
Computers in Biology and Medicine (CBM)

journal homepage:

www.journals.elsevier.com/computers-in-biology-and-medicine

Estimation and Tracking of AP-diameter of the Inferior
Vena Cava in Ultrasound Images Using a Novel Active
Circle Algorithm

Ebrahim Karami∗a, Mohamed Shehataa, Andrew Smithb
aDepartment of Engineering and Applied Sciences, Memorial University, Canada,
bFaculty of Medicine, Memorial University, Canada

Abstract

Medical research suggests that the anterior-posterior (AP)-diameter of the inferior vena cava (IVC) and its associ-
ated temporal variation as imaged by bedside ultrasound is useful in guiding fluid resuscitation of the critically-ill
patient. Unfortunately, indistinct edges and gaps in vessel walls are frequently present which impede accurate
estimation of the IVC AP-diameter for both human operators and segmentation algorithms.
The majority of research involving use of the IVC to guide fluid resuscitation involves manual measurement of
the maximum and minimum AP-diameter as it varies over time. This effort proposes using a time-varying circle
fitted inside the typically ellipsoid IVC as an efficient, consistent and novel approach to tracking and approximat-
ing the AP-diameter even in the context of poor image quality. In this active-circle algorithm, a novel evolution
functional is proposed and shown to be a useful tool for ultrasound image processing. The proposed algorithm
is compared with an expert manual measurement, and state-of-the-art relevant algorithms. It is shown that the
algorithm outperforms other techniques and performs very close to manual measurement.

KEYWORDS: Inferior vena cava (IVC), ultrasound imaging, image segmentation, active circle, evolution
functional, volume status, fluid responsiveness, resuscitation.

1. Introduction

Trauma patients suffering from hemorrhagic shock as a result of blood loss or patients with short-

ness of breath from volume overload in the setting of congestive heart failure frequently require imme-

diate resuscitation. Fast and accurate assessment of circulating blood volume in critically-ill patients

is a challenging task as excessive or insufficient fluid administration increases patient morbidity and

mortality[1, 2]. Clinical research has shown that the variations in the anterior-posterior (AP) diameter

of inferior vena cava (IVC) can be helpful in approximating a patient’s volume status and whether or not

they will benefit from additional intravenous fluids [3–5]. Traditionally, the AP-diameter is manually

estimated from portable ultrasound imagery - often a challenging and time-consuming task in the set-

ting of poor image quality. Artifacts such as shadowing and speckle noise frequently result in indistinct
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edges and gaps in the vessel walls reducing accurate estimation[6, 7].

Speckle noise present in ultrasound imagery is traditionally considered to be a Rayleigh distributed

multiplicative noise [8]. Hence, Rayleigh mixture models have been proposed as a potential solution

for ultrasound image segmentation [9, 10]. However, it has been shown that due to the scattering pop-

ulation and signal processing, the speckle distribution deviates from Rayleigh[11]. Furthermore, lossy

compression algorithms present on many portable ultrasound machines further deviate the recorded

clip from an idealized Rayleigh distribution.

Active contours (ACs), as planar deformable models, are widely used for segmentation of ultrasound

images [12–16]. ACs address image segmentation through minimization of energy functional(s) with

their performance frequently dependent on a manually-defined initialization contour. In order to avoid

local minima, the initiating contour needs to be as close as possible to the actual contour. ACs can

be combined with other segmentation algorithms as a coarse-to-fine strategy to reduce the impact of

the initial contour on segmentation error [17, 18]. Researchers have addressed the challenge of IVC

segmentation using this strategy by using template matching method as the coarse segmentation and

AC as the fine-tuning (TMAC) [19]. Unfortunately, this approach fails when the IVC undergoes large

frame-to-frame variations commonly present on portable machines with lower frame rates (e.g. 30

frames-per-second). Additionally, ACs continue to perform poorly in the context of fuzzy or unclear

boundaries as is commonly the case for the IVC.

Given that the cross-section of the IVC is largely convex, the IVC contour can be represented in polar

coordinates and consequently, polar active contours appear as a promising solution for IVC segmen-

tation [20]. In [21], a polar AC model based on the third centralized moment (M3) was proposed for

segmentation of IVC images. Unfortunately, M3 algorithms roughly estimates the cross-sectional area

(CSA) of the IVC and fails with poor quality images.

Clinically the CSA of the IVC is an optimal approach to accurately assess a patient’s volume status, but

all existing approaches fail to accurately estimate the CSA. Hence, clinicians instead of the the whole

CSA of the IVC, measure its AP-diameter. In this paper, we propose using an active circle algorithm

incorporating a novel evolution functional to estimate the AP-diameter of the IVC across a spectrum of

image qualities. In addition, the proposed evolution functional appears promising for other ultrasound

image segmentation problems as well.

The remainder of this paper is organized as follows - Section II discusses the background and related

work. The proposed active circle algorithm is presented in Section III while experimental results are in

Section IV and concluding remarks in Section V.

2. Background and Related work

2.1. IVC Image

Fig. 1 displays a typical ultrasound image of the IVC, with a circle fitted on the IVC AP-diameter

shown in yellow color. For demonstrating the circle model which is later used in this work, we have also

displayed two scaled circles, concentric with the yellow circle with scaling factors S = 0.75 and S = 1.5
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Figure 1: A typical ultrasound image of IVC with circle evolution model.

shown in red and green colors, respectively. As in Fig. 1, one can see that the IVC boundaries are gener-

ally fuzzy and are unclear. On the other hand, one can see that the inside of IVC is generally hypoechoic

and the outside is hyperechoic indicating that the inside and outside of the IVC have distributions with

different means. Fig. 2 illustrates the probability density functions (PDFs) of the intensity levels inside

the three circles shown in Fig. 1, where the x-axis is the normalized pixel intensity which is between

0 and 1. From Fig. 2-(a) and (b), one can see that the intensity distribution inside the IVC contour is

rather sparse than continuous. Assume that the intensity levels inside and outside the IVC have PDFs

Fin with mean min and Fout with mout , respectively. It is obvious that min < mout . This indicates that

regardless of the PDFs Fin and Fout , their distinct means can be used for image segmentation.

2.2. Energy and Evolution Functionals

In traditional level set methods for a given energy functional C, the evolution functional is obtained

as [22, 23]:
∂C
∂t

= −F(|∇C|), (1)

where the function F depends on the image and is usually defined as a linear function. In this paper,

we use the following linear function [22, 23]

E = −|∇C|~n, (2)

where ~n is the vector normal to the contour.

Two conventional functionals, widely employed in variational ACs, are based on the mean and the

variance of the intensities [24].

Functional Based on Mean: Assuming u and v represent the mean intensity levels inside and outside the
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Figure 2: PDF of the intensity levels inside the disks concentric with the IVC (see Fig. 1) with radius equal to (a): 75%, (b): 100%,

and (c): 150% of the IVC AP-diameter.

IVC, respectively, the energy functional is defined as [24]

Cmean =
α
2

(u − v)2, (3)

where α is a positive weighting factor. Using (1), the evolution functional corresponding to (3) is ob-

tained as [24]

Emean = α(u − v)(
I −u
Au

+
I − v
Av

)~n, (4)

where I is the intensity at the contour point and Au and Av are the areas inside and outside the contour,

respectively.

Functional Based on Variance: Assuming σ2
u and σ2

v as the variances of intensity levels inside and outside

the IVC respectively, the energy functional is defined as [24]

Cvar = σ2
u + σ2

v , (5)

Using (1), the evolution functional corresponding to (5) is obtained as

Evar = α(
I2 −u2 − σ2

u

Au
− I

2 − v2 − σ2
v

Av
)~n, (6)

where u and σ2
u are the mean and variance of the intensities for the pixels inside the contour while v

and σ2
v represent for the ones outside the contour.
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3. Proposed Algorithm

3.1. Why a Circular Model?

IVC images can be segmented with polar ACs as in [21]. When a polar AC with N contour points is

used, the number of parameters that has to be estimated is N , i.e., one radial distance for each contour

point, while with traditional Cartesian ACs, 2N parameters have to be estimated, i.e., two for x and y

coordinates of each contour points. This makes polar contour models less complex and more accurate

for vessel segmentation. On the other hand, to estimate the AP-diameter of the IVC, it is not necessary

to fully segment the IVC contour; and hence, we can exploit a reduced model such as a circle which

only has three parameters and, consequently, can be estimated more precisely. Fig. 3 shows four sample

ultrasound images from IVCs with different shapes. For each case, the IVC contour is highlighted with

yellow colors and its corresponding AP-diameter is shown with green colors. From Fig. 3, one can see

that regardless of the shape of the IVC, a circle fitted inside it can accurately model and estimate the

IVC AP-diameter.

3.2. Proposed Evolution Functional

After exploring a variety of energy and evolution functionals, we heuristically found the following

evolution functional to be useful for segmentation of ultrasound images.

E = α(u − v)(2I −u − v). (7)

With the model defined in Section II.A, it is easy to see that if the contour is entirely inside the IVC,

then Ī = u = min, with Ī being the average intensity for the points on the contour. Consequently, the

evolution functional for contour points is a random variable with the mean value

Ē = (u − v)(2Ī −u − v) = (u − v)2, (8)

resulting in the contour consistently expanding toward the actual IVC boundary. On the contrary, if the

contour is entirely outside the IVC, then Ī = v =mout and the evolution functional for contour points is

a random variable with the mean value

Ē = (u − v)(2Ī −u − v) = −(u − v)2, (9)

resulting in the contour consistently shrinking toward the actual IVC boundary.

To support this finding, we computed the sensitivity of the proposed evolution functional to translation

and scaling of the fitted circle.

Fig. 4 shows this results with the y-axis being the average contour evolution for the points on fitted

circle with α = 10−3. Fig. 4-(a) shows this averaged functional when the circle diameter equals to AP-

diameter but its center is shifted by δx along the x-axis. From 4-(a), one can see that when the fitted

circle is shifted toward the left, i.e, with δx < 0, the average evolutional functional is positive, moving

the fitted circle to the right, and vice versa. The circle evolution only stops when the average evolutional

functional is zero which occurs at δx = 0. One can see a similar result for the transverse axis in Fig. 4-(b).

This proves that with the proposed evolutional functional, the algorithm reaches equilibrium when the
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Figure 3: Estimation of AP-diameter using circle fitting in IVC images with different shapes and qualities.
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Figure 4: Proposed evolution functional versus (a)- δx, (b)- δy, and (c)- normalized circle diameter D/DAP with α = 10−3.

circle centers on the IVC. Fig. 4-(c) shows this result versus the circle diameter, i.e., functional averaged

over the points on the circle with diameter D and concentric with the IVC center. From Fig. 4-(c), one

can see that when the circle diameter is less than DAP of the IVC, the evolutional functional is positive

demonstrating that the contour is expanding toward the actual IVC boundaries. This proves that with

the proposed functional, the algorithm reaches its equilibrium if D = DAP , i.e., when the diameter of

the circle equals to the actual AP-diameter of the vessel.

3.3. Circle Evolution

The evolution functional is utilized to update the parameters of the circle with R and (xc, yc) as its

radius and center, respectively. Initially, the circle is sampled at K points with polar angles θk = 2kπ
N ,

k = 0,1, ...,K − 1, where the normal vector and Cartesian coordinates corresponding to the kth sampled
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Figure 5: The forces generated by the evolution functional in (7) with α = 0.05 and K = 8 (values are adjusted for illustration

purposes).

point notated as

~nk = [cos(θk),sin(θk)]
T , (10)

and

[xk , yk]
T = [xc, yc]

T +R~nk , (11)

respectively. The evolution functional generates forces fk = α(u−v)(2Ik −u−v) along the normal vectors

nk , k = 0,1, ...,K − 1, as shown in Fig. 5. The forces shift the sampled contour points to new positions

governed by

[x̃k , x̃k] = [xc, yc]
T + (R+ fk)~nk . (12)

where fk is the value of the evolution functional at kth contour point. Obviously, the shifted contour

points are not on a circle anymore; hence, a new circle needs to be fitted to the updated contour points.

This is accomplished through minimization of the following energy functional:

Ccircle =
K−1∑
k=0

[(x̃k − x̃c − R̃cos(θk))
2 + (ỹk − ỹc − R̃sin(θk))

2], (13)

where [x̃c, ỹc] and R̃c are the center and radius of the updated circle. By minimizing Ccircle, the new

values for the center and radius of the circle are obtained using the following theorems.

Theorem 1. For a given set of forces, the circle center is shifted by the average of the force vectors fk~nk .

Proof. To find x̃c and ỹc, the energy functional (Ccircle) in (13) is minimized by setting its gradient to
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zero as:
∂Ccircle
∂x̃c

= −2
K−1∑
k=0

(x̃k − x̃c − R̃cos(θk)) = 0, (14)

∂Ccircle
∂ỹc

= −2
K−1∑
k=0

(ỹk − ỹc − R̃sin(θk)) = 0. (15)

Since
K−1∑
k=0

cos(θk) =
K−1∑
k=0

sin(θk) = 0, by subsisting (13) in (14) and (15), one can easily find

[x̃c, ỹc] = [xc, yc] +
1
K

K−1∑
k=0

fk~nk , (16)

highlighting that the circle center is shifted by the average of the force vectors fk~nk .

Theorem 2. For a given set of forces, the circle radius is modified with the average of the force values fk .

Proof. To find the new circle radius R̃, the energy functional (Ccircle) in (13) is minimized by setting its

gradient to zero as:

∂Ccircle
∂R̃

= −2
K−1∑
k=0

[(x̃k − x̃c − R̃cos(θk))cos(θk)

+ (ỹk − ỹc − R̃sin(θk))sin(θk)] = 0.

(17)

By substituting (16) in (17), one determines that

R̃ = R+
1
K

K−1∑
k=0

fk . (18)

3.4. Proposed Active Circle Algorithm

In this paper we set K = 32 and α = 10−4. Note that with a larger value of K , the estimation accuracy

is improved at the cost of increased computational complexity. Similarly, with an smaller value of α the

accuracy is improved at the cost of increased number of iterations required to reach the convergence.

The flowchart of the algorithm is shown in Fig. 6. As the first step, the proposed algorithm requests

to manually locate the IVC. This is simply performed by a mouse click on a point inside the IVC. The

initial circle centers at this selected point and to avoid convergence to a wrong boundary, its radius is

assumed to be as small as 6 pixels. In the second step, we compute the forces fk using (7). In the third

step, these forces to evolve the circle parameters using (16) and (18). Steps two and three are repeated

until either a convergence or maximum number of iterations, i.e., 5000 iterations is achieved. In this

paper, we assume the algorithm has converged, if the largest force computed in the second step is less

than 10−3 pixels. This process is repeated for the next frames of the videos.

3.5. Complexity Analysis

The complexity of the proposed active circle algorithm is obviously much less than the state-of-

the-art algorithms. The algorithm obtains its low complexity from: 1) the simplicity of the proposed

evolutional 2) the simplicity of the circle model which only has three parameters to estimate. In this
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Figure 6: Flowchart of the proposed active-circle algorithm.
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(a) (b) (c)

Figure 7: First frame of three sample IVC videos rated as (a)- good, (b)- average, and (c)- poor quality videos.

Section, we estimate the computational complexity of the active-circle algorithm using the number of

floating point operations (flops) [25]. Assume Niter as the average number of iterations and Amax = 5000

pixels as the maximum area of the circle. From equations (7), (16), and (18), one can see that the

maximum number of flops for each frame is Nf lops = (2Amax + 3K + 5)Niter ≈ 50 million flops, i.e., with

an average i7-3770 Intel processor, estimation of AP-diameter from each frame requires less than 1

millisecond.

4. Results

The experimental data was collected from eight healthy male subjects with ages from 21 to 35.

The study protocol was reviewed and approved by the Health Research Ethics Authority. The IVC was

imaged in the transverse plane using a portable ultrasound (M-Turbo, Sonosite-FujiFilm) with a phased-

array probe (1-5 Mhz). Each video has a frame rate of 30 fps, scan depth of 19cm, and a duration of 15

seconds (450 frames/clip). Fig. 7 depicts the first frame of three subjects with different qualities which

are graded, based on their quality and clinical impression, by three experts, including Dr. Andrew

Smith as a point-of-care ultrasound expert and two additional clinicians. Note that although the sample

image in Fig. 7-(b) seems to have a better quality than the one in Fig. 7-(a), it is rated as average quality

due to its more fuzzy boundaries which degraded the accuracy of the algorithm.

4.1. Comparison of the proposed functional with state-of-the-art functionals

In this Section, we first compare the proposed evolution functional with manual measurements

made by Dr. Andrew Smith, and two state-of-the-art evolution functionals in eqs. (4) and (6). From

Fig. 8, one can see that in all three investigated videos, the active circle algorithm using the two state-

of-the-art functionals fail to track the relatively fast AP-diameter variations in the first video. This is

because, in IVC images Au � Av , and hence in eqs. (4) and (6), the second term is dominated by the

first term. Consequently, the balance between the intensities inside and outside the contour is not es-

tablished. Note that in Fig. 8-(c) which presents the results for the third subject, due to the extremely

poor quality of this video, the manual measurement is partially missing for the frames in range 297 to

332, as the expert was unable to measure the AP-diameter. The proposed algorithm still estimate the

AP-diameter although there is no ground truth for these frames.
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Figure 8: IVC diameter of a typical IVC video as measured by the proposed functional and two functionals in equations (4) and

(6).

4.2. Influence of the parameter α on the accuracy of the proposed algorithm

In this section, we investigate the sensitivity of the proposed algorithm to the value of α for the three

videos depicted in Fig. 7. For this study, we use root mean square (RMS) of error as the performance

criterion, with the error e defined as the the difference between the AP-diameter estimated from the pro-

posed algorithm and the manual measurement. For the first two subjects, the RMS of error is calculated

over all 450 frames, but for the third video, it is calculated over the first 150 frames, where the manual

measurement seems to be reliable. From Fig. 9, one can easily see that in all three cases, the proposed

algorithm performs well with α < 5×10−4. Hence, for the rest of our experiments, we set α = 10−4. Note

that with a smaller α, more accurate results can be obtained in the cost of more number of iterations

required for convergence.

4.3. comparison of the proposed algorithm with state-of-the-art segmentation algorithms

The proposed active circle algorithm was also compared with expert manual measurement, the two

classic AC algorithms - Chan-Vese [26] and Geodesic [27], and four state-of-the-art polar ACs- PSnake

[28] and variational polar AC [29], M3 algorithm [21], and Ad-PAC [31], and star-Kalman algorithm

[32].

Fig. 10-(a) presents the results for the video depicted in Fig. 7-(a). This figure illustrates that only the
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Figure 9: The RMS of error for the proposed algorithm w.r.t. the parameter α for the three sample videos depicted in Fig. 7.
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Figure 10: AP-diameter for the three samples videos depicted in Fig. 7, as measured by the proposed algorithm, manual extraction,

and four other algorithms.

active circle accurately tracks and segments the IVC and follows the variations in manual extraction.

M3 algorithm fails to track, whereas the others struggle to capture the temporal variation.
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Fig. 10-(b) details the results for the video depicted in Fig. 7-(b) which suffers from artifact partially

occluding the vessel wall. Here, it is evident that the proposed algorithm again tracks the temporal

variations of the manual extraction.

Fig. 10-(c) details the results for the video depicted in Fig. 7-(c) which has a poor quality (the worst

among all eight investigated videos). In this case, both the proposed algorithm and manual extraction

roughly estimated the AP-diameter for the first 150 frames and then they failed.

Table 1 presents the RMS of the AP-diameter estimation error for the proposed algorithm and other

seven algorithms and for all eight studied subjects, with the last column showing the results averaged

over all subjects. Note that videos no. 1 to 3 are the ones depicted in Fig. 7. Except the third subject

where the manual measurement is reliable only for the first 150 frames (see Fig. 10-(c)), for the other

seven subject, the RMS of error is calculated over all 450 frames. From this table, one can see that for

all eight studies subjects, the proposed algorithm outperforms other seven methods. The second best

performance is obtained from M3 algorithm. One can also see that the Star-Kalman algorithm which

fits an ellipse to the IVC contour performs much poorer than the proposed active-circle algorithm. The

worst average performance is obtained from the two classic AC algorithms, i.e., Chan-Vese and Geodesic

AC, showing that polar ACs perform in average more accurate than the Cartesian ACs because their

larger degree of freedom, i.e, the number of parameters that has to be estimated.

Table 1: RMS of the AP-diameter estimation error obtained using the proposed algorithm and seven other methods.

PPPPPPPPPPP
Method

Subject no.
1 2 3 4 5 6 7 8 Ave

Proposed algorithm 0.10 0.16 0.26 0.16 0.25 0.25 0.1 0.11 0.17

Var. Polar [29] 0.38 0.25 0.49 0.27 0.42 0.28 0.24 0.52 0.36

Psnake [28] 0.66 0.50 0.52 0.5 0.4 0.33 0.49 0.71 0.51

M3 [21] 0.53 0.30 0.24 0.30 0.31 0.32 0.41 0.42 0.35

AdPAC [31] 0.21 0.17 0.2 0.17 0.16 1.1 1.8 0.13 0.39

Star-Kalman [32] 0.34 0.45 0.44 0.45 0.58 0.54 0.37 0.25 0.43

Chan-Vese [26] 1.77 0.39 0.54 0.39 0.38 0.33 0.55 0.73 0.66

Geodesic [27] 1.89 0.17 0.54 0.17 0.38 0.33 0.55 0.73 0.60

4.4. More Comparison Metrics

In table 2, we compare the proposed algorithm and manual estimation using more metrics, where

some of these metrics are also clinically useful to assess patient’s status. In this table, eave is the average

estimation error, averaged over the frames in each video; σe is the standard deviation of the estimation

error e for the frames in each video, and |e|max is the maximum error. Note that eave, except for the

third subject where only the manual measurements for the first 150 frames are reliable, is calculated

over all 450 frames. Since the values of Dmax and Dmin are useful for the medical purposes, we have also



15

compared them obtained from both the algorithm and manual measurement. Note that subjects no. 1 to

3 are the ones depicted in Fig. 7. Furthermore, note that for subject no. 3, i.e., the lowest quality video,

these metrics are only calculated for the first 150 frames, where the manual extraction is relatively

reliable, while for other seven subjects, they are computed over all 450 frames. From table 2, one can

see that except for the fourth subject, in other cases, Dmax estimated from the proposed algorithm is

very close to the one obtained from the manual measurement and for 5 out of the eight studied subjects,

the error for estimation of Dmax is less than 2mm. Furthermore, in all cases the average error is positive

indicating that the proposed algorithm usually overestimates the AP-diameter although this bias is very

small and is mostly less than 2mm. Note that this overestimation is mainly due to the fact that the

expert extracts the AP-diameter from the inside boundary of IVC. The amount of bias can simply be

controlled by adding a constant value to the functional. In all cases, the value σe is small indicating that

the proposed algorithm performs consistent over different frames of each video.

Table 2: Summary of the results of eight studied IVC videos.

PPPPPPPPPPP
Metric

Subject no.
1 2 3 4 5 6 7 8

eave (cm) 0.03 0.07 0.07 0.18 0.29 0.37 0.04 0.08

σe (cm) 0.06 0.07 0.14 0.08 0.08 0.13 0.09 0.11

|e|max (cm) 0.06 0.29 0.43 0.48 0.57 0.75 0.41 0.44

Dmax alg. (cm) 2.39 2.59 2.3 1.93 2.35 2.29 2.14 2.33

Dmin alg. (cm) 0.67 0.75 1.7 1.37 1.69 1.38 1.54 1.16

Dmax man. (cm) 2.43 2.43 2.25 2.41 2.36 2.08 2.21 2.39

Dmin man. (cm) 0.7 0.66 1.36 0.94 1.34 1.22 1.42 1.21

4.5. Influence of speckle removal filtering on the performance of the proposed algorithm

In this subsection, we investigate the influence of different speckle-removal filters on the perfor-

mance of the proposed algorithm. For this study, we used the proposed algorithm for the images

smoothed by either of the the following filters: Bilateral filter [33], 3D block matching filter (BM3D)

[34], speckle reducing anisotropic diffusion (SRAD) [35], Wiener filter [36], and median filter.

Fig. 11 shows the AP-diameter estimated using the proposed algorithm with each of the above speckle

removal filters and have shown their results for the subjects depicted in Fig. 7. From Fig. 11, one

can see that none of these filtering techniques significantly improve the performance of the proposed

algorithm. This is mainly due to the fact that the speckle noise in ultrasound images includes useful

information that can even improve the performance of computerized algorithms. On the other hand, as

it was discussed in Section III, the proposed algorithm relies on the mean value of the local distributions

which usually is not significantly changed by speckle removal filters.

Table 3 presents numerical results to validate this argument. One can see that except bilateral filter,
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Figure 11: Estimated AP-diameter versus the type of speckle removal filter.

other speckle-removal filters even degrade the performance and the improvement obtained from bilat-

eral filter is negligible.

Table 3: RMS of error obtain from the proposed algorithm with different speckle removal filters.

PPPPPPPPPPP
Metric

Subject no.
1 2 3 4 5 6 7 8

No. filter 0.10 0.16 0.26 0.33 0.25 0.25 0.10 0.12

Bilteral filter [33] 0.11 0.16 0.28 0.32 0.24 0.24 0.10 0.11

BM3D [34] 0.48 0.16 0.27 0.41 0.68 0.26 0.10 0.11

SRAD [35] 1.78 1.81 0.34 0.50 0.78 0.73 0.10 0.11

Wiener filter [36] 0.48 0.17 0.26 0.34 0.43 0.25 0.10 0.12

Median filter 0.48 0.17 0.26 0.36 0.53 0.25 0.10 0.12
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5. Conclusion

In this paper, a novel active circle algorithm is developed for estimating the AP-diameter of the

IVC in ultrasound imagery. It has been shown that the diameter of a circle fitted inside the IVC can

accurately model the AP-diameter and therefore, is a useful tool capable of supporting further clini-

cal research of using the IVC to guide fluid resuscitation. Furthermore, a novel evolution functional

has been proposed and used for updating the circle parameters. Experimental results suggest that the

proposed algorithm performs very close to the expert manual measurements. The proposed algorithm

only failed under extremely low image-quality scenarios when the AP-diameter was even unable to be

measured by the expert.
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