al. 
[248] 1999 

Automatic dyadic 
wavelet transforms 
and active contours 

with shape priors 

77 images  
(11 patients) 

Mean absolute 
difference 

2.61 mm 

Ladak et al. 
[253] 2000 

Semi-automatic 
discrete dynamic 

contour 

117 images 
(19 patients) 

Mean absolute 
difference 0.55 ± 0.40 mm 

Shen et al. 
[254] 2003 

Automatic Gabor filter 
bank and statistical 

shape model 

8 images 
(8 patients) 

Mean absolute 
difference 1.28 ± 0.35 mm 
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Chiu et al. 
[255] 2004 

Semi-automatic dyadic 
wavelet transform and 

discrete dynamic 
contour 

114 images 
(6 patients) 

Mean absolute 
difference 0.58 ± 0.18 mm 

Cosìo et al. 
[256] 2008 

Automatic pixel 
classification and 

active shape model 

22 images 
(4 patients) 

Mean absolute 
difference 1.74 ± 0.69 mm 

Yan et al. 
[257] 2011 

Automatic global 
population-based and 
patient-specific local 
shape statistics and 
deformable model 

301 images 
(19 patients) 

Mean absolute 
difference 1.65 ± 0.47 mm 

Ghose et al. 
[252] 2011 

Automatic posterior 
probability and 
multiple mean 

parametric models 

46 images 
(23 patients) 

Mean absolute 
difference 0.49 ± 0.20 mm 

 
Ghose et al. 

[63] 

 
2013 

Automatic statistical 
shape and probability 

priors 

126 images 
(23 patients) 

Dice similarity 
coefficient 91 ± 1% 

Mean absolute 
difference 1.26 ± 0.60 mm 

Wu et al. 
[258] 2013 

Automatic Gabor filter 
banks and non-

parametric kernel 
density estimation 

shape prior 

132 images 
(132 patients) 

Mean absolute 
difference 1.21 ± 0.85 mm 

Qiu et al. 
[64] 2014 

Semi-automatic 
coherent continuous 

max-flow model 
(CCMFM) enforcing 

prostate axial 
symmetry 

8750 images 
(25 patients) 

Dice similarity 
coefficient 93.2 ± 2.0%  

Wu et al. 
[259] 2015 

Automatic level set 
integrating shape 
priors, intensity 

transition, texture 
features 

132 images 
(132 patients) 

Mean absolute 
difference 1.06 ± 0.53 mm 

Yu et al.  
[54] [95] 

2016 
Automatic radial bas 

relief and dyadic 
wavelet transforms 

336 images  
(15 patients) 

Mean absolute 
difference 

0.79 ± 0.26 mm  

 
 

6. Discussion  

This paper aims to provide a comprehensive review of the literature on automatic techniques that are used 
in B-mode ultrasound imaging. Different from other reviews which typically focus on specific applications, 
this review focuses instead on the various segmentation techniques that are available, providing the reader 
with an overview of the methods currently available. A total of 11 segmentation techniques were 
presented and expounded upon, focusing also on whether the examined method can be used for a fine 
segmentation of the object of interest or if it is typically only used for a course localization of a tissue/organ 
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within the ultrasound frame in two-step segmentation methods (i.e., such as the localization of the carotid 
artery in the US frame and the final segmentation of the artery boundaries for IMT calculation). 

The methods that are presented in this review are: active contours, shape priors, superpixel and 
classification, texture and classification, local statistics/pixel intensity, edge-tracking, optimization 
techniques, transform-based, data-mining, heuristics, and machine learning. 

Active contours can be considered a type of optimization technique because they aim to search for the 
balance between the internal and external energy forces, but were expounded upon separately due to the 
large use of these kinds of specific segmentation techniques. Moreover, active contours optimize an initial 
contour that must be defined (automatically or manually), whereas the majority of other optimization 
segmentation techniques do not require an initial contour. Optimization techniques can more easily adapt 
to variations in shape of the object of interest but heavily rely on a proper parameter or function selection. 
This makes it more challenging to accurately segment both images with high and low contrast or with high 
and low signal-to-noise ratios (SNR). Moreover, these techniques are typically employed and optimized on 
a certain database and must often be altered before using on a different database.  However, a great 
advantage of these techniques is that they can often consider edge and shape together.  

Shape priors are very robust to noises and artifacts. The presence of image-degrading characteristics does 
not have a big influence on the final segmentation, as a certain general shape is searched for and found 
within the image frame. However, this technique is quite computationally expensive and needs a training 
set which will determine the shape to be located. Transform-based techniques (i.e., Hough transform) also 
search within the image frame for a certain shape, but do not require a training set. Due to the fact that 
both of these methods search for an already determined shape, a variation of the expected shape, which 
often happens in the case of pathology, could risk not being correctly located. 

Local statistics/pixel intensity and edge-tracking segmentation methods rely basically only on the intensity 
and intensity distribution within the image. Since edges and therefore intensity depend on transducer 
position, these techniques perform well when the object of interest is present in the image with a direction 
that is perpendicular to the ultrasound signal propagation, with relatively low noise and artifacts. These 
techniques typically present a low computational cost and can therefore be extremely useful with real-time 
applications.  

Many of the techniques present the need to classify specific features or regions within the ultrasound 
frame. Specifically, superpixel and classification, texture and classification, data-mining, heuristics and 
machine learning techniques all require some sort of higher knowledge in order to correctly classify pixels 
(heuristics) or regions (superpixel and classification, texture and classification, data-mining, machine 
learning). Texture is a specific feature of the image, but was not included in data-mining techniques 
because it does not necessarily rely on the application of a feature reduction or selection algorithm, which 
characterizes data-mining techniques.  At the same time, however, texture features are almost always 
included as some of the initial image features in data-mining methods. The same comments can also be 
applied to superpixel methods, where specific features are extracted in order to classify each superpixel. 
Heuristic methods rely on the higher knowledge of the author of the heuristic in order to classify a specific 
pixel as being of potential interest or not of interest. The heuristic search is done in the exact same way 
along the entire width of the image or ROI (or considering a subset of the width, i.e., one column every ten 
columns), making this method sensitive to noise and artifacts, but also very useful and applicable when the 
object of interest portrays similar characteristics along the image/ROI. Machine learning methods have 
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acquired much interest recently along with the peak focus on big data. In fact, these techniques focus on 
the training of the computer with a massive amount of data in order to then correctly classify a 
pixel/region. A number of different patterns can be captured with the numerous layers in deep learning, 
and once properly trained, the learned developed system does not need any handcrafted features, unlike 
many other methods. 

After presenting the mainstream segmentation techniques present in literature, focus was then pointed 
towards specific applications. Ultrasound imaging is continuously growing in clinical applications, due to its 
real-time imaging, non-ionizing radiation, and inexpensive implementation. This is made evident by the 
large number of selected applications that were analyzed in this review including abdomen/kidney, breast, 
cardiology, thyroid, liver, vascular, musculoskeletal, obstetrics, gynecology, and prostate. Since these 
applications are used for screening for a disease or tracking a specific lesion, it is evident how important it 
is to be able to both correctly locate the area of interest if applicable, and to standardize the measurement 
of the quantitative information with automatic algorithms.  

A field of research that is also developing is the segmentation of ultrasound images based on the raw 
radiofrequency (RF) signal and not solely on beamformed envelope B-mode images. The process of B-mode 
image formation unfortunately loses some information such as signal phase; phase information has been 
suggested to be another way to extract details from an image and is also invariant to both intensity and 
magnitude [3]. For some examples of techniques based on the ultrasound RF signals, please refer to [260]–
[265]. Image segmentation using the RF signal will most likely continue to evolve in the future, integrating 
both amplitude and phase information in conjunction with non-RF segmentation techniques to create 
advanced segmentation methods with more precise segmentation results  [266], [267].  

B-mode ultrasound imaging will likely only continue to grow, and with that a clear understanding of the 
segmentation techniques available will aid in the development of enabling technologies within this field. As 
the previous paragraph also suggested, a future perspective of B-mode image segmentation is the 
incorporation of more data deriving from the RF signal with other B-mode segmentation techniques. With 
the development of higher frequency US transducers that can be used in a clinical situation, specific 
applications that do not require deep imaging within the body will most likely also see a shift in 
segmentation algorithms, since the higher frequency will give forth images with a much higher resolution, 
providing greater detail and information that was impossible to distinguish with images acquires with a 
lower frequency transducer. Finally, with the increase of data available and with researchers hopefully 
adopting more and more an “open data” mentality, segmentation techniques that are completely 
automatic and ones that rely on large databases, such as machine learning, will continue to develop and 
will most definitely be a part of the future of B-mode ultrasound image segmentation. 

7. Conclusions 

In this paper we reviewed completely automatic localization and segmentation techniques for B-mode 
ultrasound images, providing insight on both coarse localization and fine segmentation techniques, and 
analyzing the various methods’ robustness to noise and artifacts. We discussed several clinical applications 
and segmentation techniques that are used in each application, and finally we looked into the future of 
ultrasound segmentation techniques. 
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