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Deep Learning Strategy for Accurate Carotid Intima-Media Thickness
measurement: an Ultrasound Study on Japanese DiabetCohort

Abstract

Motivation: The carotid intima-media thickness (cIMT) is ampbortant biomarker for
cardiovascular diseases and stroke monitoring. $higly presents an intelligence-based,
novel, robust, and clinically-strong strategy thaes a combination of deep-learning (DL)

and machine-learning (ML) paradigms.

Methodology: A two-stage DL-based system (a class of Ather@eE¥gsystems) was
proposed for cIMT measurements. Stage | considtadconvolution layer-based encoder for
feature extraction and a fully convolutional netiwbased decoder for image segmentation.
This stage generated the raw inner lumen bordetgam outer interadventitial borders. To
smooth these borders, the DL system used a cascaagel || that consisted of ML-based
regression. The final outputs were the far wall émrntima (LI) and media-adventitia (MA)
borders which were used for cIMT measurements. & megre two sets of gold standards
during the DL design, therefore two sets of DL syt (DL1 and DL2) were derived.

Results A total of 396 B-mode ultrasound images of thghtiand left common carotid artery
were used from 203 patients (Institutional Reviemail approved, Toho University, Japan).
For the test set, the cIMT error for the DL1 and2D&ystems with respect to the gold
standard was 0.126 + 0.134 and 0.124 £ 0.100 mspergively. The corresponding LI error
for the DL1 and DL2 systems was 0.077 + 0.057 afd@Dx 0.049 mm, respectively, while
the corresponding MA error for DL1 and DL2 was B3 0.105 and 0.109 + 0.088 mm,
respectively. The results showed up to 20% impram@mn cIMT readings for the DL

system compared to the sonographer’'s readings. Sadistical tests were conducted to

evaluate reliability, stability, and statisticagjsificance.

Conclusion The results showed that the performance of theoBded approach was superior
to the nonintelligence-based conventional methbds uise spatial intensities alone. The DL

system can be used for stroke risk assessmenigdunitine or clinical trial modes.

Keywords: cardiovascular diseases; stroke; ultrasound scangtid intima-media thickness;

intelligence; deep learning; machine learning; seggattion; accurate; reproducible.



1. Introduction

Stroke due to cardiovascular disease (CVD) causesi¢ath of approximately five million

people and disability among another five millioropke around the world [1]. In the USA,

795,000 people suffered from a stroke in 2010, ioguslirect medical care costs of
approximately USD 33 billion and indirect costsasbund USD 20.6 billion [2]. Stroke is

generally caused by the blockage or rupturing efabimmon carotid artery (CCA) or internal
carotid artery (ICA) that supply blood to the brairhis blockage or rupture is triggered by
the formation of plaque along the arterial wallagRe is usually composed of cholesterol,
fatty substances, cellular waste products, calcamd, fibrin and is generally formed between
the lumen-intima (LI) and media-adventitia (MA)enfaces [3].

Carotid intima-media thickness (cIMT) is the mearpendicular distance between the LI
and MA interfaces and is an important biomarker@wDs. A comprehensive risk analysis
study on 5858 subjects revealed that cIMT vakid8 mm led to an increased stroke rate
[4]. In 2006, the findings of Bots et al. [5] shawthat cIMT was related to the presence of
atherosclerosis in the coronary artery. Risk pteshicmodels developed by Nambi et ]
showed an increase in the CVD risk when cIMT arafpé information was added. The
study of Meuweset al [7] suggested that an increase in cardiovascidlawas related to an
increase in mean cIMT. Ikedat al [8] also confirmed the significant associationvizn
cIMT and CVDs. All of the abovementioned studiedligated that an increase in
cardiovascular events (myocardial infarction) wasrelated to an increase in the mean
cIMT.

Although Suri et al. have diligently worked to sdandize cIMT measurements [9], there are
still challenges regarding accuracy and reprodlititwhen it comes to the CCA, ICA, and
bulb regions. Several reasons contribute to thiduding the variability in the studies with
regards to nationality, ethnicity, disease, ageigsoetc. In this regard, a concerted effort was
made to construct a multiinstitutional dataset gismultiple ethnicities and varying age
groups [10]. There are other technical challengss@ated with the cIMT measurement. For
example, the images are obtained through a B-midesound (US) using a linear probe that
is manually operated. The CCA extends from the jawhe shoulder bone; however, the
linear probe is unable to cover the entire caratigry length and has to be performed in
sections (i.e., distal, mid, and proximal). The C@#age quality also depends on external
factors such as speckle noise, probe position, peskion, probe orientation (i.e., anterior,

posterior, or posterior lateral), probe contacthwilhe skin, linear frequency usage, gain
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control, dynamic range, and features such as hacnama compound imaging [11,12]. The
traditional manual segmentation of US images is/skrror-prone, and subject to intra- and
interobserver variability. Therefore the measureneérciMT through automated methods is
a growing field of interest. The previously-desedbcompletely-automated methods are

briefly discussed here.

Molinari et al [9] compared four automated techniques for cIMTasuwgement. The first
method was Completely Automated Layers Extracti@ALEX), which is based on the
integration of three approaches: feature extractioa fitting, and classification. The second
was Completely Automated Robust Edge Snapper (CARES, which is based on the
combination of feature extraction and edge detacfitne third methodology was Completely
Automated Multiresolution Edge Snapper (CAMES), ebhis based on a multiresolution
approach and uses the concept of scale—spacel&S)inally, the fourth methodology was
the Carotid Automated Double-Line Extraction Systemhich is based on edge flow (an
edge-detection technique based on US texture agd edergies) [15]. Sabet al.[16]
proposed a fully-automated system (AtheroEdge ™ cffT measurements, whilikkedaet

al. [17] proposed a cIMT measurement system wittlaasification paradigm that used a
combination of global and local strategies involyvtexture-based entropy and morphology.
Saba et al. [18] later developed a fully-automatedd-based solution called AtheroCldld

for cIMT measurements. lkedat al. [19]recently proposed an automated segmental cIMT
measurement technique that used an automated tgébgmoint as a reference marker. The
abovementioned methodologies use various featuoeh ®s greyscale median, pixel
classification, gradient edges, SS, or a combinatiothese features to predict the cIMT risk
assessment. Despite their strong contributionsetieaternal factors make the spatial-based
methods prone to variability and a lack of robussne@hen it comes to completely automated

designs.

Another challenge in the segmentation of wall ifatees is the presence of shadows on the
far wall due to calcium in the near wall. This casi®order position errors in the detection of
LI and MA, even though the average cIMT error idlwelow the acceptable level. Previous
methods took advantage of multiresolution approadoeincrease the processing speed;
however, the feature extraction at multiple levelss not derived, thus lacking a
comprehensive spatial deck of information. Anotihgportant point to note is that carotid US
cohorts contain shape information that can be &xhria neural networks, the intelligence

power of which is unsurpassable. This current deaming (DL)-based study removes all of
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the abovementioned challenges to provide relighditd robustness. The spirit of this study
was motivated by the work of Suri et al., who apglmachine intelligence in different fields
of medicine including gynecology, urology, dermatp}, neurology [20—23], and recently in
endocrinology [24].

This study proposed the same intelligence-baseadman [25,26] for cIMT measurements.
It was hypothesized that by training deep layersairal networks, the DL-based system
could produce more reliable and accurate resulenvdompared to previous methods. Unlike
machine learning (ML), DL can generate its owndeas and thus eliminate the need for less
accurate feature-extraction algorithms. The higlelldeatures of DL are more distinctive
than the features of conventional methods, thusltieg in a more accurate output. The
superior training of the deep layers within the Bystem allows the further provision of
better regional segmentation output compared toctveventional methods. The proposed

DL-based system is implemented in four phases @asrsin Fig. 1.

Multiresolution-based Stage I: DL-based ' Stage II: Boundary extraction, ’
pre-processing ’ regional segmentation calibration and measurement

Performance Analysis

Figure 1. Overall concept of the DL-based cIMT meament system.

Phase | is primarily adapted for data preparatibremoves the nontissue region [27] and
prepares the image data using a multiresolutiomogah to speed up the DL paradigm. This
phase is also responsible for generating the crakdation protocol that splits the cohort
into sets of training and testing carotid scansasehll is the heart of the DL system that
performs the number crunching and consists of egrcadd decoder neural networks [28,29].
In this phase, deep intelligence is derived by ey controlling the number of loops (up to
20,000). The training system uses two kinds of gstlmhdards, namely, lumen regional
information and interadventitial regional infornmati which leads to the design of two DL
systems: DL1 and DL2. Phase lll performs the bounaxtraction that changes regional
information to vertex point information (i.e., Lhd MA boundaries or the so-called raw DL
borders). This phase also ensures smooth boundariesh attempts to get closer to the
ground truth (GT) using a ML-based system, whickumm increases the overall accuracy of
the system. The cIMT values are computed from theahd MA far walls using the
standardized polyline distance metric method (POM3cussed in Appendix A). The last
phase implements performance analysis alongside strstification. Four statistical tests
were used to assess the statistical significaraeeg t-test, Mann—Whitney test, Wilcoxon
test, and the Kruskal-Wallis test.



In this paper, Section 2 discusses the data cmltfeend patient demographics. Sections 3
and 4 present the methodology and results, respéctiSection 5 shows the performance
evaluation, and Section 6 discusses the statigestd and risk analysis. The discussion and
benchmarking are presented in Section 7, and,lyinie conclusions are presented in

Section 8.

2. Data Demographics and US Acquisition

In this study, 204 patients (157 male and 47 fejnalth a mean age of 69 + 11 years were
selected. One left carotid image was not availahkle of the 408 images, therefore the

database initially contained 407 images. Eight ¢afiotid and three right carotid US images

were rejected due to a lack of greyscale tissusrimdition (including one patient whose left

and right carotid images were removed). Thus th& filataset consisted of 396 carotid scans
(left and right) from 203 patients. The sonograghéar wall cIMT readings were also

available for 193 patients (346 US scans).

Informed consent was obtained from all patients tedInstitutional Review Board (IRB),

and ethical approval was granted by Toho Universigypan. The mean hemoglobin, glucose,
low-density lipoprotein cholesterol, high-densitydprotein cholesterol, and total cholesterol
values were 5.8 + 1.0, 108 = 31, 99.80 = 31.304GQ 15.40, and 174.6 = 37.7 mg/dL,

respectively. Of the pool of 203 patients, 92 wergular smokers. Hypertensive and high-
cholesterol patients were receiving adequate medicegor example, 93 patients were taking
statins to lower their cholesterol levels and 84renveeceiving renin—angiotensin system

antagonists. Blood pressure statistics for theeptiwere not available.

A sonographic scanner (Aplio XV, Aplio XG, Xariop$hiba, Inc., Tokyo, Japan) equipped
with a 7.5 MHz linear array transducer was useex@mine the left and right carotid arteries.
All scans were performed under the supervisionnoé@perienced sonographer (15 years of
experience). High-resolution images were acquiredpar the recommendations of the
American Society of Echocardiography Carotid IntiMadia Thickness Task Force. The

mean pixel resolution in the database was 0.09% tm/pixel.

Manual tracing of the lumen and adventitia bordews performed using ImgTracer™
(AtheroPoint™, Roseville, CA, USA), which is a udeendly commercial software [30].
The number of points varied with the length of tagotid artery. The software zooms into

the image for better visualization of the wall grdvides a set of traced (x,y) coordinates.
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3. Methodology

The heart of the system is an intelligence-based@tform that supports the extraction of
deep features and thereby eliminates the needdoritams that perform poorly for feature
extraction. The platform consists of two DL netwarlencoder, which is used for feature
extraction [28], and decoder, which is used foriagegl segmentation of the lumen region
(LR) or interadventitial region (IAR) [29]. The Dlsystem design allows the LR
segmentation to be run in parallel with the IAR rmegtation. This is called the regional
segmentation block, which is the second phase @fsifstem. Before feeding the binary
training images for a LR and an IAR into the DL ¢kpthe system design expects the input
data to be prepared accordingly for the DL blodke (s0-called multiresolution block or
phase | as shown in Fig. 2). The encoder—decodeinase Il of the DL system. The image
processing pipeline is always cascaded with a fumer to smooth or refine the outputs,
therefore a ML-based system is used to extracatkhd MA-far borders as part of the phase
lll subsystem. Finally, performance evaluatiomnmpiemented to benchmark the results. This
is phase IV of the entire pipeline where the clMTmeasured and undergoes statistical
testing. A detailed description of the system gvah in Fig. 2, and the details of these phases

and their mathematical representations are disdussew.

Carotid image DB

Ty A R

Cropping - Down sampling

Multiresolution

Deep Learning (stage-I)

Pre-processed Images
- Decoder (FCN) * * Decoder (FCN) -
j| L Smary Gold H LI Scgmentation ) | (_MA Segmentation ) H VA Binary Gold
andar Encoder (VGGI16) Encoder (VGG16)
| Segmented LI Images | |Segmented MA lmagesl
Boundary Extraction (stage-11)
I'[ Gold Standard LI/MA Detection and Calibration )<« Up g | :

—_————eeee e e e e e e e e —

: cIMT Data Gold Performance |

| Standard Evaluation |

Figure 2. The four phases of a DL-based systenaés of AtheroEdge™ system,

AtheroPoint™) shown in arrows. Phase |, multiresohy phase I, the DL-based system,;

phase Ill, boundary extraction and calibration, phdse 1V, performance analysis.
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Multiresolution as phase |

The objective of phase | was to prepare the datadaptability to the DL system, which
required the greyscale training cohort to be crdgpeemove the nontissue information [27].
This automated cropping ensured that the tissuemegas retained. The greyscale images
were reduced by a further 10% to ensure that v@mydontrast regions around the edges of
the image were eliminated. These greyscale imaga® wWownsampled to improve the
processing speed of the DL system under the msdiudion paradigm. In the data
preparation block, the binary mapped images wes@ @eated which were mapped on a one-
to-one basis with the greyscale downsampled cardd scans. If the DL system was
prepared for LR extraction, then binary maps c@woased to the LR. Conversely, if the DL
system was prepared for IAR extraction, then theaflyi maps corresponded to the IAR.
These LR and IAR binary maps were considered agdalte standard, as their borders were

manually traced by experts.
DL as phase Il

The DL-based system consisted of two subsystemsoden and decoder. The encoder
extracted features from the images while the dacodesated segmented images from the
features. The encoder consisted of 13 convolutgers and five max-pooling layers of the
VGG16 network [31]. Details of the decoder netwark given in Appendix B. The weights
were initialized using pretrained Visual Geometrso® (VGG) weights. The convolution
layers generated high-level features from the ingata, and the max-pooling layers

downsampled the input feature values.

The decoder consisted of three upsampling layetheofully convolutional network (FCN)
[29]. The upsampling layers upsampled the inputufes but with a twist. It employed two
skip operations that helped recover spatial infaimnaresulting in highly accurate and crisp
segmentation images. Additional information abdwe skip operation is presented in the
discussion section. The upsampled layers werealiziéid using VGG weights. The cross-
entropy loss function employed for segmentation:was

1

Octass(B1, B2) = IN| Yinen DleL lgzn(l) log ﬁln(l) 1)

wherep; is the predictiong, is the gold standard or GT ,is the total number of classes, and

N is the total number of images. The loss functi@s wefined as the difference between true
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and predicted probability distributions. The DL-bdssystem ran for 20K iterations, and
intermediate outputs were collected for 4K, 8K, 12iKd 16K iterations (K = 1000). The
segmented images were fed into phase Il of theesysor LI and MA interface extraction

and calibration.

Boundary extraction as phase Il

This stage extracted the information that helpethér quantify the plaque burden or cIMT.
Thus from the binary region, the LI-far and MA-tawsrders were extracted using the LR and
interadventitial segmented regions. This requirefinement by following the plaque
morphology whilst smoothing the borders and impngvihe accuracy of the DL system. The
refinement used a ML-based approach that adapéecrtiss-validation protocol to determine
accuracy. It should be noted that LI far walls & far walls were independent of the ML-
based system and can be mathematically expressedeagession or least squares model if

GT (or ideal) boundaries are given as:

I[2NXPl:[x; Y1 - Xy yy]" (2)
and the raw DL borders extracted using the DL-basethod are given as:

D[2N x P]:[a; by .. ay by]" (3)

where N represents the total number of patients Bntepresents the total points on the
border. In the adaptation of the cross-validatiootqrol, the DL boundaries were divided
into two sets: a training seP{,) and a test sei(,.). Correspondingly, GT boundaries were
also divided into training set#,() and test setsl(,). Using the linear model of least squares
presented in [30], one can mathematically exprbi&s ds a norm equation given |Hs—
Deg||?. Letting @, be the unknown training coefficient matrix of si#x P], one can

compute it as:

(/P\tr = (DZr'Dtr)_l-DZr-Itr (4)

where"." represents the multiplicative product. These ingincoefficients were used to
estimate the test boundariek,] as the product of training coefficients and rasttDL

borders using:

7te = fptr- D, (5)



Finally, the DL borders underwent cIMT measurenmanpresented in Appendix A. The last

stage (phase V) consisted of performance evaluatsoshown in Fig. 2.
Performance evaluation as phase IV

The performance of the DL system required computatif the LI and MA far wall position

errors. These values were compared against the @3$timate the precision of merit (PoM).
These calculations are shown in Appendix C. Thesdopmance metrics were then
compared against other systems for benchmarkirggrited in the performance evaluation

section).

4. Experimental Protocol and Results

The experimental protocol primarily consisted of thptimization of DL with respect to a
number of iterations independent of LI and MA wadterfaces. As there were two DL

systems corresponding to two GTs, the results @®epted with respect to GT1 and GT2.
4.1 Experimental protocol

In this study,K10 cross-validation (i.e 90% training dataset and 10% testing dataset) was
used for training and testing. In thisoss-validation, the dataset was randomly divithal
10 parts and 10 combinations were formed from thgseés. Each combination contained

nine parts for training and one part for testing.

The optimization protocol was implemented for 4K, 82K, 16K, and 20K iterations (K =
1000). The iterations were evaluated for LI, MAdadMT errors to study their effects on the
encoder and decoder (shown in Fig. 3) and thelityabd smooth out the glitches against the
gold standard. The LI, MA, and cIMT error valueteafML-based calibration were further
recorded to show the least error value that smdothe output borders and improved the
accuracy of the entire DL system.

A sample visual output of the DL-based system fpirase Il is shown in Fig. 4. In addition
to LI, MA, and cIMT error evaluations, comprehergsielinical data analyses were also
performed (i.e., correlation of age vs. cIMT, rkatification based on the cIMT threshold,

and receiver operating characteristic (ROC) ansllysi

4.2 Results
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The results were computed for 4K, 8K, 12K, 16K, &K iterations (K = 1000). The plots
for error versus iteration with respect to GT1 &d2 are shown in Fig. 5(a) and (b),
respectively. The LI, MA, and cIMT error values fall iterations, including fusion and
calibration, corresponding to GT1 and GT2 are preeskin Tables 1 and 2, respectively. The
term fusion refers to the best result among althitens. The cIMT values in the fusion rows
of Tables 1 and 2 refer to the values obtained fthen best optimized LI and MA wall
interfaces among all iterations. All values in ttaibration rows of Tables 1 and 2 indicate
the final values after ML-based calibration waslegab(phase Il, Fig. 2). The results indicate
that the optimized result for LI error with respéztGT1 was obtained at 16K iterations (i.e.,
0.135 = 0.076 mm, which later increased marginallye optimized result for MA error with
respect to GT1 was obtained at 20K iterations, @€.71 + 0.153 mm). The best cIMT error
with respect to GT1 was computed from the fusion16K iterations of LI interface
optimization and 20K iterations of MA interface mpization (i.e., 0.128 = 0.124 mm.) After
ML-based calibration, the LI, MA, and cIMT errorere further reduced to 0.077 £ 0.057,
0.113 £ 0.105, and 0.126 £+ 0.134 mm, respectively.
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Figure 3. The combination of encoder—decoder blatkise central DL system (a class of
AtheroEdge™ system, AtheroPoint).
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DL LI-Far (Red line)

GT LI-Far (Yellow dotted)

GT MA-Far (Yellow dotted) DL MA-Far (Green linc)

Figure 4. The DL-based system showing GT and Dputst
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Figure 5. Plots for errors versus iterations agdmsGT1 and (b) GT2. Cal, calibration

output; cIMT error (blue); LI error (green); MA err(red).

13



Table 1. LI, MA, and cIMT error values against GGrey boxes show the optimized results

for the corresponding LI, MA, and cIMT errors. *K1800.

DL LI error w.r.t|MA error w.r.t cIMT error w.r.t
Iterations| GT1 (mm)| GT1 (mm) GT1 (mm)
4K* 0.161+0.090, 0.230+0.197 0.177+0.179
8K* 0.138+0.078 0.187+0.149 0.146+0.13
12K* 0.135+0.061] 0.177+0.122 0.142+0.124
16K* 0.135+0.076 0.178+0.153 0.142+0.132
20K* 0.135+0.078 0.171+0.153 0.140+0.149
Fusion | 0.135+0.076 0.171+0.153| 0.128+0.124
Calibrated 0.077+0.057 0.113+0.105| 0.126+0.134

Table 2. LI, MA, and cIMT error values against GGtey boxes show the optimized results
for the corresponding LI, MA, and cIMT errors. *K1800.

DL LI error w.r.t|MA error w.r.{cIMT error w.r.1
Iterations| GT2 (mm) | GT2 (mm) GT2 (mm)
4K* 0.143+£0.073 0.198+0.149| 0.148+0.134
8K* 0.144+0.088 0.168+0.150{ 0.136+0.123
12K* 1 0.149+0.082 0.164+0.137, 0.136+0.123
16K* |0.135x0.073 0.164+0.132, 0.131+0.121
20K* 0.131+0.062 0.164+0.127 0.124+0.11
Fusion | 0.131+0.07 0.163+0.132| 0.124+0.11
Calibrated 0.077+0.049 0.109+0.088| 0.124+0.10

Similarly, the best results for LI and MA error opization using the DL-based system with
respect to GT2 were obtained at 20K iterations wece 0.131 + 0.073 and 0.163 + 0.132
mm, respectively. The cIMT error for the LI and M#&terfaces was 0.124 + 0.11 mm. After
calibration, the LI, MA, and cIMT error values wdrgther reduced to 0.077 + 0.049, 0.109
+ 0.088, and 0.124 + 0.10 mm, respectively.

The correlation coefficient (CC) for DL1 with regp¢o GT1 was 0.96F < 0.0001) and for
DL2 with respect to GT2 was 0.9B € 0.0001). Therefore the CC results show a higjveke

of correlation between the DL outputs and the spoading GTs. The correlation plot for
DL-based system (DL1 and DL2) output with respecGITl and GT2 is shown in Fig. 6.
TheP-value for both plots was <0.0001, thus showinggh leorrelation and significance that
satisfies the null hypothesis. These results ptbe¢ the DL-based system is accurate and

efficient. The performance of the DL-based systemvialuated in the next section.
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The results of the DL-based system with respecG1d and GT2 were analyzed using
Bland—-Altman plots. The corresponding figures wiference to GT1 and GT2 are shown in
Fig. 7.
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Figure 6. Correlation plots of DL-based systemsregda) against GT1 and (b) GT2.
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Figure 7. Bland—Altman plots of the DL-based systeith reference to (a) GT1 and (b)
GT2.

5. Performance of the DL Systems and Variability Anaysis

Two sets of analyses were performed to evaluatgénmrmance of the DL systems. The
first set had four parts: part (i) focused on estihg DL against manual expert tracers, part
(i) was against the sonographer’s readings whiehewaken in real time in the US vascular
laboratory, part (iii) evaluated signed and unstjoMT errors of the DL1 and DL2 systems,
and part (iv) compared the DL system against preshiedeveloped methods [33]. The
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second set had two parts: part (a) consisted ointieeoperator variability between the two
DL systems (DL1 and DL2), and part (b) consistedntérobserver variability between the
two GT systems (GT1 and GT2).

5.1 Comparison of DL against expert manual tracing

The cross-validation study was performed to chbekeffectiveness of the DL-based system
when compared with other gold standards or grouathg (GTs). The correlation curves
showing DL1 with respect to GT2 and DL2 with redpecGT1 are presented in Fig. 8(a)
and (b), respectively. The CC values between DIdL@h2 and DL2 and GT1 were 0.94 and
0.93, respectively, thus showing the strong intatienship between the DL and GT. TRe
value for both was <0.0001, which satisfies thd hypothesis. This also shows the strong
statistical significance and stability of the prepd DL-based system.
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Figure 8. Correlation plots of (a) DL1 versus G2l éb) DL2 versus GT1.

5.2 Comparison of the DL against the sonographerseadings

This study also provided the sonographer’s readihgIMT [symbolized as Sono cIMT
(ave.)]. The sonographer’s reading was taken atsameple point (or one location) or two
sample points (two locations) along the CCA. Tleiading typically consisted of the highest
two plaque readings above the baseline but toak gohsideration the distance between LI
and MA. The mean value from the two locations wasputed for each image. As discussed
in Section 2, of the 203 patients (396 imageshdriginal database, sonographer far-wall
cIMT readings were only available for 193 patief#46 images). Therefore the comparison
was conducted for the 346 available images. Therawgments (%) in the DL results
compared to the sonographer’s readings are showabte 3. Row one (R1: CC) shows the
CC between (i) the sonographer’s reading and thedading (0.80) and (ii) DL1 and GT1
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(0.96), showing an improvement of 20%. Row 2 (RZ)&hows the CC between (i) the
sonographer’s reading and the GT reading (0.83) (@hdL2 and GT2 readings (0.95),
showing an improvement of 14.5%. The correlatiast fdr the sonographer’s cIMT readings

with respect to GT1 and GT2 is shown in Fig. 9.

Table 3. Percentage improvement in DL readings @wetpto the sonographer’s readings.

Coefficient of correlation (CC) between three kimds
cIMT (ave.) readings: sonographer (Sono), deemiegr(DL1
and DL2 systems) and ground truth (GT1 and GT2)

Percentage Improvement of
deep learning (DL) reading ov¢
sonographer (Sono) reading

1%

Sono cIMT (ave.) and DL1 cIMT (ave.) against GTMT (ave.)

Attribute Sonovs. GT1 DL1Vs. GT1
R1.CC 0.80 0.96 20.0%
Sono cIMT (ave.) and DL2 cIMT (ave.) against GEIMT (ave.)
Sono vs. GT2 DL2 vs. GT2
R2: CC 0.83 0.95 14.5%

Correlation between Sonographer readings and GT1

Correlation between Sonographer readings and GT2

(N: 346) (N: 346)
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Figure 9. Correlation plots of the sonographerMTlreadings with respect to (a) GT1 and

(b) GT2.

5.3 Absolute and signed cIMT error analysis for DL1and DL2 systems

The cumulative distribution figure plots (CDF) witespect to GT1 and GT2 are shown in
Fig. 10. Fig. 10 (a) shows that 90% of patients Aadabsolute cIMT error <0.28 mm for
GT1. The CDF plot in Fig. 10 (b) shows that 90%patients had an absolute cIMT error
<0.26 mm for GT2. The CDF plots for signed cIMTaerare shown in Fig. 11. The CDF plot
for signed cIMT error for GT1 indicates that 90%ypaitients had a signed error >-0.16 mm
and 90% had a signed error <0.18 mm. Similarly@d2, the signed cIMT error for 90% of
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patients was >-0.20 mm and for 90% was <0.19 mns flinther signifies that the DL-based

system

performs strongly.

CDF plot of DL1 absolute ¢cIMT error

(wr.t GT1; LI: 16K; MA: 20K)

CDF plot of DL2 absolute ¢cIMT error
(w.r.t GT2; LI: 20K; MA: 20K)
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Figure 10. Absolute cIMT error for (a) DL1 and (®).2.
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Figure 11. Signed cIMT error for (a) DL1 and (b) DL

5.4 DL versus previous methods

The SS method was previously implemented by Sual.ef33]. Although the system was
clinically stable, it was still compared to the Dased strategy. A total of 360 attributes were
chosen that covered the full spectrum to showniavement of the DL strategy compared
to the SS strategy. These are shown in Table 4 ruecdmn one entitled “wall

characteristics,” and seven attributes were corstleThe DL method used 396 images,
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while the SS method used 404 images. For all ate# of the wall characteristics, the
percentage improvement is shown in columns C4 atdnmn C7 for the DL1 and DL2

systems, respectively. The lumen diameter errorongments for DL1 and DL2 were 33.2%
and 39.6%, respectively. The interadventitia dianetror improvements for DL1 and DL2
were 26.7% and 28.7%, respectively. The LlI-far remgprovements for DL1 and DL2 were
51.9% and 63.3%, respectively. The MA-far error iayements for DL1 and DL2 were
50.9% and 58.1%, respectively. The Ll-near erroprimements for DL1 and DL2 were
45.5% and 52.4%, respectively. The MA-near erropromements for DL1 and DL2 were
42.6% and 38.5%, respectively. The Jaccard ind¢xaidthe LR improvements for DL1 and
DL2 were 5.6% and 5.6%, respectively. The dice lairity (DS) for the LR improvements

for DL1 and DL2 were 3.2% and 3.2%, respectivelge Tl for the IAR improvements for
DL1 and DL2 were 4.4% and 5.5%, respectively. Bjnahe DS for the IAR improvements
for DL1 and DL2 were 3.2% and 3.2%, respectively.cAmparison of two images

constructed using both the DL-based system an8$hsystem is shown in Fig. 12.

Table 4. Benchmarking of the DL-based system watfards to the SS method.** computed

using >404 images.

CO C1 Cc2 C3 C4 C5 C6 C7
SN - DL1 w.r.t SS*w.r.t |Improv. | DL2w.r.t | SS*w.r.t | Improv.
Wall Characteristics | =11 m) | GT1 (mm) (E’)/o) GT2 (mm) | GT2 (mm) (E:/o)
1 |LD error (mm) 0.167+0.181| 0.25+0.2433.2 | 0.163+0.169 0.27+0.25| 39.6
2 [IAD error (mm) 0.176+0.167, 0.24+0.24 26.7 | 0.164+0.141 0.23 £0.23| 28.7
3 |LI-far error (mm) 0.077+0.057 {0.16 £0.11 51.9 | 0.077+0.049 0.21 £0.18] 63.3
4 IMA-far error (mm) 0.113+0.105{0.23 £0.1§ 50.9 | 0.109+0.08§ 0.26 +0.15] 58.1
5 |LI-near error (mm) 0.120+0.146 0.22+ 0/1545.5 | 0.119+0.179 0.25+ 0.18| 52.4
6 [IMA-near error(mm) 0.132+0.147 0.23£0{1842.6 | 0.123+0.137 0.20+0.17| 38.5
7 |31 (lumen region) 0.94 +£0.03 0.89| 5.6 0.94 +£0.03 0.89 5.6
8 [DS (lumen region) 0.97 £0.02 0.94| 3.2 0.97 £0.02 0.94 3.2
9 \JI (inter-adventitial region)) 0.95 + 0.03 0.91 4.4 0.96+ 0.03 0.91 5.5
10DS (inter-adventitial error) 0.98 + 0.02 0.95 3.2 0.98+0.02 0.95 3.2

** computed over 404 images.
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e~

(b2) SS method: 201L

(b1) Proposed: 201L

Figure 12. Application of the DL-based system dm3$S system in patients 65L and 201L.
The use of (al) DL and (a2) SS in patient 65L tyestitowed that the extracted borders were
smoother in the former. For patient 201L, use effiL-based method (b1) showed better

accuracy than the SS system (b2).

5.5 Interoperator variability of the DL systems: DL1 and DL2

This study also compared the two DL-based systeitisagch other to check the reliability
of the proposed DL-based system. The correlatidawden DL1 and DL2 is shown in Fig.
13. The correlation between DL1 and DL2 was 0.9%iciv indicates a strong
interrelationship between DL1 and DL2. TRevalue was<0.0001, which further satisfies

the null hypothesis and implies that the DL-basesdesn is reliable and stable.

5.6 Interobserver variability between the GT systers: GT1 and GT2

The observer readings were also compared with ediclr to validate that they were
compatible. The correlation plot between GT1 and® @Tshown in Fig. 14. The CC value
between GT1 and GT2 was 0.97, which validatesttt@bbserver values were compatible.
The P-value for the plot was <0.0001, which further sigs the null hypothesis and shows

that the values were highly correlated.
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Correlation between two DL systems: DL1 vs. DL2
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Figure 13. Correlation plot between DL1 and DL2.
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Figure 14. Correlation plot between GT1 and GT2.

6. Statistical Tests and Risk Analysis

This section presents the four statistical test$ Were used to show the significance of the

proposed DL system. Risk stratification was alsengoted using age and risk threshold
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parameters. This section also presents the ROCesusmd area under the curve (AUC)

analysis for the DL systems.
6.1 Four statistical tests

The outputs of the DL-based system were testedjubm paired t-test, Mann—Whitney test,
and Wilcoxon test, and the corresponding boxplagsshown in Fig. 15. The corresponding
P-values for the paired t-tests of DL1 and DL2 wispect to GT1 and GT2 were 0.0105 and
0.0416, respectively. The-values for the Mann—Whitney tests of DL1 and DLighwespect

to GT1 and GT2 were 0.0320 and 0.0407, respectiv@imilarly, the P-values for the
Wilcoxon test of DL1 and DL2 with respect to GT1ldaGT2 were 0.0488 and 0.0348,
respectively. The parameters for the paired t-tdanpn—\Whitney test, and Wilcoxon test are
given in Tables 5, 6, and 7, respectively. Fiealues from all three tests were statistically
significant. The Kruskal-Wallis test was also parfed for DL1 and DL2, and the results are
given in Table 8. Thd>-values with respect to DL1 and DL2 were 0.4905 ambO01,
respectively. Therefore the null hypothesis thatdata was taken from the same distribution
was retained for DL1 and DL2.
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Figure 15. Statistical paired t-test with respedia) GT1 and (b) GT2. Mann—Whitney test
with respect to (¢) GT1 and (d) GT2. Wilcoxon te#th respect to (e) GT1 and (f) GT2.

Table 5. Paired t-test.

Parameters DL1 DL2
Mean difference -0.01274 -0.001553
Standard deviation of differences 0.1490 0.1470
Standard error of mean difference 0.007489 0.007385
95% CI -0.02747 to 0.001978.01607 to 0.01297
Test statistic t -1.702 -0.210
Degrees of Freedom (DF) 395 395
Two-tailed probability p =0.00105 p=0.0416
(< 0.05) (< 0.05)

Table 6. Mann—Whitney test.

Parameters DL1 DL2
Average rank of first group 404.3687 404.3687

Average rank of second group 388.6313 388.6313
Mann-Whitney U 75292.00 75292.00
Large sample test statistic Z 0.968 0.968
Two-tailed probability p=0.03201 p=0.0407
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(< 0.05) (< 0.05)

Table 7. Wilcoxon test.

Parameters DL1 DL2
Number of positive differences 186 188
Number of negative differences 210 208

Large sample test statistic Z  0.733167 1.852002

p=0.0488 p=0.0348

Two-tailed probability (<0.05) (< 0.05)

Table 8 Kruskal-Wallis test.

Parameters DL1w.rtGT1 DL2 w.rt GT2
Test statistic 395.0000 395.0000
Corrected for ties Ht 395.0000 395.0000
Degrees of Freedom (DF) 395 395
p = 0.490537 p = 0.4500537

Significance level
(> 0.05) (> 0.05)

6.2 Risk analysis by age

Several studies showed that cIMT increases with[&8k due to metabolic activity in the
arteries [34]. The results obtained in this stugdyevconsistent with the previously-published
literature. cIMT was analyzed against age (yeams)He left artery, right artery, and the mean
of the two carotid arteries. Table 9 shows the GCtlie left, right, and combined cohort
using the DL1, DL2, GT1, and GT2 systems. The nundbgatients in the left, right, and
combined cohorts was 195, 201, and 203, respegtiVable 9 shows the positive correlation
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between age and cIMT. The right carotid artery stebw higher correlation than the left;

however, all patients showed a significant assmridietween age and cIMP & 0.001).

Table 9. Comparative study of age versus cIMT fobl@nd DL2 against GT1 and GT2. The

top row shows age versus DL1 and age versus GTthédeft, right, and mean carotid

arteries. The bottom row shows age versus DL2 gedrarsus GT2 for the left, right, and

mean carotid arteries.*n = number of patients eldtt, right, and combined cohorts.

Left cIMT Right cIMT Mean of Left and Right
(n=195) (n=201) cIMT (n=203)
AgeVsDL1 | AgeVsGT1l| AgeVsDL1l | AgeVs GT1l| Age Vs DL1 | Age Vs GT1
CcC CcC CcC CcC CcC CcC
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
0.20 0.14 0.19 0.18 0.19 0.14
(p<0.001) (p<0.001) (p<0.001) (p<0.001) (p<0.001) (p<0.001)
Age Vs DL2 | AgeVs GT2| AgeVsDL2 | AgeVs GT2| Age Vs DL2 | Age Vs GT2
CcC CcC CcC CcC CcC CcC
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
0.18 0.13 0.21 0.16 0.19 0.14
(p<0.001) (p<0.001) (p<0.001) (p<0.001) (p<0.001) (p<0.001)

*n are the number of patients for left, right amshbined carotids.
6.3 Risk stratification and ROC curves

This subsection discusses the risk component ofttidy. Atherosclerosis screening by Bard
et al. [35] suggested that patients with cIMT valuel.0 mm required more aggressive
treatment; however, the population was small (Yepts) and nondiverse. A study of 7983
patients by Bots et al. [36] suggested that tHeafsstroke increased when cIMT values were
>0.9 mm. Other studies also stratified high-riskgrds based on cIMT values > 1.0 [37] and
0.80 mm [38]. A study on 100 patients by Saba .tl8] recommended a cIMT threshold of
0.9 mm for risk stratification.

This dataset contained a diabetic cohort of 20liepat with moderate subclinical
atherosclerosis. Although 0.9 mm is recommendethasutoff for high-risk patients, two
sets of cutoffs were actually selected: 0.85 aBdhim. The corresponding ROC curves with
respect to these two cutoff values for both DL eyst are shown in Fig. 16 (a) and (b),
respectively. The AUC values for the 0.85 mm cutadffresponding to DL1 and DL2 were
0.88 and 0.84. When the cutoff was increased tar0rf the AUC values for DL1 and DL2
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were 0.88 and 0.85, respectively. This shows tH&# &f the patients were correctly

identified in the low—moderate and high-risk pools.
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Figure 16 ROC curves for two different risk thresholds: @25 mm (AUC values of 0.88 and 0.84
corresponding to DL1 and DL2) and (b) 0.90 mm (WAthC values of 0.88 and 0.85).

7. Discussion

This paper proposed a two-stage DL-based systertemgmted serially in four phases to
accurately measure LI, MA, and cIMT. The DL-basgsgtesm acquired preprocessed images
from the first phase (i.e., multiresolution). Thecsnd phase of the entire system was stage |
of the DL-based system (the heart of the DL systding DL-based system was divided into
13 convolution layers (encoder) and three upsamplayers (decoder). These three
upsampling layers belonged to the FCN. After thages were segmented, they were passed
to the third phase (ML-based calibration), whicpresented the second stage of the DL-
based system. In this phase, the LI and MA bordene extracted and calibrated using a
ML-based system. The cIMT was computed from theahtl MA borders. Performance
analysis was performed in phase IV. The performaeseillts showed that the DL-based
system gave better accuracy when compared to cporany methods and was more robust

and efficient. The results for different quartile® shown in Fig. 17.

Benchmarking table

The algorithms developed for the LI, MA, and clMTeasurements are listed in the
benchmarking table in Table 10. Wendellea@l.[39] used dynamic programming for cIMT
measurements. Their cIMT error was 0.030 + 0.032, mnich was the lowest of all the

26



developed techniques (Table 10; row #1); howeVesir tdataset was limited to 69 images
and the cIMT error varied widely due to differenhmcities, age groups, and nationalities.
Petroudiet al.[40] used an active contour model to measure clviie IMT error was 0.080
+ 0.070 mm; however, the dataset was limited to g@ients (Table 10; row #2). Suri et al.
[10] developed various techniques for IMT measum@sesing a larger dataset containing
344 patients. Five methods were presented, namEN,EX 1.0, CARES, CAMES 1.0,
CAUDLES, and first-order absolute moment (FOAM).A® showed the highest accuracy
with a cIMT error of 0.150 £ 0.169 mm (Table 10w #3-7). Suri et a[41] also used
CALEX and CAMES for LI and MA measurements. CAMB®wed the lowest LI error at
0.081 £ 0.099 mm, while the MA error was 0.082 7. mm (Table 10; rows #8-9). The
corresponding cIMT error with CALEX 2.0 and CAME®)3vas 0.121 £ 0.334 and 0.078 £
0.112 mm, respectively (Table 1l in [41]). In 2Q1Suri et al. [17] used AtheroEdge™
software for LI, MA, and cIMT measurements and achld the lowest errors for LI, MA,
and cIMT of 0.008 + 0.099, 0.018 + 0.013, and :01.01 mm, respectively (Table 10; row
#10); however, the dataset was different and coethdifferent ethnicities. In 2016, Suri et
al. [18] used AtheroCloud™ to measure LI and MAoesrand achieved results of 0.065 +
0.037 and 0.067 £ 0.036 mm, respectively (Tablerd@;#11). In 2017, Suri et al. [19] used
bulb-edge point detection and segmental cIMT for MA, and cIMT error detection and
obtained results of 0.012 + 0.012, 0.021 £+ 0.016l @165 + 0.171 mm, respectively (Table
10; row #12). This dataset also contained differthhicities. As discussed in Subsection
5.4, Kumaret al. [33] used a diabetic cohort and achievedrid MA errors of 0.160 + 0.110
and 0.230 + 0.180 mm, respectively, for GT1, ar2iL0.+ 0.180 and 0.260 £+ 0.150 mm,
respectively, for GT2 (Table 10; rows #13-14). Faene diabetic cohort was used to assess
the novel DL-based system in this study, and tkalte showed LI and MA errors of 0.077 +
0.057 and 0.113 + 0.105 mm, respectively, for Garid 0.077 £ 0.049 and 0.109 + 0.088
mm, respectively, for GT2. This study also reporeclMT error of 0.126 + 0.134 and 0.124
+0.10 mm for GT1 and GT2, respectively (Table mys #15-28). PoM was also computed
(described in Appendix C) for all experiments (Teab0; column #9, row #15-28).

Table 10. Benchmarking table.

SN + | Data LI Error MA error cIMT Error
Paper Method #P Size (N (mm) (mm) (mm) PoM
1 |Wendelhagt al. [39] (1997 *DP 69 - 0.030 £ 0.032
2 |petroudiet al. [40] (2012) *AC - 100 0.080 £ 0.070

27




Molinari etal.[10] (2012a) CALEX1.0 | 344| 665 § - 0.191 +0.217 -
4 Molinari etal. [10] (2012a)  caRgs 344| 647 ; ; 0.172+0.222 °
5 |Molinari etal. [10] (2012a) CAMES 1.0 344| 657 - - 0.154 +0.227 -
6 |Molinari etal.[10] (2012a) CAUDLES 344| 630 - - 0.224 +0.252 -
7 |Molinari etal. [10] (2012a FOAM 344 | 665 - . 0.150 £ 0.169 -
8 gg'i”zir)' etal. [41] CALEX20 | 365| 365| 0088+0132 0141+0201 0#0B34| -
9 gg'i”zir)' etal. [41] CAMES 3.0 | 365 365| 0.081+0.090 0.082+0.107 O07B2|
10 lkedaet al. [17] (2015) AtheroEdge™ | 341 | 341 | 0.008+0.099| 0.018+0.013| 0.01+0.01 -
11|Sabeetal. [18] (2016) AtheroCloud™ | 100| 200| 0.065+0.03  0.067+ 0.086 - -
12|Ikedaet al. [19] (2017) *BEP, SIMT | 657| 657 | 0.012+#0.012 0.021+0.015 0.365171] -
13 |Kumaret al. [33](2017a) *SS1 202| 404 0.16 +0.11 0.23+0.18 - -
14 |Kumaret al. [33](2017a) SS2 202| 404 021+0.18 0.26 + 0.1%5 - -
15 Proposed DL1 (4K) 203 | 396 | 0.161+0.090 | 0.230+0.197 | 0.177+0.179| 94.3
16 Proposed DL1 (8K) 203 | 396 | 0.138+0.078 | 0.187+0.149 | 0.146+0.13 | 94.3
17 Proposed DL1 (12K) 203 | 396 | 0.135+0.061 | 0.177+0.122 | 0.142+0.124| 92.0
18 Proposed DL1 (16K) 203 | 396 | 0.135+0.076 | 0.178+0.153 | 0.142+0.132| 99.0
19 Proposed DL1 (20K) 203 | 396 | 0.135+0.078 | 0.171+0.153 | 0.140+0.149| 98.7
20 Proposed Fusion 203 | 396 | 0.135+0.076 | 0.171+0.153 | 0.128+0.124| 97.7
21 Proposed Calibrated 203 | 396 0.077+0.057 | 0.113+0.105 | 0.126+0.134| 99.9
22 Proposed DL2 (4K) 203 | 396 | 0.143+0.073 | 0.198+0.149 | 0.148+0.134| 99.4
23 Proposed DL2 (8K) 203 | 396 | 0.144+0.088 | 0.168+0.150 | 0.136+0.123| 99.6
24 Proposed DL2 (12K) 203 | 396 | 0.149+0.082 | 0.164+0.137 | 0.136+0.123| 97.2
25 Proposed DL2 (16K) 203 | 396 | 0.135+0.073 | 0.164+0.132 | 0.131+0.121| 96.3
26 Proposed DL2 (20K) 203 | 396 | 0.131+0.062 | 0.164+0.127 | 0.124+0.11 | 99.8
27 Proposed Fusion 203 | 396 | 0.131+0.073 | 0.163+0.132 | 0.124+0.11 | 98.7
28 Proposed Calibrated 203 | 396 | 0.077+0.049 | 0.109+0.088 | 0.124+0.10| 99.9

*AC, active contours; BEP, bulb-edge point detattibP, dynamic programming; K, 1000

iterations; P, number of patients; SIMT, segmental IMT; SS, sespace.

A short note on calibration

The ML-based calibration strategy is a regressiased method that was used to fine tune the

raw DL borders to ensure smoothness. It is bagieaML-based cross-validation deformable

model to regress DL-based borders from stage leclés the actual GT borders. An

independent coefficient matrix was developed frown training and GT dataset as shown in

Eq. 4. A large number of patients helped to createore generalized coefficient matrix. The

predicted dataset was the product of this traitiaged coefficient matrix and the online test

DL-based matrix. The results showed that LI, MAJd adMT errors were reduced after the

use of the ML-based calibration. The best resuksewobtained when this DL-based pilot
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study used a jack-knifing strategy for the ML-bapadadigm, where all but one instance was
used for training and the remaining one was usetkgiing. Use of the jack-knifing strategy

resulted in better accuracy for both stenotic andstenotic cases. Thus a strategy where
ML-based calibration is cascaded with the core @kda paradigm is stable, robust, and

clinically accurate in comparison with previous heats.
A special note on DL optimization

This is the first study to employ a DL strategy MT measurements. Another novelty is
the use of both convolution neural network (CNNJl &CN as a combination of LI and MA
segmentation. This is also the first time that a-béised system was introduced to fine tune
the raw DL-based LI and MA borders. The 13 laydr€N extract high-level features from
the CCA US images. These features were upsamplad upsampling layers of FCN, and
the skipping operation was performed to obtain sheard crisp segmented images. After
extracting the LI and MA borders from these imadét;based calibration was adapted to
smooth any minor glitches in the borders. Finalhg PDM method was adapted to obtain the

shortest bidirectional distance.
A special note on skip operation

There are two approaches in FCN: contraction anqmhmsion. In the contraction approach,
the features were downsampled at intermediate daymsing convolution and pooling
operations. In the expansion approach, the invessgolution was applied to upsample the
features. Skip operations were applied to extraetures (skipping features) from the
contracting layers to the intermediate layers toover spatial information lost during the
downsampling in the contraction path. This was dbgemerging skipping features from
various resolution layers in the contracting patthwnput features in the expansion path. In
this way, a highly accurate segmentation output @l@ained from the FCN. Two skipping

operations were applied in the model reported here.
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Figure 17. Image overlays from the first (row #g¢cond (row #2), third (row #3), and fourth
(row #4) quatrtiles. Dotted yellow lines represefit I3-far and MA-far walls, red lines

represent DL LI-far wall, and green lines represdAtfar walls.

Strengths, weaknesses, and extensions

The major strength of this DL-based system isulisdutomation. The accuracy of the system
was comparatively higher than contemporary methadd therefore it was clinically

stronger. DL is an intelligence-based system thatdapted from neural connections in the
brain. This is the first time that a DL-based syst@as used for cIMT measurements when
cascaded with a ML-based calibration, and suchsaacke is truly novel. Moreover, once
trained, the output from the DL-based system isdpced in real time and takes a few
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milliseconds. However, the dataset used was limited Japanese diabetic cohort, and the
system has not been tested on a wide variety afsdtt. Therefore the system requires
further analysis in a multiethnic patient populatiwho have subclinical atherosclerosis with
low, moderate, and high-risk scenarios. Furthelyaisalso needs to be performed using a
different set of original equipment manufactureEM) machines as attempted by Suri et al.
[10]. Finally, this DL desktop version should beended to a web-based version (previously
developed by Suri et al. [18,42]) and undergo aadycibility analysis, which was recently
attempted by the same team [43,44].

Hardware configuration

The system was implemented oentral processing unit (CPU)-based hardware (n¢e)
icore3 2.9 GHz, 8 GB RAM); however, the results evegplicated on graphics processing
unit (GPU)-based settings (i.e., NVIDIA GeForce GWKh 1280 cores and 5 GB memory).

8. Conclusion

This study presents a novel, robust, and cliniealyple solution to cIMT measurements
using an AtheroEdge™ system from AtheroPoint™. $jstem uses an intelligence-based
paradigm for cIMT measurement by employing the Diategy for the segmentation of LR
and IAR. To fine tune this, the system adapts aldked joint coefficient method for final
border extraction for the far wall of the carotideay. Data are prepared in a multiresolution
paradigm which reduces the computational burdes. gdlyline distance method, which is a
standard used in the industry, is adapted for aidsnrements. The system performs better
than previous studies. For example, the LI posidoor improved by 52% and 63%, and the
MA position error improved by 51% and 58%. The clMifor for DL1 and DL2 was 0.126
+0.134 and 0.124 £ 0.10 mm, respectively. The @Wvben age and cIMT was 0.20, and the
AUC had an upper bound close to 90%. The DL-bagstesn can be adapted for clinical
settings or multicentre pharmaceutical trial modg@sst like the AtheroEdge™ or
AtheroCloud™.
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Appendix A

Polyline Distance Method

Polyline distance metric

The Polyline Distance Metric (PDM) [32] is usedrteeasure cIMT between LI- and MA
interfaces, LI-error between deep learning LI-fad ground truth LI-far interfaces, and MA-
error between deep learning MA-far and ground triiA-far interfaces. The PDM
computation is given as follows: Let the first asgtond interfaces be denotedCasindC,.

Let the reference point ary be vertexP; and the segment fy be defined by vertice®,
andP;. Let the distance betweeR, andP, bed;and the distance betwee?, andP; be
denoted a€l,. LetD(P;,L) be the polyline distance between verx(x;,y;) onC; and
line segmenL formed by two point®,: (x,, y,)andP;: (x3,y3). Let delta §) be the distance
of the reference poing; towards the line segmeht The perpendicular distance between the

line segment. and the reference poim, is given byd,. Then, the polyline distance

D(P,, L) can be defined as:

DPL—{ ldy| 0<46<1 A1
(P, L) = min(d,,dy) 6 <0, >1 (A1)
where,

d, = \/(x1 — %)%+ (y1 — y2)? (A.2)

d, = \/(xl —x3)% + (y1 — y3)? (A.3)

_ 3=y2) (1 =y2)+(x3—x2)(x1—x2)

0= (x3—x2)%+(¥3-¥2)? (A-4)
and

d. = (Y3=y2)(x—x1)+(x3—x2) (¥1—Y2) (A.5)

p V=22 +(v3-y2)?

The process to obtain(Py, L) is repeated for the rest of the points of the @ant; and is
given by:
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D(Cy,Cy) = Iiv=1 D(Pi'Scz) (A.6)

where,N is the total number of points @i andSc, is the segment on contods. This
algorithm is repeated in reverse, whégebecomes the reference contour &pdbecomes the
segment contour. The reverse is represente®(@g, C;). Finally, by combining both
D(C,,C,) andD(C,, C;), we obtain thé?DM which is given by:

D(Cq, C2)+D(C5,C1)
(# points € C1+ # points € C3)

Dppy(C1:C2) = (A.7)

Appendix B

Encoder and Decoder Network
Encoder and Decoder

The Convolution Neural Networks have the abilitydicompose images into feature maps
generating like a deck of cards representing tla¢ufe maps which can then be fed into
limited layered neural networks for training. Matiatically, a basic convolution can be
represented as:

dxy) = 1xY) @ W y) =32 nX2 nlx+sy+1) xwlxy) (B.1)

where the image | is convolved with kernel w, yietd an outpud, ® represents the
convolution operation. The convolution is basicalysum of all products between image |
and kernel w, represented by Eq. (B.1), where #radl is represented as a vector of size
m X m and is shown for the point locationsy), whiles andt are the dummy variables. The
pooling reduces the dimensionality of each feaimap but retaining the most important
information i.e., max pooling and average pooliRgoling is done to simplify the output
from CNN.

In the architecture given in Fig. 3, for encodee have used 13 convolution
layers. Each convolution layer M (=64, 128, 2562)%Xkernels where each kernel is
represented as a vector of size 3 x3. Small kerakbw large depth without increasing
memory requirement. There are intermediate five-p@aX layers to downsample the feature
maps which are later concatenated and fed into sg&gde. In the decoder, the reverse
happens. The input deck is up-sampled to origiiza&l gsing up-sample layers with the help
of skip operations to get the segmentation output.
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Appendix C

LI/MA Position Errors, cIMT Errors and Precision-bferit

LI Error

The LI error €;;(i)) for patienti is computed as the PDM between the GT LlI-far wall
(LI?E (1)) and DL LI-far 1€ (i)) wall for the patient, which is given by:

far far
€ = DPDM(LIfg;r (0): Lljgér () (C.1)

If €,;(i) represents the LI error for the patiénthen, the mean LI erro€f;) for all N
patients is given by:

_ N ;
€, = Zl=11$LI(l) (C.2)

MA Error

Similarly, the MA error €,,,4(i)) iIs computed as the PDM between the GT MA-far wall
(MAZ;,. (1)) and DL MA-far (MAZL, (i)) wall for patienti is given by:

far

Ema(®) = Dppu (MAfg;r (0): MA?LZW () (C.3)

The mean MA errorg,,,) for all N patients is given by:

— N i

CIMT Error

The cIMT error €. (i)) for patienti is computed as the PDM between the ground truth
CIMT (cIMT4(i)) and deep learning cIMTcAM T, (i))wall for the patient. ThelMT,. (i)

for patienti is computed as the PDM between GT LI-far w&!}ggr(i)) and GT MA-far wall
(MAZE

far

(i)) which is given as:

cIMTy (i) = Dppu (LIS,

far

(D): MAZ, (D) (C.5)

Similarly, thecIMTy, (i) is computed as the PDM between DL LI-far wallsf, (i)) and DL
MA-far wall (MAZ.,.(i)) which is given as:
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cIMTy, (i) = Dppu (Llfa (1): MAf, (1)) (C.6)

Therefore, the cIMT errof€g,;,,(i)) for patienti is computed as absolute difference between
cIMT, (i) andcIMTy (D).

€ (i) = |cIMTy (1) — cIMTy ()| (C.7)

If €17 (i) signifies the cIMT error for the patiehtthen, the mean cIMT erro€ ) for
all N patients is given by:

el YL €crmr (D)
€omr == NIMT l (C.8)

Precision-of-Merit (PoM)

Using Equations (B.1) and (B.2), one can, therefdedine mathematically the precision-of-
merit (PoM) and is given as:

ZN |CIMle(i)_CIMTgt(i)|
=1 N
CIMTgt(L)

N

PoM_ (%) = 100 — x 100 (C.9)

All the symbols are discussed in Appendix D: Tdble

Appendix D
Table D: Symbol table.

SN.| Symbol Abbreviation
1 b1 Predicted output

2 B2 Ground truth

3 L Total number of classes

4 N Total number of images

5 0 Loss function

6 I Ground truth boundaries

7 D Predicted DL boundaries

8 m Total number of boundary points

9 tr Training symbol

10 te Testing symbol

11 D Estimated coefficient matrix using training data
12 Cy First interface

13 C, Second interface

14 P, Reference point of;
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15 P, Reference point of,

16 Py Reference point o6,

17 L Line segment formed byertex P; andvertex P, onC,

18 d, Euclidean distance betweearrtex P; andvertex P,

19 d, Euclidean distance between verfgxand vertexP;

20 1) Distance of the reference poit and the line segmert,

21 d, Perpendicular distance betweeand the reference poif

22 | D(P;, L) | Polyline distance between reference péinand the line segment,

23 | D(C,,C,) | Mean polyline distance between all points on contuvith respect
to contourC,

24 | D(C,, C;) | Mean Polyline distance between all points on canfauvith respect
to contourC;

25 Dppy Bidirectional polyline distance metric by combinibgc,, C,) and
D(C,, Cy)

26 Llf‘?;r(i) LI-far interface or contour taken from ground tréitin patienti

27 Llﬁir(i) LI-near interface or contour taken from deep laagrior patient

28 MA;?;(i) MA-far interface or contour taken from ground triitin patienti

29 MA}lér(i) MA-far interface or contour taken from deep leagiiar patient

30 €.,;(1) | Absolute LI error for patienit

31 €L Mean LI error forN patients

32 | €ya(d) | Absolute MA error for patient

33 €ma Mean MA error forN patients

34 | cIMT, (i) | PDM between GT LI-far wall and GT MA-far interfactes patient

35 | cIMT4 (i) | PDM between DL LI-far wall and DL MA-far interfacésr patient

36 | €.ur(i) | Absolute cIMT error for patierit

37 €omr Mean absolute cIMT error fa¥ patients

38 | PoM,,,r | Precision-of-Merit for cIMT
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