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Deep Learning Strategy for Accurate Carotid Intima-Media Thickness 
measurement: an Ultrasound Study on Japanese Diabetic Cohort 

Abstract 

Motivation : The carotid intima-media thickness (cIMT) is an important biomarker for 

cardiovascular diseases and stroke monitoring. This study presents an intelligence-based, 

novel, robust, and clinically-strong strategy that uses a combination of deep-learning (DL) 

and machine-learning (ML) paradigms. 

Methodology: A two-stage DL-based system (a class of AtheroEdge™ systems) was 

proposed for cIMT measurements. Stage I consisted of a convolution layer-based encoder for 

feature extraction and a fully convolutional network-based decoder for image segmentation. 

This stage generated the raw inner lumen borders and raw outer interadventitial borders. To 

smooth these borders, the DL system used a cascaded stage II that consisted of ML-based 

regression. The final outputs were the far wall lumen-intima (LI) and media-adventitia (MA) 

borders which were used for cIMT measurements. There were two sets of gold standards 

during the DL design, therefore two sets of DL systems (DL1 and DL2) were derived. 

Results: A total of 396 B-mode ultrasound images of the right and left common carotid artery 

were used from 203 patients (Institutional Review Board approved, Toho University, Japan). 

For the test set, the cIMT error for the DL1 and DL2 systems with respect to the gold 

standard was 0.126 ± 0.134 and 0.124 ± 0.100 mm, respectively. The corresponding LI error 

for the DL1 and DL2 systems was 0.077 ± 0.057 and 0.077 ± 0.049 mm, respectively, while 

the corresponding MA error for DL1 and DL2 was 0.113 ± 0.105 and 0.109 ± 0.088 mm, 

respectively. The results showed up to 20% improvement in cIMT readings for the DL 

system compared to the sonographer’s readings. Four statistical tests were conducted to 

evaluate reliability, stability, and statistical significance. 

Conclusion: The results showed that the performance of the DL-based approach was superior 

to the nonintelligence-based conventional methods that use spatial intensities alone. The DL 

system can be used for stroke risk assessment during routine or clinical trial modes. 

 

Keywords: cardiovascular diseases; stroke; ultrasound scans; carotid intima-media thickness; 

intelligence; deep learning; machine learning; segmentation; accurate; reproducible. 
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1. Introduction 

Stroke due to cardiovascular disease (CVD) causes the death of approximately five million 

people and disability among another five million people around the world [1]. In the USA, 

795,000 people suffered from a stroke in 2010, causing direct medical care costs of 

approximately USD 33 billion and indirect costs of around USD 20.6 billion [2]. Stroke is 

generally caused by the blockage or rupturing of the common carotid artery (CCA) or internal 

carotid artery (ICA) that supply blood to the brain. This blockage or rupture is triggered by 

the formation of plaque along the arterial walls. Plaque is usually composed of cholesterol, 

fatty substances, cellular waste products, calcium, and fibrin and is generally formed between 

the lumen-intima (LI) and media-adventitia (MA) interfaces [3]. 

Carotid intima-media thickness (cIMT) is the mean perpendicular distance between the LI 

and MA interfaces and is an important biomarker for CVDs. A comprehensive risk analysis 

study on 5858 subjects revealed that cIMT values >1.18 mm led to an increased stroke rate 

[4]. In 2006, the findings of Bots et al. [5] showed that cIMT was related to the presence of 

atherosclerosis in the coronary artery. Risk prediction models developed by Nambi et al. [6] 

showed an increase in the CVD risk when cIMT and plaque information was added. The 

study of Meuwese et al. [7] suggested that an increase in cardiovascular risk was related to an 

increase in mean cIMT. Ikeda et al. [8] also confirmed the significant association between 

cIMT and CVDs. All of the abovementioned studies indicated that an increase in 

cardiovascular events (myocardial infarction) was correlated to an increase in the mean 

cIMT.  

Although Suri et al. have diligently worked to standardize cIMT measurements [9], there are 

still challenges regarding accuracy and reproducibility when it comes to the CCA, ICA, and 

bulb regions. Several reasons contribute to this, including the variability in the studies with 

regards to nationality, ethnicity, disease, age groups, etc. In this regard, a concerted effort was 

made to construct a multiinstitutional dataset using multiple ethnicities and varying age 

groups [10]. There are other technical challenges associated with the cIMT measurement. For 

example, the images are obtained through a B-mode ultrasound (US) using a linear probe that 

is manually operated. The CCA extends from the jaw to the shoulder bone; however, the 

linear probe is unable to cover the entire carotid artery length and has to be performed in 

sections (i.e., distal, mid, and proximal). The CCA image quality also depends on external 

factors such as speckle noise, probe position, neck position, probe orientation (i.e., anterior, 

posterior, or posterior lateral), probe contact with the skin, linear frequency usage, gain 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 
 

control, dynamic range, and features such as harmonic and compound imaging [11,12]. The 

traditional manual segmentation of US images is slow, error-prone, and subject to intra- and 

interobserver variability. Therefore the measurement of cIMT through automated methods is 

a growing field of interest. The previously-described completely-automated methods are 

briefly discussed here. 

Molinari et al. [9] compared four automated techniques for cIMT measurement. The first 

method was Completely Automated Layers Extraction (CALEX), which is based on the 

integration of three approaches: feature extraction, line fitting, and classification. The second 

was Completely Automated Robust Edge Snapper (CARES) [13], which is based on the 

combination of feature extraction and edge detection. The third methodology was Completely 

Automated Multiresolution Edge Snapper (CAMES), which is based on a multiresolution 

approach and uses the concept of scale–space (SS) [14]. Finally, the fourth methodology was 

the Carotid Automated Double-Line Extraction System, which is based on edge flow (an 

edge-detection technique based on US texture and edge energies) [15]. Saba et al. [16] 

proposed a fully-automated system (AtheroEdge™) for cIMT measurements, while Ikeda et 

al. [17] proposed a cIMT measurement system with a classification paradigm that used a 

combination of global and local strategies involving texture-based entropy and morphology. 

Saba et al. [18] later developed a fully-automated cloud-based solution called AtheroCloudTM 

for cIMT measurements. Ikeda et al. [19] recently proposed an automated segmental cIMT 

measurement technique that used an automated bulb-edge point as a reference marker. The 

abovementioned methodologies use various features such as greyscale median, pixel 

classification, gradient edges, SS, or a combination of these features to predict the cIMT risk 

assessment. Despite their strong contributions, these external factors make the spatial-based 

methods prone to variability and a lack of robustness when it comes to completely automated 

designs. 

Another challenge in the segmentation of wall interfaces is the presence of shadows on the 

far wall due to calcium in the near wall. This causes border position errors in the detection of 

LI and MA, even though the average cIMT error is well below the acceptable level. Previous 

methods took advantage of multiresolution approaches to increase the processing speed; 

however, the feature extraction at multiple levels was not derived, thus lacking a 

comprehensive spatial deck of information. Another important point to note is that carotid US 

cohorts contain shape information that can be learned via neural networks, the intelligence 

power of which is unsurpassable. This current deep learning (DL)-based study removes all of 
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the abovementioned challenges to provide reliability and robustness. The spirit of this study 

was motivated by the work of Suri et al., who applied machine intelligence in different fields 

of medicine including gynecology, urology, dermatology, neurology [20–23], and recently in 

endocrinology [24]. 

This study proposed the same intelligence-based paradigm [25,26] for cIMT measurements. 

It was hypothesized that by training deep layers of neural networks, the DL-based system 

could produce more reliable and accurate results when compared to previous methods. Unlike 

machine learning (ML), DL can generate its own features and thus eliminate the need for less 

accurate feature-extraction algorithms. The high-level features of DL are more distinctive 

than the features of conventional methods, thus resulting in a more accurate output. The 

superior training of the deep layers within the DL system allows the further provision of 

better regional segmentation output compared to the conventional methods. The proposed 

DL-based system is implemented in four phases as shown in Fig. 1. 

 

Figure 1. Overall concept of the DL-based cIMT measurement system. 

Phase I is primarily adapted for data preparation. It removes the nontissue region [27] and 

prepares the image data using a multiresolution approach to speed up the DL paradigm. This 

phase is also responsible for generating the cross-validation protocol that splits the cohort 

into sets of training and testing carotid scans. Phase II is the heart of the DL system that 

performs the number crunching and consists of encoder and decoder neural networks [28,29]. 

In this phase, deep intelligence is derived by externally controlling the number of loops (up to 

20,000). The training system uses two kinds of gold standards, namely, lumen regional 

information and interadventitial regional information, which leads to the design of two DL 

systems: DL1 and DL2. Phase III performs the boundary extraction that changes regional 

information to vertex point information (i.e., LI and MA boundaries or the so-called raw DL 

borders). This phase also ensures smooth boundaries, which attempts to get closer to the 

ground truth (GT) using a ML-based system, which in turn increases the overall accuracy of 

the system. The cIMT values are computed from the LI and MA far walls using the 

standardized polyline distance metric method (PDM) (discussed in Appendix A). The last 

phase implements performance analysis alongside risk stratification. Four statistical tests 

were used to assess the statistical significance: paired t-test, Mann–Whitney test, Wilcoxon 

test, and the Kruskal–Wallis test. 
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In this paper, Section 2 discusses the data collection and patient demographics. Sections 3 

and 4 present the methodology and results, respectively. Section 5 shows the performance 

evaluation, and Section 6 discusses the statistical tests and risk analysis. The discussion and 

benchmarking are presented in Section 7, and, finally, the conclusions are presented in 

Section 8. 

 

2.  Data Demographics and US Acquisition 

In this study, 204 patients (157 male and 47 female) with a mean age of 69 ± 11 years were 

selected. One left carotid image was not available out of the 408 images, therefore the 

database initially contained 407 images. Eight left carotid and three right carotid US images 

were rejected due to a lack of greyscale tissue information (including one patient whose left 

and right carotid images were removed). Thus the final dataset consisted of 396 carotid scans 

(left and right) from 203 patients. The sonographer’s far wall cIMT readings were also 

available for 193 patients (346 US scans).  

Informed consent was obtained from all patients and the Institutional Review Board (IRB), 

and ethical approval was granted by Toho University, Japan. The mean hemoglobin, glucose, 

low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and total cholesterol 

values were 5.8 ± 1.0, 108 ± 31, 99.80 ± 31.30, 50.40 ± 15.40, and 174.6 ± 37.7 mg/dL, 

respectively. Of the pool of 203 patients, 92 were regular smokers. Hypertensive and high-

cholesterol patients were receiving adequate medication; for example, 93 patients were taking 

statins to lower their cholesterol levels and 84 were receiving renin–angiotensin system 

antagonists. Blood pressure statistics for the patients were not available.  

A sonographic scanner (Aplio XV, Aplio XG, Xario; Toshiba, Inc., Tokyo, Japan) equipped 

with a 7.5 MHz linear array transducer was used to examine the left and right carotid arteries. 

All scans were performed under the supervision of an experienced sonographer (15 years of 

experience). High-resolution images were acquired as per the recommendations of the 

American Society of Echocardiography Carotid Intima-Media Thickness Task Force. The 

mean pixel resolution in the database was 0.05 ± 0.01 mm/pixel.  

Manual tracing of the lumen and adventitia borders was performed using ImgTracer™ 

(AtheroPoint™, Roseville, CA, USA), which is a user-friendly commercial software [30]. 

The number of points varied with the length of the carotid artery. The software zooms into 

the image for better visualization of the wall and provides a set of traced (x,y) coordinates. 
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3.  Methodology 

The heart of the system is an intelligence-based DL platform that supports the extraction of 

deep features and thereby eliminates the need for algorithms that perform poorly for feature 

extraction. The platform consists of two DL networks: encoder, which is used for feature 

extraction [28], and decoder, which is used for regional segmentation of the lumen region 

(LR) or interadventitial region (IAR) [29]. The DL system design allows the LR 

segmentation to be run in parallel with the IAR segmentation. This is called the regional 

segmentation block, which is the second phase of the system. Before feeding the binary 

training images for a LR and an IAR into the DL block, the system design expects the input 

data to be prepared accordingly for the DL block (the so-called multiresolution block or 

phase I as shown in Fig. 2). The encoder–decoder is phase II of the DL system. The image 

processing pipeline is always cascaded with a fine tuner to smooth or refine the outputs, 

therefore a ML-based system is used to extract LI-far and MA-far borders as part of the phase 

III subsystem. Finally, performance evaluation is implemented to benchmark the results. This 

is phase IV of the entire pipeline where the cIMT is measured and undergoes statistical 

testing. A detailed description of the system is shown in Fig. 2, and the details of these phases 

and their mathematical representations are discussed below. 

 

Figure 2. The four phases of a DL-based system (a class of AtheroEdge™ system, 

AtheroPoint™) shown in arrows. Phase I, multiresolution; phase II, the DL-based system; 

phase III, boundary extraction and calibration, and phase IV, performance analysis. 
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Multiresolution as phase I 

The objective of phase I was to prepare the data for adaptability to the DL system, which 

required the greyscale training cohort to be cropped to remove the nontissue information [27]. 

This automated cropping ensured that the tissue region was retained. The greyscale images 

were reduced by a further 10% to ensure that very low contrast regions around the edges of 

the image were eliminated. These greyscale images were downsampled to improve the 

processing speed of the DL system under the multiresolution paradigm. In the data 

preparation block, the binary mapped images were also created which were mapped on a one-

to-one basis with the greyscale downsampled carotid US scans. If the DL system was 

prepared for LR extraction, then binary maps corresponded to the LR. Conversely, if the DL 

system was prepared for IAR extraction, then the binary maps corresponded to the IAR. 

These LR and IAR binary maps were considered as the gold standard, as their borders were 

manually traced by experts. 

DL as phase II 

The DL-based system consisted of two subsystems: encoder and decoder. The encoder 

extracted features from the images while the decoder created segmented images from the 

features. The encoder consisted of 13 convolution layers and five max-pooling layers of the 

VGG16 network [31]. Details of the decoder network are given in Appendix B. The weights 

were initialized using pretrained Visual Geometry Group (VGG) weights. The convolution 

layers generated high-level features from the input data, and the max-pooling layers 

downsampled the input feature values. 

The decoder consisted of three upsampling layers of the fully convolutional network (FCN) 

[29]. The upsampling layers upsampled the input features but with a twist. It employed two 

skip operations that helped recover spatial information resulting in highly accurate and crisp 

segmentation images. Additional information about the skip operation is presented in the 

discussion section. The upsampled layers were initialized using VGG weights. The cross-

entropy loss function employed for segmentation was: 

  	������(β	, ��) = 	|�| ∑ ∑ ���(�) log �	�(�)�∈��∈�    (1) 

where �	 is the prediction, �� is the gold standard or GT, � is the total number of classes, and � is the total number of images. The loss function was defined as the difference between true 
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and predicted probability distributions. The DL-based system ran for 20K iterations, and 

intermediate outputs were collected for 4K, 8K, 12K, and 16K iterations (K = 1000). The 

segmented images were fed into phase III of the system for LI and MA interface extraction 

and calibration.  

Boundary extraction as phase III 

This stage extracted the information that helped further quantify the plaque burden or cIMT. 

Thus from the binary region, the LI-far and MA-far borders were extracted using the LR and 

interadventitial segmented regions. This required refinement by following the plaque 

morphology whilst smoothing the borders and improving the accuracy of the DL system. The 

refinement used a ML-based approach that adapted the cross-validation protocol to determine 

accuracy. It should be noted that LI far walls and MA far walls were independent of the ML-

based system and can be mathematically expressed as a regression or least squares model if 

GT (or ideal) boundaries are given as: 

    �	�2� × � : �"	 #	 … "� #� %   (2) 

and the raw DL borders extracted using the DL-based method are given as: 

    &	�2� × � : �'	 (	 … '� (� %     (3) 

where N represents the total number of patients and P represents the total points on the 

border. In the adaptation of the cross-validation protocol, the DL boundaries were divided 

into two sets: a training set (&)*) and a test set (&)+). Correspondingly, GT boundaries were 

also divided into training sets (�)*) and test sets (	�)+). Using the linear model of least squares 

presented in [30], one can mathematically express this as a norm equation given as	‖� −&.‖� . Letting 	./)*	be the unknown training coefficient matrix of size �� × � , one can 

compute it as:  

    	./)* = (&)*% . &)*)1	. &)*% .�)*     (4) 

where ". "  represents the multiplicative product. These training coefficients were used to 

estimate the test boundaries (�3)+) as the product of training coefficients and raw test DL 

borders using: 

      �3)+ = 	./)* . &)+        (5) 
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Finally, the DL borders underwent cIMT measurement as presented in Appendix A. The last 

stage (phase IV) consisted of performance evaluation as shown in Fig. 2. 

Performance evaluation as phase IV 

The performance of the DL system required computation of the LI and MA far wall position 

errors. These values were compared against the GT to estimate the precision of merit (PoM). 

These calculations are shown in Appendix C. These performance metrics were then 

compared against other systems for benchmarking (resented in the performance evaluation 

section). 

 

4.  Experimental Protocol and Results 

The experimental protocol primarily consisted of the optimization of DL with respect to a 

number of iterations independent of LI and MA wall interfaces. As there were two DL 

systems corresponding to two GTs, the results are presented with respect to GT1 and GT2. 

4.1 Experimental protocol  

In this study, K10 cross-validation (i.e., 90% training dataset and 10% testing dataset) was 

used for training and testing. In this cross-validation, the dataset was randomly divided into 

10 parts and 10 combinations were formed from these parts. Each combination contained 

nine parts for training and one part for testing.  

The optimization protocol was implemented for 4K, 8K, 12K, 16K, and 20K iterations (K = 

1000). The iterations were evaluated for LI, MA, and cIMT errors to study their effects on the 

encoder and decoder (shown in Fig. 3) and their ability to smooth out the glitches against the 

gold standard. The LI, MA, and cIMT error values after ML-based calibration were further 

recorded to show the least error value that smoothed the output borders and improved the 

accuracy of the entire DL system.  

A sample visual output of the DL-based system from phase III is shown in Fig. 4. In addition 

to LI, MA, and cIMT error evaluations, comprehensive clinical data analyses were also 

performed (i.e., correlation of age vs. cIMT, risk stratification based on the cIMT threshold, 

and receiver operating characteristic (ROC) analysis). 

4.2 Results 
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The results were computed for 4K, 8K, 12K, 16K, and 20K iterations (K = 1000). The plots 

for error versus iteration with respect to GT1 and GT2 are shown in Fig. 5(a) and (b), 

respectively. The LI, MA, and cIMT error values for all iterations, including fusion and 

calibration, corresponding to GT1 and GT2 are presented in Tables 1 and 2, respectively. The 

term fusion refers to the best result among all iterations. The cIMT values in the fusion rows 

of Tables 1 and 2 refer to the values obtained from the best optimized LI and MA wall 

interfaces among all iterations. All values in the calibration rows of Tables 1 and 2 indicate 

the final values after ML-based calibration was applied (phase II, Fig. 2). The results indicate 

that the optimized result for LI error with respect to GT1 was obtained at 16K iterations (i.e., 

0.135 ± 0.076 mm, which later increased marginally). The optimized result for MA error with 

respect to GT1 was obtained at 20K iterations (i.e., 0.171 ± 0.153 mm). The best cIMT error 

with respect to GT1 was computed from the fusion of 16K iterations of LI interface 

optimization and 20K iterations of MA interface optimization (i.e., 0.128 ± 0.124 mm.) After 

ML-based calibration, the LI, MA, and cIMT errors were further reduced to 0.077 ± 0.057, 

0.113 ± 0.105, and 0.126 ± 0.134 mm, respectively. 
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Figure 3. The combination of encoder–decoder blocks in the central DL system (a class of 

AtheroEdge™ system, AtheroPoint). 
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Figure 4. The DL-based system showing GT and DL outputs. 

 

Figure 5. Plots for errors versus iterations against (a) GT1 and (b) GT2. Cal, calibration 

output; cIMT error (blue); LI error (green); MA error (red). 
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Table 1. LI, MA, and cIMT error values against GT1. Grey boxes show the optimized results 

for the corresponding LI, MA, and cIMT errors. *K = 1000. 

DL 
Iterations 

LI error w.r.t 
GT1  (mm) 

MA error w.r.t 
GT1  (mm) 

cIMT error w.r.t 
GT1  (mm) 

4K* 0.161±0.090 0.230±0.197 0.177±0.179 
8K* 0.138±0.078 0.187±0.149 0.146±0.13 
12K* 0.135±0.061 0.177±0.122 0.142±0.124 

16K* 0.135±0.076 0.178±0.153 0.142±0.132 

20K* 0.135±0.078 0.171±0.153 0.140±0.149 
Fusion 0.135±0.076 0.171±0.153 0.128±0.124 

Calibrated 0.077±0.057 0.113±0.105 0.126±0.134 
 

Table 2. LI, MA, and cIMT error values against GT2. Grey boxes show the optimized results 

for the corresponding LI, MA, and cIMT errors. *K = 1000.  

DL 
Iterations 

LI error w.r.t 
GT2 (mm) 

MA error w.r.t 
GT2 (mm) 

cIMT error w.r.t 
GT2 (mm) 

4K* 0.143±0.073 0.198±0.149 0.148±0.134 
8K* 0.144±0.088 0.168±0.150 0.136±0.123 
12K* 0.149±0.082 0.164±0.137 0.136±0.123 
16K* 0.135±0.073 0.164±0.132 0.131±0.121 
20K* 0.131±0.062 0.164±0.127 0.124±0.11 
Fusion 0.131±0.073 0.163±0.132 0.124±0.11 

Calibrated 0.077±0.049 0.109±0.088 0.124±0.10 
 

Similarly, the best results for LI and MA error optimization using the DL-based system with 

respect to GT2 were obtained at 20K iterations and were 0.131 ± 0.073 and 0.163 ± 0.132 

mm, respectively. The cIMT error for the LI and MA interfaces was 0.124 ± 0.11 mm. After 

calibration, the LI, MA, and cIMT error values were further reduced to 0.077 ± 0.049, 0.109 

± 0.088, and 0.124 ± 0.10 mm, respectively. 

The correlation coefficient (CC) for DL1 with respect to GT1 was 0.96 (P < 0.0001) and for 

DL2 with respect to GT2 was 0.95 (P < 0.0001). Therefore the CC results show a high degree 

of correlation between the DL outputs and the corresponding GTs. The correlation plot for 

DL-based system (DL1 and DL2) output with respect to GT1 and GT2 is shown in Fig. 6. 

The P-value for both plots was <0.0001, thus showing a high correlation and significance that 

satisfies the null hypothesis. These results prove that the DL-based system is accurate and 

efficient. The performance of the DL-based system is evaluated in the next section. 
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The results of the DL-based system with respect to GT1 and GT2 were analyzed using 

Bland–Altman plots. The corresponding figures with reference to GT1 and GT2 are shown in 

Fig. 7. 
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Figure 6. Correlation plots of DL-based systems against (a) against GT1 and (b) GT2. 
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Figure 7. Bland–Altman plots of the DL-based system with reference to (a) GT1 and (b) 

GT2. 

 

5.  Performance of the DL Systems and Variability Analysis 

Two sets of analyses were performed to evaluate the performance of the DL systems. The 

first set had four parts: part (i) focused on evaluating DL against manual expert tracers, part 

(ii) was against the sonographer’s readings which were taken in real time in the US vascular 

laboratory, part (iii) evaluated signed and unsigned cIMT errors of the DL1 and DL2 systems, 

and part (iv) compared the DL system against previously-developed methods [33]. The 
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second set had two parts: part (a) consisted of the interoperator variability between the two 

DL systems (DL1 and DL2), and part (b) consisted of interobserver variability between the 

two GT systems (GT1 and GT2). 

5.1 Comparison of DL against expert manual tracing 

The cross-validation study was performed to check the effectiveness of the DL-based system 

when compared with other gold standards or ground truths (GTs). The correlation curves 

showing DL1 with respect to GT2 and DL2 with respect to GT1 are presented in Fig. 8(a) 

and (b), respectively. The CC values between DL1 and GT2 and DL2 and GT1 were 0.94 and 

0.93, respectively, thus showing the strong interrelationship between the DL and GT. The P-

value for both was <0.0001, which satisfies the null hypothesis. This also shows the strong 

statistical significance and stability of the proposed DL-based system. 

 

Figure 8. Correlation plots of (a) DL1 versus GT2 and (b) DL2 versus GT1. 

5.2 Comparison of the DL against the sonographer’s readings 

This study also provided the sonographer’s reading of cIMT [symbolized as Sono cIMT 

(ave.)]. The sonographer’s reading was taken at one sample point (or one location) or two 

sample points (two locations) along the CCA. This reading typically consisted of the highest 

two plaque readings above the baseline but took into consideration the distance between LI 

and MA. The mean value from the two locations was computed for each image. As discussed 

in Section 2, of the 203 patients (396 images) in the original database, sonographer far-wall 

cIMT readings were only available for 193 patients (346 images). Therefore the comparison 

was conducted for the 346 available images. The improvements (%) in the DL results 

compared to the sonographer’s readings are shown in Table 3. Row one (R1: CC) shows the 

CC between (i) the sonographer’s reading and the GT reading (0.80) and (ii) DL1 and GT1 
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(0.96), showing an improvement of 20%. Row 2 (R2: CC) shows the CC between (i) the 

sonographer’s reading and the GT reading (0.83) and (ii) DL2 and GT2 readings (0.95), 

showing an improvement of 14.5%. The correlation plot for the sonographer’s cIMT readings 

with respect to GT1 and GT2 is shown in Fig. 9. 

 

Table 3. Percentage improvement in DL readings compared to the sonographer’s readings. 

Coefficient of correlation (CC) between three kinds of 
cIMT (ave.) readings: sonographer (Sono), deep learning (DL1 

and DL2 systems) and ground truth (GT1 and GT2) 

Percentage Improvement of 
deep learning (DL) reading over 

sonographer (Sono) reading 
Sono cIMT (ave.) and  DL1 cIMT (ave.) against GT1 cIMT (ave.)  

Attribute Sono vs. GT1 DL1 Vs.  GT1  
R1:CC 0.80 0.96 20.0% 

Sono cIMT (ave.) and  DL2 cIMT (ave.) against GT2  cIMT (ave.)  
 Sono vs. GT2 DL2 vs. GT2  

R2: CC 0.83 0.95 14.5% 
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Figure 9. Correlation plots of the sonographer’s cIMT readings with respect to (a) GT1 and 

(b) GT2. 

 
5.3 Absolute and signed cIMT error analysis for DL1 and DL2 systems 

The cumulative distribution figure plots (CDF) with respect to GT1 and GT2 are shown in 

Fig. 10. Fig. 10 (a) shows that 90% of patients had an absolute cIMT error <0.28 mm for 

GT1. The CDF plot in Fig. 10 (b) shows that 90% of patients had an absolute cIMT error 

<0.26 mm for GT2. The CDF plots for signed cIMT error are shown in Fig. 11. The CDF plot 

for signed cIMT error for GT1 indicates that 90% of patients had a signed error >−0.16 mm 

and 90% had a signed error <0.18 mm. Similarly for GT2, the signed cIMT error for 90% of 
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patients was >−0.20 mm and for 90% was <0.19 mm. This further signifies that the DL-based 

system performs strongly.  

 

Figure 10. Absolute cIMT error for (a) DL1 and (b) DL2. 
 

 
Figure 11. Signed cIMT error for (a) DL1 and (b) DL2. 

 
5.4 DL versus previous methods 

The SS method was previously implemented by Suri et al. [33]. Although the system was 

clinically stable, it was still compared to the DL-based strategy. A total of 360 attributes were 

chosen that covered the full spectrum to show the improvement of the DL strategy compared 

to the SS strategy. These are shown in Table 4 under column one entitled “wall 

characteristics,” and seven attributes were considered. The DL method used 396 images, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 
 

while the SS method used 404 images. For all attributes of the wall characteristics, the 

percentage improvement is shown in columns C4 and column C7 for the DL1 and DL2 

systems, respectively. The lumen diameter error improvements for DL1 and DL2 were 33.2% 

and 39.6%, respectively. The interadventitia diameter error improvements for DL1 and DL2 

were 26.7% and 28.7%, respectively. The LI-far error improvements for DL1 and DL2 were 

51.9% and 63.3%, respectively. The MA-far error improvements for DL1 and DL2 were 

50.9% and 58.1%, respectively. The LI-near error improvements for DL1 and DL2 were 

45.5% and 52.4%, respectively. The MA-near error improvements for DL1 and DL2 were 

42.6% and 38.5%, respectively. The Jaccard index (JI) for the LR improvements for DL1 and 

DL2 were 5.6% and 5.6%, respectively. The dice similarity (DS) for the LR improvements 

for DL1 and DL2 were 3.2% and 3.2%, respectively. The JI for the IAR improvements for 

DL1 and DL2 were 4.4% and 5.5%, respectively. Finally, the DS for the IAR improvements 

for DL1 and DL2 were 3.2% and 3.2%, respectively. A comparison of two images 

constructed using both the DL-based system and the SS system is shown in Fig. 12. 

 

Table 4. Benchmarking of the DL-based system with regards to the SS method.** computed 

using >404 images. 

C0 C1 C2 C3 C4 C5 C6 C7 

SN
Wall Characteristics 

DL1 w.r.t  
GT1 (mm) 

SS* w.r.t 
GT1 (mm) 

Improv. 
(%) 

DL2 w.r.t 
GT2 (mm) 

SS* w.r.t 
GT2 (mm) 

Improv. 
(%) 

1 LD error (mm) 0.167±0.181 0.25± 0.24 33.2 0.163±0.169 0.27±0.25 39.6 
2 IAD error (mm) 0.176±0.167 0.24± 0.24 26.7 0.164±0.141 0.23 ± 0.23 28.7 
3 LI-far error (mm) 0.077±0.057 0.16 ±0.11 51.9 0.077±0.049 0.21 ± 0.18 63.3 

4 MA-far error (mm) 0.113±0.105 0.23 ±0.18 50.9 0.109±0.088 0.26 ± 0.15 58.1 
5 LI-near error (mm) 0.120±0.146 0.22± 0.15 45.5 0.119±0.179 0.25± 0.18 52.4 
6 MA-near error(mm) 0.132±0.147 0.23 ± 0.18 42.6 0.123±0.137 0.20 ± 0.17 38.5 
7 JI (lumen region) 0.94 ± 0.03 0.89 5.6 0.94 ± 0.03 0.89 5.6 
8 DS (lumen region) 0.97 ± 0.02 0.94 3.2 0.97 ± 0.02 0.94 3.2 
9 JI (inter-adventitial region) 0.95 ± 0.03 0.91 4.4 0.96± 0.03 0.91 5.5 
10 DS (inter-adventitial error) 0.98 ± 0.02 0.95 3.2 0.98±0.02 0.95 3.2 

** computed over 404 images. 
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Figure 12. Application of the DL-based system and the SS system in patients 65L and 201L. 

The use of (a1) DL and (a2) SS in patient 65L clearly showed that the extracted borders were 

smoother in the former. For patient 201L, use of the DL-based method (b1) showed better 

accuracy than the SS system (b2). 

 

5.5 Interoperator variability of the DL systems: DL1 and DL2 

This study also compared the two DL-based systems with each other to check the reliability 

of the proposed DL-based system. The correlation between DL1 and DL2 is shown in Fig. 

13. The correlation between DL1 and DL2 was 0.95, which indicates a strong 

interrelationship between DL1 and DL2. The P-value was <0.0001, which further satisfies 

the null hypothesis and implies that the DL-based system is reliable and stable.  

5.6 Interobserver variability between the GT systems: GT1 and GT2 

The observer readings were also compared with each other to validate that they were 

compatible. The correlation plot between GT1 and GT2 is shown in Fig. 14. The CC value 

between GT1 and GT2 was 0.97, which validates that the observer values were compatible. 

The P-value for the plot was <0.0001, which further satisfies the null hypothesis and shows 

that the values were highly correlated. 
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Figure 13. Correlation plot between DL1 and DL2. 
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Figure 14. Correlation plot between GT1 and GT2. 
 

6. Statistical Tests and Risk Analysis 

This section presents the four statistical tests that were used to show the significance of the 

proposed DL system. Risk stratification was also computed using age and risk threshold 
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parameters. This section also presents the ROC curves and area under the curve (AUC) 

analysis for the DL systems. 

6.1 Four statistical tests 

The outputs of the DL-based system were tested using the paired t-test, Mann–Whitney test, 

and Wilcoxon test, and the corresponding boxplots are shown in Fig. 15. The corresponding 

P-values for the paired t-tests of DL1 and DL2 with respect to GT1 and GT2 were 0.0105 and 

0.0416, respectively. The P-values for the Mann–Whitney tests of DL1 and DL2 with respect 

to GT1 and GT2 were 0.0320 and 0.0407, respectively. Similarly, the P-values for the 

Wilcoxon test of DL1 and DL2 with respect to GT1 and GT2 were 0.0488 and 0.0348, 

respectively. The parameters for the paired t-test, Mann–Whitney test, and Wilcoxon test are 

given in Tables 5, 6, and 7, respectively. The P-values from all three tests were statistically 

significant. The Kruskal–Wallis test was also performed for DL1 and DL2, and the results are 

given in Table 8. The P-values with respect to DL1 and DL2 were 0.4905 and 0.4501, 

respectively. Therefore the null hypothesis that the data was taken from the same distribution 

was retained for DL1 and DL2. 
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Figure 15. Statistical paired t-test with respect to (a) GT1 and (b) GT2. Mann–Whitney test 

with respect to (c) GT1 and (d) GT2. Wilcoxon test with respect to (e) GT1 and (f) GT2. 

 

Table 5. Paired t-test. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 6. Mann–Whitney test. 

Parameters DL1 DL2 
Mean difference -0.01274 -0.001553 

Standard deviation of differences 0.1490 0.1470 
Standard error of mean difference 0.007489 0.007385 

95% CI -0.02747 to 0.001978 -0.01607 to 0.01297 
Test statistic t -1.702 -0.210 

Degrees of Freedom (DF) 395 395 

Two-tailed probability p  = 0.00105 
(< 0.05) 

p = 0.0416 
(< 0.05) 

Parameters DL1 DL2 

Average rank of first group 404.3687 404.3687 

Average rank of second group 388.6313 388.6313 

Mann-Whitney U 75292.00 75292.00 

Large sample test statistic Z 0.968 0.968 

Two-tailed probability p= 0.03201 p = 0.0407 
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Table 7. Wilcoxon test. 

 

 

 

 

 

 

 
Table 8. Kruskal–Wallis test. 

Parameters DL1 w.r.t GT1 DL2 w.r.t GT2 
Test statistic 395.0000 395.0000 

Corrected for ties Ht 395.0000 395.0000 
Degrees of Freedom (DF) 395 395 

Significance level 
p = 0.490537 

(> 0.05) 

p = 0.4500537 

(> 0.05) 
 

 

6.2 Risk analysis by age 

Several studies showed that cIMT increases with age [18] due to metabolic activity in the 

arteries [34]. The results obtained in this study were consistent with the previously-published 

literature. cIMT was analyzed against age (years) for the left artery, right artery, and the mean 

of the two carotid arteries. Table 9 shows the CC for the left, right, and combined cohort 

using the DL1, DL2, GT1, and GT2 systems. The number of patients in the left, right, and 

combined cohorts was 195, 201, and 203, respectively. Table 9 shows the positive correlation 

(< 0.05) (< 0.05) 

Parameters DL1 DL2 

Number of positive differences 186 188 

Number of negative differences 210 208 

Large sample test statistic Z 0.733167 1.852002 

Two-tailed probability 
p = 0.0488 

(< 0.05) 

p = 0.0348 

(< 0.05) 
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between age and cIMT. The right carotid artery showed a higher correlation than the left; 

however, all patients showed a significant association between age and cIMT (P < 0.001). 

 

Table 9. Comparative study of age versus cIMT for DL1 and DL2 against GT1 and GT2. The 

top row shows age versus DL1 and age versus GT1 for the left, right, and mean carotid 

arteries. The bottom row shows age versus DL2 and age versus GT2 for the left, right, and 

mean carotid arteries.*n = number of patients in the left, right, and combined cohorts. 

Left cIMT 
(n=195) 

Right cIMT 
(n=201) 

Mean of Left and Right 
cIMT (n=203) 

Age Vs DL1 
CC  

(p-value) 

Age Vs GT1 
CC  

(p-value) 

Age Vs DL1 
CC  

(p-value) 

Age Vs GT1 
CC 

 (p-value) 

Age Vs DL1 
CC  

(p-value) 

Age Vs GT1 
CC  

(p-value) 

0.20             
 (p<0.001) 

0.14 
(p<0.001) 

0.19 
(p<0.001) 

0.18 
(p<0.001) 

0.19 
(p<0.001) 

0.14 
(p<0.001) 

Age Vs DL2 
CC  

(p-value) 

Age Vs GT2 
CC 

 (p-value) 

Age Vs DL2 
CC  

(p-value) 

Age Vs GT2 
CC  

(p-value) 

Age Vs DL2 
CC  

(p-value) 

Age Vs GT2 
CC  

(p-value) 

0.18 
(p<0.001) 

0.13 
(p<0.001) 

0.21 
(p<0.001) 

0.16 
(p<0.001) 

0.19 
(p<0.001) 

0.14 
(p<0.001) 

*n are the number of patients for left, right and combined carotids. 

6.3 Risk stratification and ROC curves 

This subsection discusses the risk component of the study. Atherosclerosis screening by Bard 

et al. [35] suggested that patients with cIMT values >1.0 mm required more aggressive 

treatment; however, the population was small (95 patients) and nondiverse. A study of 7983 

patients by Bots et al. [36] suggested that the risk of stroke increased when cIMT values were 

>0.9 mm. Other studies also stratified high-risk patients based on cIMT values > 1.0 [37] and 

0.80 mm [38]. A study on 100 patients by Saba et al. [18] recommended a cIMT threshold of 

0.9 mm for risk stratification. 

This dataset contained a diabetic cohort of 201 patients with moderate subclinical 

atherosclerosis. Although 0.9 mm is recommended as the cutoff for high-risk patients, two 

sets of cutoffs were actually selected: 0.85 and 0.9 mm. The corresponding ROC curves with 

respect to these two cutoff values for both DL systems are shown in Fig. 16 (a) and (b), 

respectively. The AUC values for the 0.85 mm cutoff corresponding to DL1 and DL2 were 

0.88 and 0.84. When the cutoff was increased to 0.9 mm, the AUC values for DL1 and DL2 
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were 0.88 and 0.85, respectively. This shows that 88% of the patients were correctly 

identified in the low–moderate and high-risk pools. 

 

Figure 16. ROC curves for two different risk thresholds: (a) 0.85 mm (AUC values of 0.88 and 0.84 

corresponding to DL1 and DL2) and (b) 0.90 mm (with AUC values of 0.88 and 0.85). 

 

7. Discussion 

This paper proposed a two-stage DL-based system implemented serially in four phases to 

accurately measure LI, MA, and cIMT. The DL-based system acquired preprocessed images 

from the first phase (i.e., multiresolution). The second phase of the entire system was stage I 

of the DL-based system (the heart of the DL system). The DL-based system was divided into 

13 convolution layers (encoder) and three upsampling layers (decoder). These three 

upsampling layers belonged to the FCN. After the images were segmented, they were passed 

to the third phase (ML-based calibration), which represented the second stage of the DL-

based system. In this phase, the LI and MA borders were extracted and calibrated using a 

ML-based system. The cIMT was computed from the LI and MA borders. Performance 

analysis was performed in phase IV. The performance results showed that the DL-based 

system gave better accuracy when compared to contemporary methods and was more robust 

and efficient. The results for different quartiles are shown in Fig. 17.  

Benchmarking table 

The algorithms developed for the LI, MA, and cIMT measurements are listed in the 

benchmarking table in Table 10. Wendelhag et al. [39] used dynamic programming for cIMT 

measurements. Their cIMT error was 0.030 ± 0.032 mm, which was the lowest of all the 
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developed techniques (Table 10; row #1); however, their dataset was limited to 69 images 

and the cIMT error varied widely due to different ethnicities, age groups, and nationalities. 

Petroudi et al. [40] used an active contour model to measure cIMT. The IMT error was 0.080 

± 0.070 mm; however, the dataset was limited to 100 patients (Table 10; row #2). Suri et al. 

[10] developed various techniques for IMT measurements using a larger dataset containing 

344 patients. Five methods were presented, namely, CALEX 1.0, CARES, CAMES 1.0, 

CAUDLES, and first-order absolute moment (FOAM). FOAM showed the highest accuracy 

with a cIMT error of 0.150 ± 0.169 mm (Table 10; rows #3–7). Suri et al. [41] also used 

CALEX and CAMES for LI and MA measurements. CAMES showed the lowest LI error at 

0.081 ± 0.099 mm, while the MA error was 0.082 ± 0.197 mm (Table 10; rows #8–9). The 

corresponding cIMT error with CALEX 2.0 and CAMES 3.0 was 0.121 ± 0.334 and 0.078 ± 

0.112 mm, respectively (Table III in [41]). In 2015, Suri et al. [17] used AtheroEdge™ 

software for LI, MA, and cIMT measurements and achieved the lowest errors for LI, MA, 

and cIMT of 0.008 ± 0.099, 0.018 ± 0.013, and 0.01 ± 0.01 mm, respectively (Table 10; row 

#10); however, the dataset was different and contained different ethnicities. In 2016, Suri et 

al. [18] used AtheroCloud™ to measure LI and MA errors and achieved results of 0.065 ± 

0.037 and 0.067 ± 0.036 mm, respectively (Table 10; row #11). In 2017, Suri et al. [19] used 

bulb-edge point detection and segmental cIMT for LI, MA, and cIMT error detection and 

obtained results of 0.012 ± 0.012, 0.021 ± 0.015, and 0.165 ± 0.171 mm, respectively (Table 

10; row #12). This dataset also contained different ethnicities. As discussed in Subsection 

5.4, Kumar et al. [33] used a diabetic cohort and achieved LI and MA errors of 0.160 ± 0.110 

and 0.230 ± 0.180 mm, respectively, for GT1, and 0.210 ± 0.180 and 0.260 ± 0.150 mm, 

respectively, for GT2 (Table 10; rows #13–14). The same diabetic cohort was used to assess 

the novel DL-based system in this study, and the results showed LI and MA errors of 0.077 ± 

0.057 and 0.113 ± 0.105 mm, respectively, for GT1, and 0.077 ± 0.049 and 0.109 ± 0.088 

mm, respectively, for GT2. This study also reported a cIMT error of 0.126 ± 0.134 and 0.124 

± 0.10 mm for GT1 and GT2, respectively (Table 10; rows #15–28). PoM was also computed 

(described in Appendix C) for all experiments (Table 10; column #9, row #15–28). 

 

 
Table 10. Benchmarking table. 

SN 
Paper Method #P+ 

Data 
Size (N) 

LI Error             
(mm) 

MA error          
(mm) 

cIMT Error                                   
(mm) 

PoM 

1 Wendelhag et al. [39]  (1997) *DP  69 - - 0.030 ± 0.032 - 
2 Petroudi et al. [40] (2012) *AC - 100 - - 0.080 ± 0.070 - 
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*AC, active contours; BEP, bulb-edge point detection; DP, dynamic programming; K, 1000 

iterations; P+, number of patients; SIMT, segmental IMT; SS, scale–space. 

 

A short note on calibration 

The ML-based calibration strategy is a regression-based method that was used to fine tune the 

raw DL borders to ensure smoothness. It is basically a ML-based cross-validation deformable 

model to regress DL-based borders from stage I closer to the actual GT borders. An 

independent coefficient matrix was developed from the training and GT dataset as shown in 

Eq. 4. A large number of patients helped to create a more generalized coefficient matrix. The 

predicted dataset was the product of this training-based coefficient matrix and the online test 

DL-based matrix. The results showed that LI, MA, and cIMT errors were reduced after the 

use of the ML-based calibration. The best results were obtained when this DL-based pilot 

3 Molinari  et al. [10]   (2012a) CALEX 1.0 344 665 - - 0.191 ± 0.217 - 

4 Molinari  et al. [10]   (2012a) CARES 344 647 - - 0.172 ± 0.222 - 

5 Molinari  et al. [10]   (2012a) CAMES 1.0 344 657 - - 0.154 ± 0.227 - 

6 Molinari  et al. [10]   (2012a) CAUDLES 344 630 - - 0.224 ± 0.252 - 

7 Molinari  et al. [10]   (2012a) FOAM 344 665 - - 0.150 ± 0.169 - 

8 Molinari  et al.  [41]     
(2012b) 

CALEX 2.0 365 365 0.088 ± 0.132 0.141 ± 0.201 0.121± 0.334 
- 

9 Molinari et al.   [41]    
(2012b) 

CAMES 3.0 365 365 0.081 ± 0.099 0.082 ± 0.197 0.078±0.112 
- 

10 Ikeda et al.  [17]   (2015) AtheroEdge™ 341 341 0.008± 0.099 0.018± 0.013 0.01± 0.01 - 

11 Saba et al.   [18]   (2016) AtheroCloud™ 100 200 0.065± 0.037 0.067± 0.036 - - 

12 Ikeda et al.  [19]  (2017) *BEP, SIMT 657 657 0.012± 0.012 0.021± 0.015 0.165 ± 0.171 - 

13 Kumar et al.  [33] (2017a) *SS1 202 404 0.16 ±0.11 0.23 ±0.18 - - 

14 Kumar et al.  [33] (2017a) SS2 202 404 0.21 ± 0.18 0.26 ± 0.15 - - 

15 Proposed DL1 (4K) 203 396 0.161±0.090 0.230±0.197 0.177±0.179 94.3 
16 Proposed DL1 (8K) 203 396 0.138±0.078 0.187±0.149 0.146±0.13 94.3 
17 Proposed DL1 (12K) 203 396 0.135±0.061 0.177±0.122 0.142±0.124 92.0 
18 Proposed DL1 (16K) 203 396 0.135±0.076 0.178±0.153 0.142±0.132 99.0 
19 Proposed DL1 (20K) 203 396 0.135±0.078 0.171±0.153 0.140±0.149 98.7 
20 Proposed Fusion 203 396 0.135±0.076 0.171±0.153 0.128±0.124 97.7 
21 Proposed Calibrated 203 396 0.077±0.057 0.113±0.105 0.126±0.134 99.9 
22 Proposed DL2 (4K) 203 396 0.143±0.073 0.198±0.149 0.148±0.134 99.4 
23 Proposed DL2 (8K) 203 396 0.144±0.088 0.168±0.150 0.136±0.123 99.6 
24 Proposed DL2 (12K) 203 396 0.149±0.082 0.164±0.137 0.136±0.123 97.2 
25 Proposed DL2 (16K) 203 396 0.135±0.073 0.164±0.132 0.131±0.121 96.3 
26 Proposed DL2 (20K) 203 396 0.131±0.062 0.164±0.127 0.124±0.11 99.8 
27 Proposed Fusion 203 396 0.131±0.073 0.163±0.132 0.124±0.11 98.7 
28 Proposed Calibrated 203 396 0.077±0.049 0.109±0.088 0.124±0.10 99.9 
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study used a jack-knifing strategy for the ML-based paradigm, where all but one instance was 

used for training and the remaining one was used for testing. Use of the jack-knifing strategy 

resulted in better accuracy for both stenotic and nonstenotic cases. Thus a strategy where 

ML-based calibration is cascaded with the core DL-based paradigm is stable, robust, and 

clinically accurate in comparison with previous methods.  

A special note on DL optimization  

This is the first study to employ a DL strategy for cIMT measurements. Another novelty is 

the use of both convolution neural network (CNN) and FCN as a combination of LI and MA 

segmentation. This is also the first time that a ML-based system was introduced to fine tune 

the raw DL-based LI and MA borders. The 13 layers of CNN extract high-level features from 

the CCA US images. These features were upsampled using upsampling layers of FCN, and 

the skipping operation was performed to obtain sharp and crisp segmented images. After 

extracting the LI and MA borders from these images, ML-based calibration was adapted to 

smooth any minor glitches in the borders. Finally, the PDM method was adapted to obtain the 

shortest bidirectional distance. 

A special note on skip operation 

There are two approaches in FCN: contraction and expansion. In the contraction approach, 

the features were downsampled at intermediate layers using convolution and pooling 

operations. In the expansion approach, the inverse convolution was applied to upsample the 

features. Skip operations were applied to extract features (skipping features) from the 

contracting layers to the intermediate layers to recover spatial information lost during the 

downsampling in the contraction path. This was done by merging skipping features from 

various resolution layers in the contracting path with input features in the expansion path. In 

this way, a highly accurate segmentation output was obtained from the FCN. Two skipping 

operations were applied in the model reported here.  
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Figure 17. Image overlays from the first (row #1), second (row #2), third (row #3), and fourth 

(row #4) quartiles. Dotted yellow lines represent GT LI-far and MA-far walls, red lines 

represent DL LI-far wall, and green lines represent MA-far walls. 

 

Strengths, weaknesses, and extensions 

The major strength of this DL-based system is its full automation. The accuracy of the system 

was comparatively higher than contemporary methods and therefore it was clinically 

stronger. DL is an intelligence-based system that is adapted from neural connections in the 

brain. This is the first time that a DL-based system was used for cIMT measurements when 

cascaded with a ML-based calibration, and such a cascade is truly novel. Moreover, once 

trained, the output from the DL-based system is produced in real time and takes a few 
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milliseconds. However, the dataset used was limited to a Japanese diabetic cohort, and the 

system has not been tested on a wide variety of datasets. Therefore the system requires 

further analysis in a multiethnic patient population who have subclinical atherosclerosis with 

low, moderate, and high-risk scenarios. Further analysis also needs to be performed using a 

different set of original equipment manufacturer (OEM) machines as attempted by Suri et al. 

[10]. Finally, this DL desktop version should be extended to a web-based version (previously 

developed by Suri et al. [18,42]) and undergo a reproducibility analysis, which was recently 

attempted by the same team [43,44].  

Hardware configuration  

The system was implemented on central processing unit (CPU)-based hardware (i.e., Intel 

icore3 2.9 GHz, 8 GB RAM); however, the results were replicated on graphics processing 

unit (GPU)-based settings (i.e., NVIDIA GeForce GTX with 1280 cores and 5 GB memory). 

 

8. Conclusion 

This study presents a novel, robust, and clinically-viable solution to cIMT measurements 

using an AtheroEdge™ system from AtheroPoint™. The system uses an intelligence-based 

paradigm for cIMT measurement by employing the DL strategy for the segmentation of LR 

and IAR. To fine tune this, the system adapts a ML-based joint coefficient method for final 

border extraction for the far wall of the carotid artery. Data are prepared in a multiresolution 

paradigm which reduces the computational burden. The polyline distance method, which is a 

standard used in the industry, is adapted for all measurements. The system performs better 

than previous studies. For example, the LI position error improved by 52% and 63%, and the 

MA position error improved by 51% and 58%. The cIMT error for DL1 and DL2 was 0.126 

± 0.134 and 0.124 ± 0.10 mm, respectively. The CC between age and cIMT was 0.20, and the 

AUC had an upper bound close to 90%. The DL-based system can be adapted for clinical 

settings or multicentre pharmaceutical trial modes, just like the AtheroEdge™ or 

AtheroCloud™. 
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Appendix A 

Polyline Distance Method 

Polyline distance metric  

The Polyline Distance Metric (PDM) [32] is used to measure cIMT between LI- and MA 

interfaces, LI-error between deep learning LI-far and ground truth LI-far interfaces, and MA-

error between deep learning MA-far and ground truth MA-far interfaces. The PDM  

computation is given as follows: Let the first and second interfaces be denoted as 5	 and 5�. 

Let the reference point on 5	 be vertex �	  and the segment in 5�  be defined by vertices �� 

and �6. Let the distance between  �	  and ��  be 7	and the distance between  �	  and �6 be 

denoted as 7�. Let 8(�	, �) be the polyline distance between vertex �	: ("	, #	) on 5	 and 

line segment � formed by two points ��: ("�, #�)and �6: ("6, #6). Let delta (9) be the distance 

of the reference point, �	 towards the line segment	�. The perpendicular distance between the 

line segment �  and the reference point, �	 , is given by 7: .  Then, the polyline distance 

8(�	, �) can be defined as: 

                                     8(�	, �) = ; |7:| 0 < 9 < 1?@A	(7	, 7�) 9 < 0, 9 > 1                                    (A.1) 

where, 

                                               7	 = C("	 − "�)� + (#	 − #�)�                                         (A.2) 

                                               7� = C("	 − "6)� + (#	 − #6)�                                         (A.3) 

                                                9 = (EF1EG)(EH1EG)I(JF1JG)(JH1JG)(JF1JG)GI(EF1EG)G                                        (A.4) 

and 

                                            		7: = (EF1EG)(JG1JH)I(JF1JG)(EH1EG)C(JF1JG)GI(EF1EG)G                                         (A.5) 

 

The process to obtain 8(�	, �) is repeated for the rest of the points of the contour 5K and is 
given by:  
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                                                      8(5	, 5�) = ∑ 8(�L, MNG)�LO	                                           (A.6) 

where, � is the total number of points on 5	  and MNG  is the segment on contour 5� . This 
algorithm is repeated in reverse, where 5� becomes the reference contour and 5	 becomes the 
segment contour. The reverse is represented as	8(5�, 5	) . Finally, by combining both 8(5	, 5�) and 8(5�, 5	), we obtain the PDM which is given by: 

                                     	8PQR(5	: 5�) = Q(NH,	NG)IQ(NG,NH)(#	:TL�)�	∈	NHI	#	:TL�)�	∈	NG)                                    (A.7) 

 

 

Appendix B 

Encoder and Decoder Network 

Encoder and Decoder 

The Convolution Neural Networks have the ability to decompose images into feature maps 
generating like a deck of cards representing the feature maps which can then be fed into 
limited layered neural networks for training. Mathematically, a basic convolution can be 
represented as: 

         d(x, y) = I(x, y) ⊗ w(x, y) = ∑ ∑ I(x + s, y + t)	 × w(x, y)]ĜO1]G
]G_O1]G                     (B.1)                               

where the image I is convolved with kernel w, yielding an output	d , ⊗  represents the 
convolution operation. The convolution is basically a sum of all products between image I 
and kernel w, represented by Eq. (B.1), where the kernel is represented as a vector of size m × m and is shown for the point locations (x, y), while	s and t are the dummy variables. The 
pooling reduces the dimensionality of each feature map but retaining the most important 
information i.e., max pooling and average pooling. Pooling is done to simplify the output 
from CNN. 

 In the architecture given in Fig. 3, for encoder, we have used 13 convolution 
layers. Each convolution layer M (=64, 128, 256, 512) kernels where each kernel is 
represented as a vector of size 3 x3.  Small kernels allow large depth without increasing 
memory requirement. There are intermediate five max-pool layers to downsample the feature 
maps which are later concatenated and fed into next stage. In the decoder, the reverse 
happens. The input deck is up-sampled to original size using up-sample layers with the help 
of skip operations to get the segmentation output. 
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Appendix C 

LI/MA Position Errors, cIMT Errors and Precision-of-Merit 

LI Error 

The LI error (Є�b(@)) for patient i is computed as the PDM between the GT LI-far wall 

(�cd�*e) (@)) and DL LI-far (�cd�*f� (@)) wall for the patient, which is given by: 

                                          Є�b(@) 	= 8PQR(�cd�*e) (@): �cd�*f� (@))                                    (C.1) 

If Є�b(@) represents the LI error for the patient	@, then, the mean LI error (Єg�b ) for all � 
patients is given by: 

                                                    Єg�b = ∑ Єhi(L)jklH�                                                           (C.2) 

 

MA Error 

Similarly, the MA error (ЄRm(@)) is computed as the PDM between the GT MA-far wall 

(nod�*e) (@)) and DL MA-far (nod�*f� (@)) wall for patient @ is given by: 

                                                ЄRm(@) = 8PQR(nod�*e) (@):nod�*f� (@))                         (C.3) 

 

The mean MA error (ЄgRm) for all � patients is given by: 

                                                  ЄgRm = ∑ Єpq(L)jklH �                                                           (C.4) 

cIMT Error 

The cIMT error (Є�bR%(@)) for patient i is computed as the PDM between the ground truth 
cIMT (rcnse)(@)) and deep learning cIMT (rcnsf�(@))wall for the patient. The	rcnse)(@) 
for patient	@	is computed as the PDM between GT LI-far wall (�cd�*e) (@)) and GT MA-far wall 

(nod�*e) (@)) which is given as: 

                                          rcnse)(@) = 8PQR(�cd�*e) (@):nod�*e) (@))                                (C.5)    

Similarly, the rcnsf�(@) is computed as the PDM between DL LI-far wall (�cd�*f� (@)) and DL 

MA-far wall (nod�*f� (@)) which is given as: 
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                                          rcnsf�(@) = 8PQR(�cd�*f� (@):nod�*f� (@))                                  (C.6)    

Therefore, the cIMT error (Є�bR%(@)) for patient	@	is computed as absolute difference between  rcnse)(@)  and rcnsf�(@). 
                                          Є�bR%(@) 	= trcnse)(@) − 	ccnsf�(@)t                                      (C.7) 

 

If Є�bR%(@) signifies the cIMT error for the patient	@, then, the mean cIMT error (Єg�bR%) for 
all � patients is given by: 

                                                    Єg�bR% = ∑ Єvipw(L)jklH �                                                         (C.8) 

Precision-of-Merit (PoM) 

Using Equations (B.1) and (B.2), one can, therefore, define mathematically the precision-of-
merit (PoM) and is given as: 

                                �xn�bR%(%) = 100 − z∑ {vipw|}(k)~vipw��(k){vipw��(k)jklH
� � × 100                      (C.9) 

 

All the symbols are discussed in Appendix D: Table D. 

 

Appendix D 

Table D: Symbol table. 

SN. Symbol Abbreviation 
1 �	 Predicted output 

2 �� Ground truth 

3 � Total number of classes 

4 � Total number of images 

5 � Loss function 

6 � Ground truth boundaries 

7 D Predicted DL boundaries 

8 ? Total number of boundary points  

9 �� Training symbol 

10 �� Testing symbol 

11 	./)* Estimated coefficient matrix using training data 

12 5	 First interface 

13 5� Second interface 

14 �	 Reference point on 5	 
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15 �� Reference point on 5� 

16 �6 Reference point on 5� 

17 � Line segment formed by vertex	�	 and vertex	�� on 5� 

18 7	 Euclidean distance between 	vertex	�	 and vertex	�� 

19 7� Euclidean distance between vertex �	 and vertex �6 

20 9 Distance of the reference point �	 and the line segment, � 

21 7: Perpendicular distance between � and the reference point �	  

22 8(�	, �) Polyline distance between reference point �	 and the line segment, � 

23 8(5	, 5�) Mean polyline distance between all points on contour 5	 with respect 
to contour 5� 

24 8(5�, 5	) Mean Polyline distance between all points on contour 5� with respect 
to contour 5	 

25 8PQR Bidirectional polyline distance metric by combining 8(5	, 5�) and 8(5�, 5	) 
26 �cd�*e) (@) LI-far interface or contour taken from ground truth for patient	@ 
27 �cd�*f� (@) LI-near interface or contour taken from deep learning for patient	@ 
28 nod�*e) (@) MA-far interface or contour taken from ground truth for patient	@ 
29 nod�*f� (@) MA-far interface or contour taken from deep learning for patient	@ 
30 Є�b(@) Absolute LI error for patient i 
31 Єg�b Mean LI error for � patients 
32 ЄRm(@) Absolute MA error for patient i 
33 ЄgRm Mean MA error for � patients 
34 rcnse)(@) PDM between GT LI-far wall and GT MA-far interfaces for patient i 
35 rcnsf�(@) PDM between DL LI-far wall and DL MA-far interfaces for patient i 
36 Є�bR%(@) Absolute cIMT error for patient i 
37 Єg�bR% Mean absolute cIMT error for � patients 
38 �xn�bR% Precision-of-Merit for cIMT 

 

 

  

 


