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Abstract 

Ultrasound imaging is one of the most common visualizing tools used by radiologists to 

identify the location of thyroid nodules. However, visual assessment of nodules is 

difficult and often affected by inter- and intra-observer variabilities. Thus, a computer-

aided diagnosis (CAD) system can be helpful to cross-verify the severity of nodules. 

This paper proposes a new CAD system to characterize thyroid nodules using 
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optimized multi-level elongated quinary patterns. In this study, higher order spectral 

(HOS) entropy features extracted from these patterns appropriately distinguished 

benign and malignant nodules under particle swarm optimization (PSO) and support 

vector machine (SVM) frameworks. Our CAD algorithm achieved a maximum accuracy 

of 97.71% and 97.01% in private and public datasets respectively. The evaluation of this 

CAD system on both private and public data sets confirmed its effectiveness as a 

secondary tool in assisting radiological findings.  

 

Keywords: Elongated quinary patterns, higher order spectra, particle swarm 

optimization, support vector machine, thyroid cancer, ultrasound 

  

1. Introduction 

Thyroid cancer is more commonly seen in women compared to men, with the 

morbidity rate >5% increasing every year [1]. It is estimated that approximately 56,870 

new thyroid cancer cases will be diagnosed in 2017 in the United States [2]. Thyroid 

glands secrete thyroxine (T4) and tri-iodothyronine (T3) hormones that are important 

for the overall wellbeing of the human body. They mainly regulate metabolism, growth, 

development, and temperature of the body. They also play a vital role in the 

development of the brain [3, 4].  

Enlargement of the thyroid gland is termed as goiter. Goiters can be either 

diffuse, i.e., covering the entire gland, or nodular. These thyroid gland “bumps” are 

referred to as thyroid nodules [5], and can be either benign or malignant. Early 

diagnosis improves stratification of thyroid nodules and helps in determining the best 

treatment option [6]. 

Ultrasound is an inexpensive and effective method in thyroid imaging. Images of 

the organs are obtained by capturing echoes which are generated as a response to the 
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sound waves sent from a transducer at a high frequency rate. By analyzing the reflected 

echoes, it is possible to differentiate healthy and malignant tissues. The ultrasound 

features of a malignant thyroid nodule include hypoechoic, ill-defined margins and 

punctate calcification [7]. Ultrasounds also provide a useful tool for disease follow-up in 

patients with thyroid cancer after treatment.   

 Thyroid cancer has different stages based on tumor classification without any 

definitive demarcation between each stage [8]. The “stage” of a cancer refers to a phase 

in the course of the tumor when it has reached some defined level. Further, computer-

aided diagnosis (CAD) of ultrasound images can help the radiologists in early diagnosis 

of thyroid nodules.  The CAD systems often consist of feature extraction and machine 

learning algorithms. To date, several CADs for thyroid nodule differentiation have been 

proposed [9-11]. A neural network model described in [12] has gained an accuracy of 

88.3%. In [13] an accuracy of 81% is achieved using artificial immune recognition system 

(AIRS). Directionality patterns implemented in [14] achieved classification accuracy of 

89.4%. A neuro-fuzzy classifier proposed in [15] has shown 95.33% accuracy in 

diagnosing thyroid lesions. Erol et al. [6] concluded in their experiment that radial basis 

function neural network (RBFNN) is a suitable classifier for thyroid disease compared 

to multilayer perceptron neural network (MLPNN). An information gain based artificial 

immune recognition system (IG-AIRS) trained on a dataset with thyroid diseases in [16] 

yielded an accuracy of 95.90%. A system developed by Dogantekin et al. [17] used 

principal component analysis (PCA) and support vector machines and obtained 97.67% 

accuracy. A system described in [18] used discriminant analysis, wavelet features and 

SVM obtained 91.86% classification accuracy.  

The parameters of a SVM classifier were optimized using particle swarm 

optimization (PSO), and an average accuracy of 97.49% was attained in [19]. PCA was 

used with an extreme learning machine classifier to obtain new feature space for 

diseases of the thyroid and achieved a mean accuracy of 97.73%. By adaptively 
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tweaking the parameters for Fuzzy K-nearest neighbor (FKNN) classifier, the authors of 

[20] attained a mean accuracy of 98.82%. By applying different scalar validity measures, 

a comparison of various soft and hard fuzzy clustering techniques was performed for 

the classification of thyroid disease [21].  

A texture feature based technique was developed in [22] and attained a 

maximum accuracy of 100%. In [23] a new system is developed using combination of 

discrete wavelet transform (DWT) and texture features with an AdaBoost classifier for 

the classification of thyroid lesions. 100% accuracy, sensitivity, and specificity are 

reported by them. Good classification accuracy was shown by grayscale features based 

on entropy, Gabor wavelet, moments, image texture and higher order spectra (HOS) 

features [24]. In a work by Acharya et al. [25] to evaluate Hashimoto thyroiditis, a 

stationary wavelet transform with fuzzy classifier was used and attained a maximum 

accuracy, sensitivity, specificity of 84.6%, 82.8%, and 87.0% respectively. In [26] Acharya 

et al. used Gabor transform features with locality sensitive discriminant analysis 

(LSDA) and C4.5 decision tree classifier to classify benign and malignant thyroid 

nodules, and attained a maximum accuracy of 94.3%.  

Omiotek et al. [27] used  linear discriminant analysis classifier to diagnose 

Hashimoto's thyroiditis and obtained 96.88% sensitivity, 98.44% specificity, and 97.66% 

overall classification accuracy. Another system was proposed by the same group in [28] 

which involved a fine-tuned deep convolutional neural network and pre-processed 

ultrasound images. This system reported the classification performance of 98.29% 

accuracy, 99.10% of sensitivity and 93.90% specificity using open access database. And 

obtained 96.34% accuracy, 86% sensitivity, and 99% specificity with non-public 

database. In [29], an artificial neural network (ANN) was applied to detect thyroid 

nodules in ultrasound images and obtained 70% accuracy. A more advanced system 

proposed in [30] utilized a watershed algorithm for the segmentation of nodules and 

ANN and SVM classifiers for the classification of benign and malignant nodules. The 
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accuracy, specificity, sensitivity and AUC (area under the curve) were 92.5%, 96.66%, 

80%, and 0.91 for SVM and 87.5%, 93.33%, 70% and 0.88 for ANN respectively. The 

authors of this study concluded that the SVM classifier is more stable and reliable 

compared to the ANN classifier. In a study involving extraction and classification of 

elastography features extracted from ultrasound images of thyroid nodules [31], an 

LDA classifier was used. This was developed to differentiate the thyroid nodules into 

two types (i) no FNA (fine-needle aspiration) (observation-only) and (ii) FNA. They 

showed 100% sensitivity and specificity of 75.6% in detecting malignant thyroid 

nodules. A convolutional neural network (CNN) model was used to extract the deep 

features from ultrasound images in [32] and achieved 92.9% accuracy in the 

classification of thyroid nodules. An automated CAD system proposed in [33] consisted 

of a speckle reduction technique, a procedure to find and segment a region containing 

suspicious nodules. This segmentation system achieved a true positive of 95.92 ±

3.70%,	false positive of 7.04±4.21%, dice coefficient of 93.88±2.59% and overlap metric 

of 91.18±7.04 pixels and Hausdorff distance of 0.52±0.20 pixels.  Performances of 

different techniques are collected in Table 5.  

However, it is difficult to fairly compare the effectiveness of these techniques 

because each was tested on different image sets and with different number of subjects in 

each set. Ideally, the techniques should be tested using large data sets for confirming 

their effectiveness. Hence, in this work we have developed a new methodology for the 

characterization of thyroid lesions using optimized HOS entropies extracted from 

elongated quinary patterns of multi-level gradients. The developed model contains 

(PSO) and support vector machine (SVM) frameworks and is evaluated on private (288 

benign, and 56 malignant) and public (288 benign and 57 malignant) data sets. An 

overview of the proposed model is shown in Figure 1. 
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Figure 1. Overview of the proposed model. 

 

2. Material and Methods 

2.1 Data Descriptions 

In this work, we have used two data sets, one public dataset and another from our own 

data set.  

Data set 1 (Public database): Images are taken from an open-access thyroid ultrasound-

image database [34] which consists of ultrasound images of thyroid nodules. From this 

publically available database, 288 benign and 57 malignant images belong to 99 controls 

and 200 cases were considered with age range of 57:35±16:2 years. The ultrasound 

image sequences were captured with TOSHIBA Nemio 30 and TOSHIBA Nemio MX 

ultrasound systems, both set to 12 MHz convex and then from this sequence, thyroid 

images were extracted.  The patients were individually evaluated by two experts and 

the TI-RAD lexicon description was provided [35]. 
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Data set 2 (Private database): This is a private data set collected at Chiang Mai 

University Hospital between December 1st, 2009 and December 31st, 2016. Cytology (by 

fine needle aspiration biopsy) or surgical excision were used to confirm the presence of 

benign or malignant nodules. In this study, 344 thyroid nodule images were collected, 

out of which 288 were benign, and 56 were malignant. The images were collected from 

patients between 12 and 88 years of age (mean age: 44.1 years). The patients were 

examined using one of the following scanners: GE LOGIQ 9 and LOGIQ E9 with linear 

transducer 10–14 MHz, SIEMENS Acuson Sequoia 512 with linear transducer 5–13 

MHz, TOSHIBA Aplio-XG with linear transducer 10–13 MHz and PHILIPS iU22 with 

linear transducer 5–15 MHz, depending on scanner availability. B-Mode images were 

collected during the examination.  

 

2.2 Feature representation using quinary encoding  

Multi-level gradients are effective and robust feature representation techniques in 

image analysis [36]. Multi-gradient magnitudes and angles are derived from a given 

image in XY and left-right (LR) directions. To extract gradient components, four 

different Sobel masks were used in various orientations, and the resultant images were 

used to compute the magnitude and angle of the gradient.  

To obtain the gradient in the XY direction, Pixels around the center pixel Px5 of a sub 

image of size 3x3 are convolved with the horizontal (Hm) and vertical (Vm) Sobel masks. 

𝐺𝑟_𝑥(𝐻) = (𝑃!" + 2𝑃!# + 𝑃!$) − (𝑃!% + 2𝑃!& + 𝑃!')          (1) 

Where, the 𝐺𝑟_𝑥(𝐻)  represents the horizontal direction gradient of pixel Px5.  

Similarly, the gradient of pixel Px5 in vertical direction is given by:  

𝐺𝑟_𝑦(𝑉) = 	 (𝑃!" + 2𝑃!( + 𝑃!%) − (𝑃!$ + 2𝑃!) + 𝑃!')          (2) 
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Using the 𝐺𝑟_𝑥(𝐻)		and	𝐺𝑟_𝑦(𝑉)			components, the magnitude gradient 𝐺𝑚𝑎𝑔_𝑥𝑦 and 

angle gradient 𝐺𝑑𝑖𝑟_𝑥𝑦	are computed. Magnitude gradient is given by  

𝐺𝑚𝑎𝑔_𝑥𝑦 = 	 |𝐺𝑟_𝑥(𝐻)| +	|𝐺𝑟_𝑦(𝑉)|          (3) 

And angle gradient is 

𝐺𝑑𝑖𝑟_𝑥𝑦 = 	 tan*" C𝐺𝑟_𝑦(𝑉) 𝐺𝑟_𝑥(𝐻)D E        (4) 

Likewise, to obtain the magnitude and angle gradients for the center pixel Px5 in L-R 

direction the center pixel is convolved with the diagonal masks D1 and D2. The gradient 

of the pixel Px5  left (l) and right (r ) is given by  

𝐺𝑟_𝑙(𝑑2) = (𝑃!# + 2𝑃!$ + 𝑃!)) − (𝑃!( + 2𝑃!% + 𝑃!&)        (5) 

And  

𝐺𝑟_𝑟(𝑑1) = (𝑃!) + 2𝑃!' + 𝑃!&) − (2𝑃!" + 𝑃!# + 𝑃!()									(6) 

Using these convolution outputs, magnitude gradient 𝐺𝑚𝑎𝑔_𝐿𝑅 and angle gradient 

𝐺𝑑𝑖𝑟_𝐿𝑅 are obtained as follows: 

𝐺𝑚𝑎𝑔_𝐿𝑅 = 	 |𝐺𝑟_𝑙(𝑑2)| +	 |𝐺𝑟_𝑟(𝑑1)|          (7) 

𝐺𝑑𝑖𝑟_𝐿𝑅 = 	 tan*" C𝐺𝑟_𝑟(𝑑1) 𝐺𝑟_𝑙(𝑑2)D E							(8) 

 

Figure 2 shows the extracted gradient magnitude and angle in both the XY and LR 

directions.  
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Figure 2.  Magnitude and angle in two different directions. 

 

Regions which have rough versus smooth textures can be isolated using gradient 

feature extraction technique. The magnitude gradient features are stable and consistent 

in the edge and curve regions in images with rough textures.  Hence, it becomes easier 

to isolate regions with the higher intensity regions. The angle gradient features explore 

the minute features such as bump or swelling at different angles. 

The LR and XY gradient magnitudes and angles (eight gradient components) are 

quantized with an elongated quinary pattern (EQP) technique and five levels of 

encoding [36]. To encode the eight-connected pixel neighborhood, two threshold values 

Th1 and Th2, are involved. Various combinations of values were used for Th1 and Th2 
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ranging from 1 to 20 and the performance was observed. The values 4 and 9 for Th1 and 

Th2 respectively showed better performance. 

The five-level encoding in terms of gradient magnitude as: 

𝐺𝑟+,-./0L𝐺𝑟_𝑚𝑎𝑔1, 𝐺𝑟_𝑚𝑎𝑔2M ⋮

⎩
⎪
⎨

⎪
⎧
+2																																											𝐺𝑟_𝑚𝑎𝑔1 ≥ 𝐺𝑟_𝑚𝑎𝑔2 + 𝑇ℎ2
+1					𝐺𝑟_𝑚𝑎𝑔2 + 𝑇ℎ1 ≤ 𝐺𝑟_𝑚𝑎𝑔1 < 𝐺𝑟_𝑚𝑎𝑔2 + 	𝑇ℎ2
0						𝐺𝑟_𝑚𝑎𝑔2 − 𝑇ℎ1 ≤ 𝐺𝑟_𝑚𝑎𝑔1 < 𝐺𝑟_𝑚𝑎𝑔2 + 	𝑇ℎ1

−1									𝐺𝑟_𝑚𝑎𝑔2 − 𝑇ℎ2 ≤ 𝐺𝑟_𝑚𝑎𝑔1 < 𝐺𝑟_𝑚𝑎𝑔2 − 	𝑇ℎ1
−2																																																																																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝐺𝑟_𝑚𝑎𝑔1	signifies the gradient magnitudes of neighboring points which are 

surrounding this center pixel gradient magnitude (𝐺𝑟_𝑚𝑎𝑔2 ). 

Figure 3 shows an example of encoded quinary patterns of magnitude and angle in both 

the XY and LR direction. Figure 4 shows the EQP of benign and malignant classes. 

 

Figure 3.  Example of elongated quinary pattern descriptor. 
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Figure 4.  Elongated quinary patterns of magnitude and angle gradients for example 
benign and malignant nodules. 

2.3 Higher order spectral entropies 

Higher order spectra (HOS) are designed for the better spectral representation of 

stochastic or deterministic processes. HOS analysis is very useful in the identification of 

non-linearity in deterministic signals and random processes [37-39]. It has been shown 

that HOS analysis has many potential applications in medical image analysis [40], traffic 

sign recognition [41], etc. Generally, a bispectrum of 2-D signals can be characterized in 

4-D. For example, a HOS analysis is a 1-D projection of an image performed for a given 
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angle 	𝜃 using the Radon transform (RT). Based on the RT and bispectra, features such 

as bispectral first, second and third entropy are extracted as defined in [40]. The phase 

entropy can also be extracted from bispectrum. 

Finally, adaptive synthetic (ADASYN) sampling is used to alleviate the problem of 

imbalance in sample number between two classes. ADASYN uses the density 

distribution to determine the number of samples required for the class of minimum 

samples. The resultant balanced samples with features can be used for further 

processing [42]. 

2.4 Feature Selection and Classification 

PSO is a population-based search method proposed by Kennedy and Eberhart to mimic 

the flocking behavior of birds and fish swarms [43].  In PSO, the positions of every 

particle of a given swarm (i.e., population) is updated based on the previous 

experiences. After the update, new fitness values of these particles are calculated. This 

process continues until stopping criteria are met. PSO was used to select 5, 10, 15, 20, 

and 25 top features that were fed to an SVM classifier [44, 45], as it has the capacity to 

generalize by optimizing the margin [46]. The classifier performance was tested with 1st, 

2nd and 3rd polynomial, and radial basis function (RBF) kernels to find the best 

performing classifier. We have considered accuracy, sensitivity and specificity as our 

performance evaluation metrics. 

3. Experimental Results 

In this study, we have used both public (Benign: 288, Malignant: 57) and private 

(Benign: 288, Malignant: 56) ultrasound thyroid data sets to develop, and assess the 

performance of thyroid nodule differentiation. The processing begins with the 

calculation of multi-level gradient magnitudes and angles in the XY-direction and LR-

direction, and yielded four different gradient components. Each gradient component is 
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encoded using quinary encoding patterns and their corresponding seventy two higher 

order spectral entropies are extracted (72 × 4 = 288 features). In order to overcome the 

imbalance in number of observations between benign and malignant classes, the 

ADASYN is used.  It has created two hundred twenty four additional synthetic minority 

data samples for public as well as private data sets. These features are subjected to PSO 

to select the most significant features for classification. We have used SVM classifier 

with different kernel functions for classification. Ten-fold cross validation is used to 

evaluate the performance of the developed system.  

We have performed our experiments by selecting 5, 10, 15, 20 and 25 selected 

significant features with various iterations which randomly selects different features 

using PSO and SVM. The features with maximum accuracy are further used for 10-fold 

cross validation. The obtained classification performances for different kernel functions 

are given in Tables 1 and 2. We have achieved an average performance of 93.89% 

accuracy, 88.85% sensitivity and 94.66% specificity for the combination of fifteen 

iterations and ten features using a public data set. We have also achieved average 

performance of 91.91% accuracy, 92.85% sensitivity and 88.54% for the combination of 

twenty iterations and ten features with a private data set. In order to test the usefulness 

of quinary patterns, we have extracted HOS entropies directly from multi-level 

gradients and fed them to PSO-SVM combination for classification. The obtained results 

are presented in Tables 3 and 4 for public and private data sets respectively. The 

average accuracy of 89.92% is achieved for ten significant features with twenty iterations 

using the public data set. It can be observed that the model performed better when HOS 

entropies are extracted from quinary patterns rather than from gradients. Figures 5 and 

6 shows the maximum performance of the proposed model for different combinations 

of features and iterations for both public and private data sets.  

 



14 
 

Table 1: Performance of proposed model for different kernels for public data set. 

 

Table 2: Performance of proposed model for different kernels for private data set. 

 

 

Table 3: Performance of HOS entropy extracted from multi-level gradient for different 
kernels using the public data set. 

 

Table 4: Performance of HOS entropy extracted from multi-level gradient for different 
kernels using private data set. 

SVM Kernel Iterations Features Accuracy (%) Sensitivity (%) Specificity (%) 

Poly 1 15 10 65.55 61.67 69.75 

Poly 2 15 10 76.62 64.45 89.32 

Poly 3 15 10 77.50 60.27 95.37 

RBF 15 10 93.89 88.85 94.66 

SVM Kernel Iterations Features Accuracy (%) Sensitivity (%) Specificity (%) 

Poly 1 20 10 59.15 60.71 57.63 

Poly 2 20 10 70.59 81.42 60.06 

Poly 3 20 10 80.28 93.92 67.01 

RBF 20 10 91.91 92.85 88.54 

SVM Kernel Iterations Features Accuracy (%) Sensitivity (%) Specificity (%) 

Poly 1 20 10 56.82 57.14 60.14 

Poly 2 20 10 69.96 64.80 79.71 

Poly 3 20 10 72.18 56.09 93.23 

RBF 20 10 89.92 82.57 90.39 

SVM Kernel Iterations Features Accuracy (%) Sensitivity (%) Specificity (%) 

Poly 1 15 10 60.51 60.60 60.41 

Poly 2 15 10 71.79 79.46 63.88 

Poly 3 15 10 80.17 95.95 63.88 

RBF 15 10 91.78 92.25 85.06 
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Figure 5. Performance of the proposed model for change in features with fixed iteration 

of 10. 

 

Figure 6. Performance of the proposed model for change in iteration with fixed features 

of 10. 
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4. Discussion 

Ultrasound is the most commonly used modality for the detection and assessment of 

thyroid nodules. In this study, we have presented a novel methodology for the 

characterization of thyroid nodules that belong to either the benign or malignant group. 

We have used encoded quinary patterns of magnitude and angle gradients in two 

different directions to extract the features and classify the nodules. The gradient 

magnitudes are effective to characterize a textured or regions with curvatures whereas 

angle magnitudes explore minute features such as bumps or swelling at different 

orientations [36]. The enhanced gradients are systematically encoded using elongated 

quinary patterns which automatically reduce the gradient sensitivity by quantizing and 

encoding in the key regions of thyroid images. The obtained entropy features from 

these patterns can discriminate benign and malignant lesions during classification. In 

addition, the ADASYN synthetic sample generation algorithm has compensated the 

issue of imbalanced samples which helps to prevent the over-fitting of classifier. The 

extracted features with synthetic samples are fed to the PSO algorithm to select these 

best features. These selected features were used to train the SVM classifier. Our system 

required only ten significant features from the extracted 288 features to attain 93.89% 

average accuracy. In order to test the robustness of our model, we have also repeated 

our experiment using public database and different kernel functions. It is observed that 

the SVM with RBF kernel has attained maximum performance in all combinations as 

shown in Tables 1 and 2. We have also observed the superiority of extracting HOS 

features from EQP patterns than extracting it from multi-level gradients as shown in 

Tables 3 and 4 as it compensates the gradient sensitivity [36]. Overall performance is 

boosted approximately by 4% for the public dataset.  Figures 5 and 6 show the 

maximum result obtained using PSO and SVM. It is observed that the proposed system 

attained a maximum accuracy of 97.71% and 97.01% for private and public datasets 

respectively. The major observation during our experiment is that the performance of 
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the developed model is consistent for both public and private data sets irrespective of 

using the imbalanced data in both private and public datasets (benign patients are more 

than malignant). Our study used images from public and private repositories and 

compared with other studies published to date on this topic (Table 5). 

Table 5: State-of-the-art techniques on characterization of thyroid lesions. 

Papers No. of Subjects Method / Classifier Accuracy (%) 

[12] 215 MLP+RBF+CSFNN 88.3, 81.69 and 85.92 

[47] 66 Radon Transform + SVM 89.4 

[13] 215 AIRS 81 

[14] 66 Radon Transform + SVM 89.4 

[15] 215 Neuro Fuzzy classifier 95.33 

[16] 215 IG-AIRS 95.90 

[48] 85 Morphological+ 
Wavelet features + SVM 

AUC: 0.96 

[17] 215 PCA+SVM 97.67 

[49] 98 k-means clustering + PCA + SVM 87.8 

[50] 61 Texture features + SVM 100 

[51] 200 Fuzzy local binary patterns + fuzzy 

grey-level histogram features + SVM 

97.5 

[18] 215 Discriminant Analysis + 
Wavelet + Support Vector Machine 

91.86 

[19] 215 PSO+SVM 97.49 

[20] 215 Fuzzy k-nearest neighbor 98.82 

[52] 125 Hard area ratio + textural features + 
SVM 

93.6 

[53] 142 Textural + shape feature vectors + SVM AUC: 0.93 

[54] 13 GLCM+SVM 84.62 

[55] 118 Noise resilient features + SVM 95.2 

[22] 10 Texture Feature +  SVM 100 

[23] 10 DWT + texture + AdaBoost 100 

[26] 242 Gabor transform + LSDA + C4.5 
decision tree classifier 

94.3 

[56] 242 Fractal + SGLDF + MFA 97.52 
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This work Public: 345 
Private: 344 

EQP + HOS Entropy + PSO + SVM Private: 97.71,  

Public: 97.01 

 

5. Conclusion 

In this paper, a novel automated CAD system is proposed to characterize thyroid 

nodules. Our CAD achieved 97.71% maximum accuracy using only ten features. The 

HOS entropies extracted from multi-level elongated quinary patterns delineates the 

non-linearity among benign and malignant classes thereby providing the best 

discrimination of nodules. The PSO-SVM framework helped to select the most 

significant features, and achieve maximum performance with minimum features. The 

developed system is robust as it gives highest performance for both private and public 

data sets with the same number of features. This CAD can be used as a screening tool to 

assist the clinicians during their routine checkups of thyroid nodules.  
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