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Segmentation of histological images and fibrosis identification with a 
convolutional neural network 
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Abstract Segmentation of histological images is one 
of the most crucial tasks for many biomedical analyses 
including quantification of certain tissue type. 
However, challenges are posed by high variability and 
complexity of structural features in such images, in 
addition to imaging artifacts. Further, the conventional 
approach of manual thresholding is labor-intensive, 
and highly sensitive to inter- and intra-image intensity 
variations. An accurate and robust automated 
segmentation method is of high interest. We propose 
and evaluate an elegant convolutional neural network 
(CNN) designed for segmentation of histological 
images, particularly those with Masson’s trichrome 
stain. The network comprises of 11 successive 
convolutional – rectified linear unit – batch 
normalization layers, and outperformed state-of-the-art 
CNNs on a dataset of cardiac histological images 
(labeling fibrosis, myocytes, and background) with a 
Dice similarity coefficient of 0.947. With 100 times 
fewer (only 300 thousand) trainable parameters, our 
CNN is less susceptible to overfitting, and is efficient. 
Additionally, it retains image resolution from input to 
output, captures fine-grained details, and can be trained 
end-to-end smoothly. To the best of our knowledge, 
this is the first deep CNN tailored for the problem of 
concern, and may be extended to solve similar 
segmentation tasks to facilitate investigations into 
pathology and clinical treatment. 
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1 Introduction 

Accurate segmentation of biomedical images is 
fundamental for quantitative analysis. However, this 
task is challenging due to characteristically high 
inhomogeneity and complexity of features in such 
images, as well as inter- and intra-plane artifacts 
introduced as a result of the imaging procedure and 
methodology, such as lighting. Manual thresholding is 
the most prevalent method for segmenting biomedical 
images, for example to identify fibrosis or scarring in 
histology [1, 2]. Whilst straightforward in principle, 
this approach is labor-intensive, time-consuming, and 
may involve tedious re-adjustments of thresholds [3, 4]. 
Thresholds are also highly sensitive to subject-
dependent biases, as well as inter- and intra-image 
intensity variations (since spatial information is not 
accounted for) [5, 6]. Thus, a variety of thresholds is 
commonly necessary for one image set. For such 
reasons, manual thresholding may not be feasible for 
large datasets, especially those containing considerable 
variability in intensity, contrast, or brightness. 

Interpretation of raw pixel intensities to image 
meaning or context is no trivial task for algorithms. A 
slight difference in image features such as illumination 
may be negligible to humans, but can result in a 
disparate algorithmic outcome. Numerous methods 
have been established to separate an image into groups 
displaying similar features, and thereby identify the 
class object of each pixel. Earlier segmentation 
techniques rely on distinguishing edges, regions, or 
textures [6]. However, for image data with highly 
irregular structural features, heterogeneous 
illumination, or variable coloring of similar objects, 
considerable pre- or postprocessing is required, thus 
rendering such techniques unattractive and largely 
unsuitable. 
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In recent years, machine learning for computer 
vision has advanced extensively, emerging as a 
powerful tool for a wide range of image recognition 
problems [7–10]. Machine learning methods can be 
generally classed as unsupervised or supervised. In the 
former, the algorithm identifies patterns in the input 
without learning from example data annotated with 
desired outputs (ground truth). Contrastingly, 
supervised models are trained on labelled data, 
learning rules to produce outputs from inputs. 
Unsupervised methods including k-means clustering 
[11, 12], mean-shift clustering [13], and Markov 
random fields [14], as well as earlier supervised 
approaches such as support vector machines [10] have 
previously been employed to segment histological 
images. However, these methods typically suffer the 
requirement of supplementary algorithms (e.g. for 
postprocessing [12]) to complete the segmentation 
objective, or additional domain expertise to define and 
extract suitable features from images, which are often 
based on strong assumptions about the data. 

Convolutional neural networks (CNNs) are 
generating great enthusiasm particularly in computer 
vision. Conceptualized in the 1980s [15], CNNs were 
biologically inspired by the visual cortex; neurons fire 
in response to certain features or patterns in their local 
receptive fields, thereby acting as spatial filters [16]. 
CNNs effectively map highly complex relationships 
between the input and desired output (such as those of 
shapes and colors present in images), through 
interconnected stacks of nonlinear functions (most 
fundamentally convolutions). Contrary to alternative 
supervised learning approaches such as support vector 
machines, there is no manual hand-crafting or fine-
tuning of useful features in the input. CNNs can 
achieve impressive performance and directly handle 
complex data with minimal manual effort. A CNN-
based approach is fully automated and trained models 
are reusable after establishment. 

Although the inception of neural networks was a 
few decades ago, deep networks with multiple stacked 
layers are a relatively recent development; brought 
about through progress in parallelized computation 
using GPUs, solutions to hindrances associated with 
training deep neural networks (such as rectified linear 
units (ReLU) for the vanishing gradient problem [17]), 
and the availability of very large datasets. Deep CNNs 
have proved to be powerful tools in a wide array of 
image-related applications, excelling in image 
classification [7, 18, 19], handwriting recognition [20], 
object localization [21], and scene understanding [22, 
23]. This technique has also successfully extended to 
semantic pixel-wise labeling and the biomedical 

domain in tasks such as image segmentation [24–26], 
detection [27], cell tracking [8], and computer-aided 
diagnosis [9]. 

Robust and automated segmentation methods that 
can overcome the inherent challenges of biomedical 
image segmentation are of great demand, especially for 
applications conventionally relying on a manual 
approach. An example is fibrosis identification in 
histology, a critical task in many key fields of clinical 
research including kidney failure [28], lung injury [29], 
hepatitis B [30], sinoatrial node [1], and atrial 
fibrillation [31].  

Atrial fibrillation is the most common type of 
cardiac arrhythmia, associated with significant 
healthcare costs, reduced quality of life, morbidity and 
mortality [32]. The basic mechanisms behind its 
initiation and maintenance remain elusive, but 
accumulating recent evidence indicate that diabetes 
mellitus (DM) is a strong independent risk factor [31–
34], and that atrial fibrosis or scarring (characterized 
by excessive extracellular matrix proteins including 
collagen) induced under diabetic conditions 
contributes considerably to arrhythmogenicity [31, 35, 
36]. Quantification and comparison of atrial fibrotic 
remodeling under DM against controls will assist in 
illuminating the precise mechanisms underlying DM-
induced atrial fibrillation. This requires segmentation 
of fibrosis from myocytes and background in a cardiac 
histological section, differentiated via the well-
accepted Masson’s trichrome stain (Fig. 1). 
 

 
In this paper, we propose a CNN for automated 

segmentation of stained histology images into a 
required number of tissue types, with particular focus 
on quantifying fibrosis in cardiac sections. To the best 
of our knowledge, this is the first CNN designed for 
this application. The deep CNN displays state-of-the-
art segmentation accuracy with drastically fewer 
parameters, and substantially greater efficiency. More 

 
Fig. 1  Representative segmentation of fibrosis. Left typical original 
RGB image of left atrial tissue from a diabetes mellitus (DM) rabbit 
model imaged with Masson’s trichrome stain at 40× magnification 
(image size 0.33 mm × 0.25 mm, pixel spatial resolution           
161.25 nm × 161.25 nm); red, white and blue respectively indicate 
healthy myocytes, fat or extracellular space, and fibrosis. Right 
segmented fibrotic regions via a thresholding approach shown in 
blue 
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importantly, our proposed CNN architecture can be 
extended to other similar segmentation tasks to 
facilitate understanding of certain diseases and to aid 
targeted clinical treatment. We also make our source 
code freely available online for the benefit of potential 
users. 

 

2 Methods and experiments 

2.1 Overview of CNNs for segmentation 

During a forward pass through a CNN, characteristics 
specific to certain structures in an input image (such as 
intensity and spatial information) are discerned by 
trainable filters in convolutional layers. Convolutional 
filters (typically 3 × 3 pixels) sweep across the entire 
visual field of the input volume by a constant stride, 
thus allowing the CNN to detect features in the input 
regardless of their exact position. Convolutional layers 
compute dot products between learnable filter weights 
and a corresponding region of the input slice, 
generating activation or feature maps. Thus, 
activations contain contextual representations about 
the image, with larger values indicating better 
resemblance between weights and intensity patterns in 
the receptive field of a filter. Stacking of many 
convolutional layers can amplify the capacity of a 
CNN to identify features of greater complexity from a 
larger field of view in the input. This ability may be 
further enhanced by the inclusion of other nonlinear 
operations such as ReLU. Typically, pooling layers are 
inserted to subsample outputs from convolutions, and 
feature maps progressively increase in abstraction 
through the network as low-level information is 
compounded over many subsampling operations. 
Weights are automatically adapted during supervised 
learning to optimize sensitivity to certain features of 
relevance and maximize accuracy of predictions to 
ground truth. A loss function quantifying the disparity 
between predictions and ground truth is minimized via 
gradient descent, and errors are backpropagated 
through the network to modify weights accordingly. 

In contrast to CNNs for image classification where 
the output is a single class (for example “dog”), CNNs 
for image segmentation require dense per-pixel 
classification and spatial localization of classes in the 
form of an output segmentation map. The recent 
advancement of deep CNNs for segmentation was 
pioneered by the development of a fully convolutional 
network (FCN) by Long et al. [37]. Currently, the most 
prevalent and successful CNNs for segmentation are 
inspired by the scheme of FCN, adapting 
configurations originally designed for classification to 

perform per-pixel labeling by substituting fully 
connected layers with convolutions [8, 23, 38, 39]. 
Such architectures constitute of downsampling and 
upsampling stages, also known respectively as an 
encoder and decoder. The image is first downsampled 
by a series of convolutions and max pooling to obtain 
low resolution feature maps, which are then upsampled 
by deconvolution (also named convolutional transpose 
or fractionally strided convolution), generating the 
localization of classes desired. In some cases, 
concatenation between intermediate feature maps, or 
unpooling [40] are incorporated to improve final 
resolution. However, additional upsampling layers 
introduce more trainable parameters in such 
architectures, which are commonly on the order of tens 
to hundreds of millions [8, 23, 37, 38]. Thus, they are 
susceptible to overfitting particularly when available 
data is scarce, and may be difficult to train end-to-end. 
Additionally, results may be too coarse due to 
subsampling by multiple max pooling operations. 
These configurations may not be optimal for all types 
of images and segmentation goals due to unique feature 
properties. 

 

2.2 Proposed 11-layer CNN 

The proposed CNN architecture is illustrated in Fig. 2. 
The input image to the CNN may be of any resolution 
and number of channels, and does not diminish in 
resolution through the network. The output is a volume 
of the same depth as the number of desired 
segmentation classes (3 for our problem i.e. fibrosis, 
myocyte, and background), in which per-pixel 
probabilities for each class are stored. The CNN is 
suitable for any number of classes. The final 
segmentation map constituting of colors which 
correspond to the predicted class for each pixel can be 
obtained by determining the argmax-index along the 
depth axis of the output volume. 

Our CNN consists of 11 convolutional layers. The 
first 9 involve 3 × 3 filters with 64 channels, succeeded 
by 2 layers of 1 × 1 convolutions with 3 channels. All 
convolutions have a stride of 1. We incorporate further 
nonlinearity by appending ReLU activation after all 
convolutional layers in the network, performing max(0, 
x) element-wise to x (the output from a convolution), 
thereby converting all negative values to 0. ReLUs are 
a non-saturating and computationally simple method to 
capture more complex features of the input data, and 
has been shown to greatly accelerate CNN learning 
during stochastic gradient descent [7, 17]. 

We normalize input distributions of every 
convolutional  layer  to  zero  mean  and  unit  variance,  
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addressing the problem of internal covariate shift with 
batch normalization [41]: 

 

 (1) 

where BN is the batch normalizing transform, xi is an 
activation from mini-batch B, µB is the mini-batch 
mean, 𝜎𝜎𝐵𝐵2 is the mini-batch variance, γ and β are the 
learnable scale and shift terms respectively, and ε is a 
small constant to prevent division by zero. As a result, 
we observe greatly accelerated model learning and 
improved evaluation performance. Batch 
normalization is positioned after ReLU nonlinearity, as 
our experiments indicated that this provides a larger 
performance increase over the inverse arrangement. 
We do not add biases to the outcomes of convolutions, 
as they would effectively be negated by the mean 
subtraction step in batch normalization. Furthermore, 
we do not incorporate dropout [42] as model 
regularization is provided by batch normalization, 
following the practice in [41]. 

Disparate to the typical encoder-decoder state-of-
the-art deep architectures for segmentation, we do not 
downsample the image and reduce lateral resolution 
(e.g. via pooling), then upsample to produce a dense 
output. Although subsampling may improve the 
robustness of a model to small shift variants of the 
input, spatial localization suffers since representations 
are coarser. As we observe high variance of low-level 
features within and between local regions in histology 
images of our kind, we exclude pooling to prevent 
smoothing of fine-grained features, and consequently 
gain several other advantages.  

With the use of zero padding to preserve X-Y 
spatial size of intermediate volumes after the otherwise 
contracting convolutions, lateral resolution is 

maintained throughout the CNN from input to output. 
Hence our segmentation network is free of upsampling 
layers (e.g. deconvolution). This substantially reduces 
the number of trainable parameters in the network and 
its susceptibility to overfitting. 

Additionally, the number of feature maps in deep 
CNNs typically double after halving lateral dimensions 
by stride 2 max pooling, following the highly 
influential VGG-type designs [18]. Contrastingly, 
volume depth in our CNN is maintained at 64 until the 
final 2 layers, which contain 3 feature channels each. 
This configuration provides favorable performance 
whilst compensating for the omitted benefits to 
computational efficiency by subsampling.  

Overall, we can build a more elegant and efficient 
architecture containing fewer parameters by deviating 
from convention; eliminating pooling and upsampling, 
and not increasing the number of feature channels 
through the network. Our proposed architecture 
contains 300 thousand trainable parameters, which is 
447, 103, and 840 times less than FCN (~134 million), 
U-Net (~31 million), and DeconvNet (~252 million), 
respectively [8, 37, 38]. The size of our trained 
TensorFlow model on disk is just 3.5 MB. 

Through experimentation, we found stacking two 
1 × 1 convolution – ReLU – batch normalization 
blocks at the end of the CNN an inexpensive way to 
provide additional nonlinearity to better capture 
relevant features in the receptive field and slightly 
boost performance, over one single such block. Depth 
of our CNN architecture may be further increased by 
inserting convolutional layers with 64 feature maps of 
the same fashion. Our experiments indicate that this 
does not drastically improve segmentation 
performance, however each additional layer introduces 
36,864 trainable parameters. As we prefer efficiency 
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Fig. 2  Architecture of the proposed 11-layer convolutional neural network (CNN) for dense per-pixel classification. It consists of 9 layers of  
3 × 3 convolutions with 64 channels, followed by 2 layers of 1 × 1 convolutions with 3 channels. All convolutions are performed with stride 1, 
and are appended by rectified linear unit (ReLU) activation, then batch normalization. The output of the CNN contains per-pixel probabilities 
for each class of the same resolution as the input image 
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and fewer parameters over a slight benefit to accuracy, 
we selected a total of 11 convolutional layers in our 
network. We also experimented with two other 
modifications to our network, in the form of dilated 
convolutions [43] with successive dilation factors of   
1-1-2-4 in four early layers, or residual-style 
connections [19] through the CNN. Results indicate 
that these variants are about equal in performance. 

 
2.3 Experiments 

Supervised learning of a CNN is typically based on a 
large dataset consisting of images and corresponding 
labels. Training is followed by an evaluation phase 
where predictions are produced from the trained model, 
and performance is analyzed. The following 
subsections present the detailed steps we implemented 
to address the image segmentation problem for fibrosis 
identification, and to benchmark segmentation 
performance of the proposed approach. 

 
2.3.1 Dataset 

The dataset consists of 72 images, 36 each from control 
and DM groups, all 2064 × 1536 pixels (width × height) 
in size with 3 color channels (RGB). The histological 
images are courtesy of Fu et al., methods detailed in 
[31]. Briefly, left atrial sections of control and DM 
(induced by alloxan monohydrate) Japanese rabbits 
were stained with Masson’s trichrome and imaged with 
an Olympus DP72 at 40× objective magnification. 
Each pixel has a spatial resolution of 
161.25 nm × 161.25 nm. 

 
2.3.2 Manual thresholding and ground truth 

Manual thresholding is presently the conventional 
approach for identifying tissue type and fibrosis in 
histology sections with Masson’s trichrome stain. In 
these images, fibrosis is colored blue and myocytes red, 
while white is regarded as background. We first 
meticulously applied manual thresholding to the 
original images by utilizing manually toned regional 
thresholds and detailed touch-ups, generating 
segmentation ground truth. To ensure our ground truth 
is precise, we validated the segmentation results with 
experts in the field [31].  

To facilitate segmentation, the images were 
preprocessed prior to thresholding via histogram 
normalization, to standardize the minimum and 
maximum intensities in each RGB channel to 0 and 
255, respectively. We employed multiband 
thresholding for higher segmentation accuracy, 

involving combinations of different thresholds across 
channels to isolate classes, whilst ensuring no pixel 
was unclassed or multi-classed. Thresholds were 
selected through repeated empirical trials and visual 
validation. 

 
2.3.3 Data augmentation 

We randomly selected 24 original images (12 each 
from control and DM groups) to construct the training 
set. Since performance of neural networks is generally 
improved with more training data, the amount of 
available data for training was amplified by 
augmentation, a technique popular in the field of deep 
learning for image classification [7, 44]. Augmentation 
also benefits to reduce overfitting, improving model 
invariance to adjustments negligible to classification 
outcome. We applied the following independent 
transformations identically to each original image and 
its corresponding labels, then randomly sampled 
48 × 48 patches from augmented forms (number of 
patches in brackets): 
• Rotation by 90o (450), 180o (900), or 270o (450); 
• Flipping along the horizontal (450) or vertical 

axis (450); 
• Sinusoidal warping (900); 
• Shearing affine transformation (900). 

A maximum of 900 patches were obtained from one 
augmented version, which is roughly two-thirds the 
image area in pixel count. 

To ensure that each patch captured adequate 
information and avoided extremely biased proportions 
of pixels for any classes, we excluded from the training 
set the highest 4/9 of patches as ranked by the standard 
deviation of their class proportions. We then randomly 
discarded 96 patches such that the total number of 
patches is divisible by 128, the size of the mini-batches 
during gradient descent. The training set consisted of 
59,904 48 × 48 patches in total, about 138 million 
pixels. Prior to training, we randomized the order of 
training data with the intent of achieving smoother 
convergence during gradient descent. 

Due to random sampling, proportions of each class 
in the training set roughly reflected those in the test set, 
with myocytes in the greatest prevalence (44%), 
followed by background (32%), and fibrosis the lowest 
(24%). Data class imbalance is a major problem in 
supervised classifiers, detrimentally impacting 
minority classes in particular [45, 46]. A vast array of 
strategies has been devised for overcoming this 
recurrent problem (although with variable success), 
including oversampling, undersampling, retaining 
natural proportions in learning examples, data 
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synthesis, and class-weighted loss functions [45]. With 
the intent of improving segmentation performance for 
fibrosis, we carried out another training of the 
proposed CNN with a different training set consisting 
of approximately balanced class proportions (35% 
myocyte, 34% background, and 31% fibrosis), 
obtained by oversampling fibrosis. This training set 
consisted of the same number of 48 × 48 patches as the 
standard training set. 

We also assessed the capability of our approach to 
withstand variations in color and brightness typical of 
Masson’s trichrome-stained histology sections, by 
evaluating performance of the proposed CNN on color-
adjusted test images. The maximum extents of the 
alterations are visualized in Fig. 3. Further, we 
performed an independent training of the CNN using a 
color augmented version of the standard training set. 
We randomly selected 40% of patches to undergo 
contrast adjustment via the red channel, and a different 
40% via the blue channel. Training images were color-
adjusted by a random degree up to the predefined 
maximum limits. 

 

2.3.4 CNN training 

Training is an iterative process in which (i) training 
data are fed into the model in batches, (ii) predictions 
are produced by the current model in a forward pass, 
(iii) errors between predictions and ground truth labels 
are computed, (iv) errors are backpropagated through 
the network, (v) parameter corrections for all neurons 
are computed, and (vi) parameters are updated to 
minimize errors. A single cycle over the entire training 
set is an epoch, and typically multiple epochs are 
needed for convergence. 

We utilize the TensorFlow framework [47] to 
implement the CNN, and perform end-to-end training 
from scratch. For the first iteration of training, we 
initialize weights per recommendations by He et al. 
[48]. We sample weights from a normal distribution 
centered on zero, truncated at two standard deviations 
from the mean, with variance 2/n, where n is the 
product of the number of input feature channels, filter 
height, and filter width for a given layer. 

For preprocessing during model training and 
evaluation, we subtract training set RGB means from 

the corresponding channel, then normalize each 
channel to unit variance via division of its standard 
deviation. 

During learning, we compute cross-entropy as the 
loss function, which measures dissimilarity between 
per-pixel class distributions of ground truth and 
estimated probabilities. First, we normalize predicted 
probabilities to unit sum for each pixel via the softmax 
function in Eq. 2, where z contains predicted 
probabilities for K classes, and fj corresponds to the      
j-th element in the vector of softmax probabilities f. 

 

 (2) 

We then determine loss of each pixel point Li by Eq. 3, 
where yi is the correct class, and j is the index along 
vector f. We compute loss as the mean loss across all 
pixels in a mini-batch. 

 

 (3) 

Training is carried out via gradient descent with 
training images in mini-batches set at size 128. 
Weights are updated every mini-batch, and one revised 
model is produced every epoch. We minimize cross-
entropy loss during stochastic optimization via Adam 
[49], which utilizes adaptive learning rates for smooth 
convergence. We set the three parameters of Adam, the 
upper bound learning rate, and exponential decay rates 
for the first and second moment estimates, to their 
default values of 0.001, 0.9, and 0.999, respectively. 
Order of mini-batches is re-randomized every epoch 
except the last batch, to simplify tracking for 
visualization of training progress. We end training 
when mean Dice similarity coefficient (DSC) for the 
test set does not increase by at least 1% after 20 further 
epochs from its current best epoch. The best model is 
the one producing the highest test mean DSC. 

 
2.3.5 Evaluation 

Our primary segmentation performance metric is the 
widely-adopted DSC, which assesses spatial overlap 
by combining precision and recall in the form of a 
harmonic mean [50]. We also measure intersection 
over union (IoU), a common metric for semantic 
segmentation, and the evaluation standard in Pascal 
VOC2012 [51]. Both are measures of overlapping 
areas of mutual class assignment, but differ slightly in 
formulation. DSC and IoU scores are within (0, 1), 
with higher values indicating better performance. 

Preliminary for computation of the two metrics is 
the construction of a confusion matrix between ground 
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Fig. 3  Maximum extents of color augmentation applied via the red 
(center) and blue (right) channels 
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truth and predictions, allowing the tallying of true 
positive (TP), false positive (FP), false negative (FN), 
and true negative (TN) outcomes predicted by the 
classifier for each class. We compute DSC and IoU 
scores for class c by Eqs. 4 and 5, respectively: 

 

(4) 

 

(5) 

Class scores are subsequently averaged for each 
image, yielding image DSC and image IoU. We distill 
overall performance of a classifier into a single value 
for each metric by averaging respective image scores 
across the 48-image test set, yielding mean DSC and 
mean IoU. We also report mean scores for each class 
determined in an analogous manner. To select the top-
performing model from each training instance, each 
model produced predictions for the entire test set, and 
the basis for model selection was its overall mean DSC. 
We visually scrutinized all segmentation outputs from 
machine learning approaches to confirm their accuracy. 
 

2.3.6 Comparison with previous methods 

We compare performance of the proposed architecture 
for the per-pixel classification task at hand with two 
well-adopted CNNs for segmentation, FCN-8 [37] and 
U-Net [8]. FCN-8 is the most refined version of the 
FCNs, and a landmark development in recent progress 
of CNNs for image segmentation, achieving a 20% 
improvement in performance against traditional 
approaches on standard datasets. U-Net was designed 
specifically for biomedical image segmentation, and 
has proved its superiority by winning several contests. 
The network can achieve high performance with very 
few training data and has become widely popular, 
adapted for many applications [52–54]. 

For learning and testing, we used identical data as 
our proposed architecture, trained all networks from 
scratch as outlined in Section 2.3.4, and followed the 
same evaluation procedures in Section 2.3.5. The only 
modification we made to the original U-Net was the 
use of zero padding during convolutions, to preserve 
the lateral size of input volume at such steps. For    
FCN-8 and U-Net, we initialized all biases to zero. We 
employed dropout during training for the two fully 
connected layers in FCN-8, and all convolutional 
layers except the last in U-Net. We experimentally 
determined dropout rates of 0.5 and 0 (no dropout) 
respectively for FCN-8 and U-Net to yield the best 
performance on the test set. We present their 
performance scores accordingly. 

We also compare segmentation performance 
against that of k-means clustering, a widely-utilized 
unsupervised machine learning algorithm which 
partitions N unlabeled observations (pixels in the case 
of images) into K groups [55]. In the case of RGB 
image segmentation into K = 3 classes, three centroids 
exist, each located at RGB intensities deemed optimal 
by the algorithm. We also performed k-means in Lab 
space after conversion from RGB. The performed 
iterative process is as follows: 

i. Random initialization of cluster centroids (Ck, 
k = 1…K); 

ii. Assignment of data points (xn, n = 1…N) to 
clusters with current centroids of minimum 
Euclidean distance ||xn – Ck || away; 

iii. Computation of new centroids using updated 
groupings; 

iv. Repetition of steps ii and iii until convergence. 
To avoid results in local minima, the algorithm was 
performed three times, and the final partitions with the 
lowest sum of distances from all points to centroids 
was selected. Since k-means is unsupervised, the 
classes of segmentations are unknown. Our strategy is 
to produce all six permutations possible with three 
classes and select the one which scores highest in 
overall test mean DSC. 

 

3 Results and discussion 

3.1 Proposed CNN 

In Fig. 4, we present the curves of training accuracy 
and loss, and test accuracy over epochs. The training 
and test accuracy curves converge approaching epoch 
number 40, when training met our criterion for 
termination. 
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Fig. 4  Test accuracy, training accuracy, and loss over training 
epochs of the proposed CNN. Grey highlights convergence of test 
accuracy 



8 
 

 
The proposed system achieved high in 

segmentation performance, scoring a test mean DSC of 
0.947. Expectedly, predictions are visually almost 
identical to ground truth. Performance on images of the 
control group was slightly above the DM group (Fig. 
5). 

We observed imbalanced class performance for all 
the neural networks we tested (including other 
architectures); e.g., 0.980 vs. 0.907 in DSC for 
myocytes and fibrosis (Table 1). Identification of 
fibrosis was weaker relative to myocyte and less so to 
background, which reflects the relative prevalence of 
each class in the data. This problem was not alleviated 
by the technique of oversampling minority class 
(fibrosis) examples by training with roughly balanced 
class proportions. In fact, evaluation performance of 
the proposed CNN reduced slightly (0.944 mean DSC), 
with background and fibrosis suffering relatively more 
(decreased by 0.004) than the dominant myocytes 
(decreased by 0.002). Thus, our results suggest higher 
per-class and overall segmentation performance when 
training and test set class proportions are more aligned. 
Hence, it may be beneficial to be aware of potentially 
disparate distributions between training and testing 
data, which could demand re-training or fine-tuning of 
the model. 

By testing the trained network with color-adjusted 
image sets (Fig. 3), we show the ability of the proposed 
method to tolerate different image color characteristics 
(such as brightness and contrast), and be invariant to 
the exact colors of structures (Fig. 6). For the test 
images which were altered by modifying blue channel  

 

intensities, mean DSC of the proposed CNN decreased 
slightly. This test color modification did not impact the 
performance of the system trained on color-augmented 
images. However, performance of the proposed CNN 
without such training augmentation was better, by 
0.001. Thus, training color augmentation did not 
enhance performance for this amount of change in test 
image color. The test images altered by changing red 
channel intensities exhibit strikingly larger visual 
dissimilarity to the original versions. For these images, 
the model trained on color-augmented images 
displayed markedly improved consistency in 
performance, though with the caveat of diminished 
accuracy on the original images. These results 
demonstrate robustness of the proposed system in 
coping with colors outside the range encountered 
during learning; that color augmentation during 
learning is not necessary if an evaluation dataset does 
not contain large disparities in color for certain 
structures, relative to training data. 

 
3.2 Comparison with previous methods 

Fig. 7 and Table 1 present a comparison between 
segmentation performance of the various methods.     
K-means clustering produced considerably inferior 
results compared to all CNNs we applied, scoring 

 
 
Fig. 5  Representative segmentations by the proposed CNN for 
control and DM images. Mean Dice similarity coefficient (DSC) 
and mean intersection over union (IoU) are indicated for each 
corresponding image group 

 
 
Fig. 6  Comparison between predictions for the original image (top) 
and versions color-adjusted via the red (middle) and blue channels 
(bottom) demonstrates that the proposed method is robust to typical 
color variations in the input. Left to right columns: input image, 
predictions from the proposed CNN, and that with additional color-
augmentation applied to training data. Mean Dice similarity 
coefficient (DSC) and mean intersection over union (IoU) are 
indicated for each corresponding image group 
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poorly in all computed performance metrics. Predicted 
segmentation maps from k-means in RGB were 
characterized by fibrosis over-classification especially 
around edges of myocytes, and inconsistent fibrosis 
classification between unambiguously fibrotic regions 
of similar appearance. Performance scores across all 
metrics were lower when k-means was executed post 
conversion of images to Lab space, and predictions 
demonstrated similar types of inconsistencies (not 
shown). 

To illuminate the shortfalls of this unsupervised 
learning algorithm, we visualize segmented class 
clusters according to original pixel RGB values in      
Fig. 8. The clusters segmented by the proposed CNN 
were highly irregular and interlaced in some regions. 
Contrastingly,  clusters  partitioned  by  k-means  were  

 
well-separated and roughly equal in shape and volume. 

Fig. 8 indicates that the images do not satisfy key 
assumptions of the k-means algorithm; namely 
spherical cluster distributions of similar variance, and 
equal class probabilities for every data point [56]. As 
well as lacking recognition of contextual and spatial 
information (unlike CNNs), k-means utilizes the same 
rigid Euclidean distance minimization for all classes, 
albeit inequality of cluster shape and size, or ill-defined 
boundaries. These limitations might be overcome by 
special transformations serving as preprocessing. 
However, determining suitable transformations is 
highly challenging. Since their success depends 
heavily on exact intensities, unique transformations 
tailored for different local regions are likely required, 
rendering this approach labor-intensive, and sensitive 
to inter- and intra-image intensity variations (similar to 
manual thresholding). Further, intensities are 
perceived by the human visual system in a highly 
nonlinear mapping, so although separation of the 
classes may be trivial by eye, the same task performed 
with only pixel values is much more difficult. In 
contrast to k-means, CNNs map highly complex 
relationships between intensities and desired outputs 
automatically, is robust to intensity variations (Fig. 6), 
and produce markedly superior results (Table 1 and  
Fig. 7). Despite being fully automated, these results 
strongly suggest that k-means clustering is unattractive 
for this application, primarily due to its inadequacy in 
segmenting similar images in their raw form to a 
satisfactory standard.  

 
 
Fig. 7  Representative examples of segmentations produced by 
manual thresholding (ground truth), k-means in RGB, FCN-8,       
U-Net, and the proposed method 

 
 
Fig. 8  Illustration of the poor performance by k-means clustering 
for segmentation. Segmentations for the patch (left) by the 
proposed CNN (center) and k-means in RGB (right). Pixels are 
plotted according to their original RGB intensities. Background 
pixels are in green for clarity 

       Table 1  Comparison between previous methods and the proposed CNN 

Method Mean 
DSC Mean Class DSC Mean 

IoU Mean Class IoU Parameters 

  M B F  M B F  
k-means RGB 0.627 0.741 0.806 0.333 0.497 0.595 0.681 0.216 - 
k-means Lab 0.575 0.717 0.768 0.241 0.449 0.564 0.629 0.153 - 

U-Net 0.945 0.980 0.949 0.905 0.899 0.962 0.907 0.829 ~31,000,000 
FCN-8 0.917 0.968 0.925 0.858 0.852 0.939 0.864 0.754 ~134,000,000 

Proposed CNN 0.947 0.980 0.955 0.907 0.903 0.961 0.916 0.832 ~300,000 
    

       DSC – Dice similarity coefficient, IoU – intersection over union, M – myocyte, B – background, F – fibrosis. 
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Comparing segmentation performance of the three 
CNNs (Table 1), the proposed architecture is superior 
to both FCN-8 and U-Net. FCN-8 scored the lowest in 
performance out of the three CNNs by a relatively 
large margin. Segmentations by FCN-8 indicate a 
tendency to smooth structural edges and an inability of 
the network to capture fine details, often resulting in 
coarse and overly-large predicted areas for fibrosis 
(Fig. 7). Predictions from U-Net and the proposed 
network very closely resembled ground truth, 
indicating their capability to capture fine-grained 
details in the images precisely. 

Furthermore, we assessed the relative efficiency of 
our proposed CNN against U-Net and FCN-8. Our 
architecture has 0.9 trillion FLOPs (multiply-adds) for 
a 2064 × 1536-pixel image with 3 channels. This is a 
60% reduction to U-Net (2.3 trillion FLOPs), and a     
30% reduction to FCN-8 (1.3 trillion FLOPs) for inputs 
of the same size (Fig. 9). Hence our model attains state-
of-the-art performance with substantially less 
computation. It is worth noting that even though    
FCN-8 is more efficient than U-Net, its segmentation 
performance is clearly inferior (Fig. 7 and Table 1). 
Additionally, we observed stronger overfitting to 
training data by U-Net compared to the proposed 
model (which contains 103 times fewer parameters), as 
indicated by a much higher training accuracy relative 
to evaluation accuracy by the former. 
 

 
Our proposed 11-layer CNN designed for per-pixel 

classification deviates from conventional forms 
particularly in its exclusion of subsampling layers 
(such as pooling) and upsampling layers, and its 
consistent number of intermediate feature channels 
through the network. We use only three types of 
functions (convolution, ReLU, and batch 
normalization) arranged in an uncomplicated 
configuration. The network’s state-of-the-art results 
(Table 1) indicates that subsampling is not essential for 
data characterized by high variance of features 
between adjacent pixels and between different local 

regions, such as cardiac histological images. The 
aforementioned distinctions of the proposed CNN 
grant it several advantages over state-of-the-art 
architectures designed for segmentation: reduces the 
total number of learnable parameters, prevents 
overfitting to training data, improves efficiency, 
maintains image resolution, and allows fine-grained 
details to be captured accurately.  

Design of a suitable neural network for an 
application can be difficult, as it involves selections 
from a vast number of possibilities, and there is no set 
of universal guidelines. Further, assessment of 
architectures and hyperparameters can be tedious. 
Many recent networks are characterized by substantial 
depth, or a diverse range of arrangements and 
connections between intermediate layers. Our work 
shows that shallower and uncomplicated networks can 
offer impressive performance. It may be worthwhile to 
start simple. 

 
3.3 Atrial fibrosis under diabetes mellitus 

Tallying the total pixels for each class in segmentation 
maps predicted by the proposed method and comparing 
control to DM images, each group consisted of 9.7% 
vs. 29.8% fibrosis, 63.2% vs. 44.5% myocytes, and 
27.1% vs. 25.7% background. Thus, fibrosis greatly 
increased under DM by about a factor of 3, similar to 
the finding in [31]. Predicted quantifications were 
almost identical to those from the standard clinical 
approach; for example, manual thresholding predicted 
fibrosis of 10.1% and 28.7% in control and DM sets, 
respectively. Hence, the proposed method is validated 
for this application and may be exploited in a clinical 
context. 

 

 
 
Fig. 9  The proposed CNN performs competitively against the 
state-of-the-art with considerably greater efficiency, as measured 
by FLOPs (multiply-adds) for a 2064 × 1536-pixel input with 3 
channels 

 
 
Fig. 10  Comparison of per-image fibrosis percent area between 
control (left) and diabetes mellitus (right) rabbit atrial images (n = 
24 each), as predicted by the 11-layer CNN. ‘***’ = p < 0.001, two-
sample t-test without assumption of equal variance. A 
representative image from each group is included 
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The difference between mean fibrosis proportions 
in control and DM images was unsurprisingly 
statistically significant (Fig. 10). Owing to the highly 
similar area of background in both groups, the 
additional fibrotic tissue was offset by approximately 
the same amount of decrease in myocytes, indicating 
direct replacement of cardiomyocyte regions by 
fibrosis. Since the DM rabbits (from which the images 
originated) were roughly 8-times more vulnerable to 
atrial fibrillation compared with controls [31], our 
results are in line with the proposed theories that 
structural remodeling under DM in the form of fibrosis 
may lead to electrophysiological remodeling and 
subsequent arrhythmia [33, 34]. 

 

4 Conclusion 

In this paper, we proposed a novel 11-layer CNN and 
demonstrated the supervised learning-based approach 
for the application of histological image segmentation, 
particularly for fibrosis identification via Masson’s 
trichrome staining. With an elegant configuration, 
drastically fewer parameters, and superior efficiency, 
the CNN outperformed the state-of-the-art on our 
image set. This approach is also robust to typical 
variations in image illumination and stain color. For 
best results, learning data should capture a rough 
representation of the characteristics in the total image 
set, including proportions of each class, and variations 
in color of certain structures. 
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