
1

System-on-Chip Design of the Cortical-Diencephalic Centre of the

Lower Urinary Tract

Francisco Maciá Pérez

(University of Alicante, Alicante, Spain

pmacia@ua.es)

Leandro Zambrano Méndez

(Jose Antonio Echeverria Higher Polytechnic Institute, Havana, Cuba

celzambranom@gmail.com)

José Vicente Berná Martínez

(University of Alicante, Alicante, Spain

jvberna@ua.es)

Roberto Sepúlveda Lima

(Jose Antonio Echeverria Higher Polytechnic Institute, Havana, Cuba

sepul@ceis.cujae.edu.cu)

Abstract

This article presents the design of a field programmable gate array (FPGA)-based prototype of a

system on chip (SoC) capable of behaving as one of the nerve centres comprising the

neuroregulatory system in humans: the cortical-diencephalic nerve centre. The neuroregulatory

system is a complex nerve system consisting of a heterogeneous group of nerve centres. These

centres are distributed throughout the length of the spinal cord, are autonomous, communicate via

interneurons, and govern and regulate the behaviour of multiple organs and systems in the human

body. As a result of years of study of the functioning and composition of the neuroregulatory system

of the lower urinary tract (LUT), the centres that regulate this system have been isolated. The

objective of this study is to understand the individual functioning of each centre in order to create

a general model of the neuroregulatory system that is capable of operating at the level of the actual

nerve centre. This model represents an advancement of the current black box models that do not

allow for isolated or independent treatment of system dysfunction. In this study, we re-visit our

research into the viability of the hardware design of one of these centres—the cortical-diencephalic

centre. We describe this hardware because functioning of the centre is completely configurable and

programmable, which validates the design for other centres that comprise the neuroregulatory

system. In this document, we succinctly present the formal model of the centre, propose a hardware

design and an FPGA-based prototype, construct a testing and simulation environment to evaluate

it and, lastly, analyse and contrast the results using data obtained from real patients, verifying that

the functional behaviour fits that observed in humans.

Keywords

Cortical-Diencephalic Centre, Neuroregulatory System, FPGA, System on Chip

1. Introduction

Researchers continually seek to resolve complex health problems with innovative methods. One

strategy consists of combining technological and biological systems to resolve, monitor, correct, or

modulate organ or bodily subsystems that, in one way or another, do not function as they should.

Usuario
Texto escrito a máquina
This is a previous version of the article published in Computers in Biology and Medicine. 2018, 99: 107-122. doi:10.1016/j.compbiomed.2018.06.007

https://doi.org/10.1016/j.compbiomed.2018.06.007

2

Accordingly, the creation of embedded hardware devices that can be implanted into the body to

correct its dysfunctions [1, 2] is already achieving results [3, 4, 5].

The neuroregulatory system is one of the most sensitive and important elements of the human body.

The system is extremely complex and, consequently, its proper functioning is difficult to study

without causing it harm. Consequently, several studies that have addressed this subsystem and its

malfunctions, such as (i) in [4], where the author describes the design and implementation of

reconfigurable hardware with an architecture capable of emulating neural networks in real time for

correcting potential disorders of the nervous system, and (ii) [3], which proposes the development

of an emulator of the visual system to reproduce retinal and visual cortex neuron activity. In [5],

the authors describe a proposal to implement hardware to improve speech in individuals with

hearing impairments. Studies such as these explore the use of artificial systems for resolving

problems that involve the neuroregulatory system. All of these reports demonstrate the difficulty in

working with and understanding the nervous system and reveal that the root of multiple deficiencies

in the body often lies in the nervous system, not in the malfunctioning organ.

After numerous years of study, we have now available a validated and confirmed theoretical model

of the neuroregulatory system for the lower urinary tract (LUT) in both normal and abnormal

conditions [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. It was confirmed that, in all cases, and

despite the fact that abnormal conditions were originally not taken into account in the model, the

system behaves in a manner similar to actual biological systems [7]. The LUT was chosen due to

social interest and its influence in the treatment of incontinence. Moreover, this system is

sufficiently complex for rigorous validation of the model but simple enough to be able to be able

to be modelled properly. The model was conceived and expressed using agent theory as a Multi-

Agent System (MAS), being composed of agents capable of emulating the behaviour of different

nerve centres that comprise it, and following a perceive-deliberate-execute paradigm (PDE agents)

[8]. In the proposed model, each agent models a nerve centre, and communication between the

agents models neuronal connections. The resulting model facilitates modular development, as it is

already composed of independent, self-contained elements. This characteristic allows for the

incorporation of system components without needing to considerably alter the remaining entities.

Until now, the primary achieved goals can be summarised as lower urinary tract monitoring and

simulation, allowing physicians to identify the dysfunctions in their patients and allowing patients

to train themselves through feedback to recuperate or substitute elements of their lost functionality.

The next steps are to develop hardware designs based on a proposed architecture that implements

the functionality of the neuroregulatory system. The hardware design can be converted into the

bases of an embedded system on chip (SoC), which implements the functionality of neuroregulatory

centres. In the present study, we focus on the hardware design of a specific centre, the cortical-

diencephalic (CD) nerve centre. This centre forms part of the LUT, consisting of a known model

for which sufficient information is available for appropriate validation using previously obtained

patient data from different clinical techniques such as electromyography and pressure tests. [6, 7,

8]. At the same time, the proposed design was conceived so that, in the near future, it could behave

as any other nerve centre via simple modulation of its functional parameters.

With these objectives in mind, the remainder of this study will be structured as follows: section 2

provides a technical overview of the studies with major relevance to our current project; section 3

shows the proposed solution alongside the theoretical basis that precedes it, along with details of

the prototype; section 4 presents the results of the tests and validations by comparing the proposed

3

prototype with clinical data; and lastly, section 5 summarises the primary conclusions drawn from

the study and provides suggestions for future work.

2. Technical Overview

One of the most important challenges in medicine is improving the quality of life of patients

struggling with some form of pathology caused by malfunctions in organs or other parts of the body

that cannot be efficiently treated with traditional medicine. The synergy between medicine and

technology [2] has been vital in resolving, monitoring, or correcting organ dysfunctions or damaged

body systems. One potential solution consists of the creation of hardware that can be implanted in

humans and compensate for these malfunctions. One objective for hardware used in the

development of bioinspired systems is the creation of robust devices that can reliably replace organ

functions [19, 20, 21, 22].

The first step in constructing hardware systems is a complete understanding of the system to be

developed. Consequently, numerous proposals emulate modelled biological systems [4], observe

its behaviour [24] and, subsequently, aim to synthetically reproduce the behaviour of the biological

system [23, 37]. Once the system is understood, proposals of varying degrees of complexity can be

developed, such as in [25], where the authors propose the design of a cortical neuroprosthesis

capable of producing stimulating currents. In [26], the authors utilise neural networks implemented

in reconfigurable hardware (FPGA – Field Programmable Gate Array) for stage segmentation, and

in [27], the visual system is modelled to reproduce neuronal activity. The work in [38] implements

a hardware system tolerant of errors from the study of prokaryotic bacteria morphology and

behaviour, and a cellular machine is created in [45] by modelling the behaviour of the physarum

polycephalum mould.

In creating a prototype, FPGA is useful because of its versatility and capacity to synthesise

hardware. A wide variety of studies have made use of this technology for different projects, such

as (i) a description of tools for the automatic design of visual system models [28]; (ii) a proposal of

a hardware platform to study and experiment on of different processing schemes for visual

information from artificial retinas [29]; (iii) the design of bioinspired circuits for real-time vision

[30, 45]; or (iv) investigating the resolution of auditory dysfunctions [31, 32].

The use of FPGA to implement theoretical or mathematical models has been well accepted by the

scientific community. Different studies have implemented FPGA for a number of different

techniques, such as the following: (i) a highly efficient architecture to eliminate the negative effects

of glasses [33]; (ii) the reconfigurable hardware implementation of an algorithm for facial detection

[34]; (iii) modelling portions of the cerebral cortex to solve partitioning problems in processing

sensory information [39]; (iv) the proposal of a processing unit by way of a neuronal model with

optimised architecture [40]; and (v) a number of studies that implement algorithms to describe the

functioning of neuronal networks [35, 36].

These studies illustrate that FPGA is highly flexible in creating prototypes, assisting with designing

tasks; enabling the exploration of alternatives to the original design; and providing support by way

of parallelisation, processing speed, and the potential for high-density components, among other

properties.

The model of the neuroregulatory system that is the focus of this study has been validated and

confirmed by studying the LUT. The study of urinary dysfunctions is a complex problem that

4

requires understanding not only the functional organs but also those involved in urinary function

regulation[42] as well as the neuronal connections involved in urination. Investigating the

neuroregulatory side of this issue, [43] describes cases of incontinence caused by problems with

nerve centres and explains how afferent signals act on these centres. These studies focus on the

analysis and understanding of the LUT neuroregulatory system and its link with urinary

incontinence, clearly demonstrating that the detection of possible dysfunctions, as well as

correcting them, are an open problem. Consequently, studies such as [44] have described the

development of an embedded system using the self-organisation of artificial neural networks to aid

in the diagnosis of urinal dysfunction. From these studies, it can be concluded that projects focused

on the LUT neuroregulatory system, few though there are, provide a better understanding of the

functioning of this complex system. At the same time, problems arise from improper functioning

of the neuroregulatory system that regulates the LUT. It is at this level that our study begins, i.e.,

in the appropriate neuroregulatory system and resolving a dysfunction that can be localised to a

particular neuronal system.

3. History

Our group has been working on modelling and simulating the neuroregulatory system for over a

decade, with the goal of contributing to its diagnosis [9], control, and possible correction of

dysfunctions [6, 10, 11]. These studies provide the formal framework on which we construct our

current design. In this section, we describe the most prominent aspects of this design.

According to the model shown in [6], a neuroregulatory biological system (NBS) is formed from a

mechanical system (MS), a neuroregulatory system (NRS), neuronal connections (NC), and a

system domain (SD). Formally, it can be defined as follows:

NBS =  MS, NRS, NC, SD  (1)

From this point forward, we discuss only analyses of the neuroregulatory systems (NRS), its

neuronal connections (NC), and the system domain (SD), as these are the elements involved in our

current study.

Let A and B be ensembles that represent two types of system components. A neuronal connection

between an element x from A to an element y in B (which is not necessarily different from A) is

represented as (x, y) / xA, yB. Element x represents the start of the connection, and element y

the termination.

The neuroregulatory system (NRS) represents the ensemble of nerve centres as entities capable of

acting autonomously on the mechanical system based on information on its state and its relation

with other involved nerve centres:

NRS = {α1, α2, α3, …, αn} (2)

The ensemble of neural connections is composed of afferent neuronal connections (ANC), efferent

neuronal connections (ENC), and internal neuronal connections (INC). Each neuronal connection is

formally defined as follows:

NC = ANC ⋃ ENC ⋃ INC (3)

5

Let x ∈ NRS and y ∈ MS, then the relationships for ANC, ENC, and INC, which represent different

types of neuronal connections, are defined as follows:

ANC  MS x NRS (4)

ENC  NRS x MS (5)

 INC  NRS x NRS (6)

The notations (ms, αt) ∈ ANC, (αs, ms) ∈ ENC, and (αs, αt) ∈ INC will be simplified as msAαt, αsEms

and αsIαt, respectively. The following notations are used: αs: starting nerve centre; αt: terminal nerve

centre; and ms: component of the mechanical system.

Taking into account that nerve centres act on the system as autonomous agents, the system domain

would consider the LUT as a system of actions and reactions with the following structure:

SD = < Σ,Γ,Ρ, 𝑅𝑒𝑎𝑐𝑡 > (7)

where:

Σ represents the ensemble of possible system states. It is formally represented in the

following way: Σ = {σi / σi = (si, v) where si ∈ NC and v ∈ ℝ}.

Γ represents the ensemble of possible policy decisions on the system. As these centres do

not possess total control over the system and must balance their objectives with those of

other centres, the result of each action is represented as a change decision. It is defined as

Γ = {γi / γi = (si, v) where si ∈ NC and v ∈ ℝ}.

Ρ represents the ensemble of possible actions that the different nerve centres could

perform on the system to modify its state. It is represented as follows: Ρ = {ρi / ρi = (label,

pre, post) where label is an expression of the form f(x1, x2,…, xn) and pre and post are

groups of formulas of the form g(a1, a2,…, an)}. For example: ρi = (Setsignalvalue(),

True(), Value()).

React: a function that models the behaviour of the mechanical system under the different

γi ∈ Γ.

Having taken into account a well-validated theoretical model of the neuroregulatory system through

study of the LUT, in the following paragraphs, we illustrate how to set the model definitions using

this system.

The neuroregulatory system is linked to the anatomy and physiology of the neuronal control of the

urinary tract, transmission centres, and areas responsible for facilitating and inhibiting the process

of urination [4, 5, 6, 7]. This system also describes the behaviour of neuronal connections and

control centres of the involved nerves [6, 7, 12, 13, 14]. Nerve centres are groups of neurons with

the same function, receiving signals generated by the mechanical system and from other centres,

processing said signals and retransmitting them to other centres or to the mechanical system [6, 7,

8, 15]. Interaction with the mechanical system is achieved through an ensemble of afferent and

efferent neuronal signals. The neuronal pathways carry the information from the mechanical system

towards the control centres, which then process the information and transmit it to the mechanical

system, resulting in activity in different parts of the system. Figure 1 shows a basic diagram of the

model of the LUT neuroregulatory system [6, 16]. It consists of nine neuronal centres; nine afferent

signals (A) coming from the mechanical system; two internal signals (I) generated voluntarily from

6

the facilitatory areas responsible for retention and urination; other internal system signals (I) that

transmit impulses from one centre to another; and eight efferent signals (E) that act on the muscles

of the mechanical system. Each signal is designated with A, E, or I to identify its type, along with

a superscript (on the left) and a subscript (on the right) that indicate the start and terminal,

respectively, of the signal. For example, the signal designated PMIDGC is an internal signal that starts

at the PM (Pontine Micturition) centre and terminates at the DGC (Dorsal Grey Commissure).

Although external to the LUT, the voluntary signals MICD and RICD are designated internal (I) given

that they arrive from nerve centres in other neuroregulatory subsystems. These two signals are

generated from voluntary areas at the conscious level and depend on internal factors, such as the

desire to urinate or not, as well as external factors, such as finding an appropriate location to urinate

or encountering flowing water. The RICD signal would activate the moment the individual senses

that their bladder is full but wants to continue to retain their urine, and the MICD signal would be

active over a short period of time and trigger the act of urination.

Figure 1. Simple diagram of the model of the neuroregulatory system.

The nerve centres that comprise the neuroregulatory system have been modelled as groups of

neurons that process signals and transmit responses. Because this behaviour is well suited to a PDE

agent (Perception, Deliberation, Execution) [17], the nerve centres have been modelled on an

architecture based on a PDE agent, giving it the ability to retain memory and thus a richer and more

potent decision-making process [18]. Given these properties, a nerve centre α ∈ NS is defined as

follows: α = (Φα, Sα, Perceptα, Memα, Decisionα, Execα) [6], where Φα is the group of perceptions;

Sα is the group of internal states; Perceptα provides information to the nerve centre about the system

state; Memα gives the centre the capacity to be aware of its own state; Decisionα choses the next

action to perform; and Execα represents the intention of the nerve centre to act on the entire system.

In a nerve centre, perception represents the ability to distinguish and classify system states not only

with respect to the most significant characteristics but also to those actions under its purview.

7

Perception can formally be considered as a function linking one group of values termed

“perceptions” with a group of system states [6]:

Perceptα : Σ → Φα (8)

The group of possible perceptions associated with a specific nerve centre is defined in the following

way: Φα = {φ1, φ2,…, φn}, where each φi is a structure composed of a list of paired objects, an

element and its value, corresponding to the system state previously defined [6].

Each nerve centre has an internal state with memory, which allows for more complex behaviours.

The group of internal states of a specific centre is defined in the following way: Sα = {s1, s2, …, sm}

[6].

The function of decision making is charged with relating an action with perception in a particular

internal state of the nerve centre and is defined as [6]:

Decisionα: Φα x Sα → P (9)

Memorisation links an internal state of the centre with its current perception of the environment

and its past behaviour [6]:

Memα: Φα x Sα → Sα (10)

Once the centre has determined which action to take, it should execute this action using the

execution function defined as follows [6]:

Execα: P x Φα → Γ (11)

where P is the group of actions that can be performed on the system, Φα is the group of

perceptions that centre α can have about the system, and Γ is the group of inputs from different

nerve centres.

Figure 1 (a) also shows a simple representation of the mechanical system (MS) of the LUT that the

model seeks to regulate. This system is modelled via a function, MS(), which obtains functionality

as a group of PDE agents interacting in a Multi-Agent System (MAS).

MS:    →  (12)

MS() is responsible for generating afferent signals ((t +1)) based on a group of efferent signals

((t)). This function coincides with the dynamics of the mechanical system and is carried out due

to actions that transform the system from one state to another [4]. This dynamic represents the

system reaction to different inputs.

()

()

()

















=

=+

=+









=+
=

))(()(

)(),()1(

)(),()1(

)()),(),((),()1(

1111

1

tPercepttwith

tstMemts

tstMemts

ttstDecisionExectMSt

ii

nnnn

iiiii

n

i











(13)

The general system dynamics are thus defined with a group of card(NRS)+1 equations, where the

first determines the global system state at a time t and as a function of the behaviour of each centre,

8

and the remaining equations correspond to the internal state of the different nerve centres at the

same time t.

4. Proposal

With these baselines established, our proposed model can be based on a system on chip (SoC) that

behaves like the model of the neuroregulatory system of the LUT previously described, which we

term Neuronal SoC. In the previous work [48] a first prototype of the LUT model with strong

architectural restrictions was proposed, although with good hardware performance. However, the

need to create a SoC that is valid for the LUT and for any other neuroregulatory subsystem makes

us evolve to another hardware approach, more flexible and dynamic, completely different and with

greater capabilities. Figure 2 demonstrates the general scheme of the design of the SoC, whose

primary features will be analysed below.

The chip is responsible for receiving a group of input signals corresponding to afferent nerve signals

(A), which result in the running of one of the processes and for generating a group of output signals

that correspond to efferent nerve signals (E). This processing is achieved through nine CN blocks

incorporated into the chip, corresponding to the nine nerve centres that form part of the LUT

neuroregulatory system. Two additional blocks (INPUT and OUTPUT) are responsible for

manipulating the input and output signals. The chip also includes a compartmentalised SHARED

MEMORY, which stores the afferent, internal, and efferent signals responsible for the functioning

of the neuroregulatory system.

To process the input signals, each CN block (Figure 3) is supported by DECISION blocks (Figure

4), which process groups of instructions following a micro-program stored in a specially designed

program memory contained within each nerve centre. This micro-program consists of a group of

sequentially executed instructions that complete a specific task. In this case, a program can be

created that behaves like any of the centres that make up the neuroregulatory system. Because of

the need to supply the program memory with the executing micro-program and to store initial

values into the database, there is a Mode signal (M) responsible for indicating if the chip is in the

configuration or working mode. Three DECISION blocks are used in our model for centre

deliberation, as each centre needs to be able to perform similar groups of operations. These

DECISION blocks contain all of the possible operations that can be completed using the input

values. The Decision block is the one that requires the most hardware and produces the highest

consumption, to optimize the SoC, we decided to use a Decision block for every 3 CN blocks. After

the execution flow study, we have observed that the operations performed by the hardware do not

require 9 parallel decision centres working at the same time. With this decision, up to 20% savings

in components are produced by synthesizing the chip, maintaining the restrictions of computational

parallelism. Using these three blocks guarantees maximum parallelisation among the nerve centres

for parallel functioning of the neuroregulatory system. Additionally, delivery of the signal values

between different blocks would be through three communication buses: a control bus, an address

bus, and a data bus. Lastly, this design also incorporates a clock signal (Clk) to synchronise system

activity.

9

 Figure 2. General schematic of the hardware design of Neuronal SoC.

With the general schematic of the system laid out, it is now necessary to go in depth into the internal

designs of the nerve centres. Figure 3 demonstrates the schematic of the internal design of one of

the nerve centres (CN block) and its functional elements.

Figure 3. Schematic of the internal design of a nerve centre.

The internal design prototype contains a PERCEPTION block with the elements necessary for

selecting the signals that form part of the process by executing the micro-program; a

MEMORISATION block that stores the internal state of the centre and links it to the perception

10

signals, as well as stores other important values needed for the necessary operations; and an

EXECUTION block that selects the output signals affected by the decision taken.

One of the most important blocks in Neuronal SoC is the DECISION block that, unlike the LUT

MAS model described in section 2, lies outside each nerve centre; thus, (as seen in Figure 2) there

can be three generic decision blocks in the system. These blocks would be shared by other centres,

contributing to their function. In our proposed model, three DECISION blocks are defined to

achieve maximum parallelisation in the functioning of the nine nerve centres. Each DECISION

block would be responsible for performing the decision function (see equation 9) that forms part of

the functioning of the nerve centres defined in the theoretical model. For the hardware prototype to

perform the decision function, a decision block is required to relate an action with a perception for

a particular internal state (see equation 9). Using the signals obtained by the perception block and

the internal state stored in the memory of the decision block, a group of operations is executed to

take the decision and send the result to the EXECUTION blocks. To execute this group of

operations, the DECISION block was designed as an Arithmetic Logical Unit (ALU), which

contains all of the possible operations that can be executed using the input values. The internal

design of this ALU is shown in Figure 4.

Figure 4. Design of the DECISION block.

The decision block requires the perception signals, threshold values, and the internal state of the

centre to perform its operations. The block obtains a signal of x bits that is sent to a demultiplexer

that is responsible for sending the signal to one of the two input registers. Control signal s also

enters the demultiplexer and indicates which of the two registers should store the value of said

signal. This control signal forms part of the instructional register that arrives at the decision block

from the program memory.

As the design of the decision block was based on the ALU, this block requires a group of modules

responsible for performing AND, OR, NOT, greater than (>), and equals (=) operations. The

“greater than” and “equal” operations are the only kinds of numerical comparisons that need to be

directly implemented, as any others can be easily achieved with logical modifications; for example,

“less than” is the equivalent of a NOT performed on the “greater than” operation. To select the

required action at the exact moment needed, it was necessary to use the first p bits of the control

11

signal arriving from the program memory; the first three bits would indicate the operation required,

two more would indicate which decision block should perform the operation, and the remaining

bits would indicate if the operation is using the values stored in both or only one of the ALU

registers. These p bits, along with the s control bits going into the demultiplexer, comprise the m

bits of the instructions stored in the program memory. Once the corresponding action has been

completed, it is necessary to indicate what the output result of the operation will be. The block thus

also contains a multiplexer responsible for selecting the appropriate output, using the same p bits

as control as used by the ALU for controlling its operations. We next describe each of the functional

blocks that comprise the proposed model.

The module designed for bringing the functions (see equation 8) to the hardware has n inputs

connected to different signals. From here, signals involved in the process of the functioning of the

nerve centre are selected. One micro-program is responsible for selecting these input signals;

therefore, the part of the chip that carries out the functionality of perception possesses the required

elements. In this way, using the appropriate micro-program, the signals that form part of the

execution can be selected. A block was constructed to achieve this functionality, receiving n

different signals and only passing those necessary for proper function. This block requires a control

signal of m bits from the program memory that would be responsible for indicating which of the

input signals would be used by the centre.

Because of the requirement of the n input signals, a multiplexer was designed with n, x-bit inputs

(S0 – Sn) and an output of w bits, ensuring that the size of the data to be managed is defined

according to the needs of each design. This multiplexer is responsible for passing only the input

value indicated by the m-bit control signal, which uses a mask to tell the multiplexer which of the

input signals to pass. Needing to rely on n inputs makes the design more generic.

The model of the neuroregulatory system suggests that each centre is capable of performing

deliberation using two fundamental processes, one being memorisation (see equation 10). The

hardware prototype thus contains a memorisation block responsible for storing the internal state of

the nerve centre at each moment in order to obtain a more complex development in each centre.

This ability allows the system to check on the previous state and to assist in correcting potential

incorrect functioning. This memorisation block has also been used in our proposed model to store

threshold values that will be used in the decision block, along with possible values of the output

signals of the centre in question.

The memorisation block needs to be configured by storing threshold values and potential relevant

output signals. This block includes a one-bit MODE signal that indicates two possible states for

data memory: the Config state, in which the memory stores the necessary values for the execution

of the centre coming from the Config Data_Memory signal, and the Work state, which indicates

that the memory is working and being used by the other blocks from the design. The memorisation

block also receives a Control signal of m bits from the program memory; the first three bits indicate

whether to read or write memory at any one instant and the address where the memory should be

read or written. Because the values of the input and output signals are of x bits, the memory block

is correspondingly composed of x-bit words. It is important to note that the memory block can write

a value in one address not only based on what is contained in the three bits of the Control signal

but also when the address appears as a destination block within the bits of the Control signal.

Another block found within the internal design of the nerve centre performs executions (see

equation 11). The hardware prototype for this function contains an execution block that, similar to

our model chip, has n outputs connected to different signals, from which are selected those resulting

12

from the execution processes. The micro-program is responsible for selecting these output signals;

therefore, the part of the chip that carries out executions possesses the necessary elements that can

select the output signals using this micro-program and thus influence the different system centres.

A block was created for this task that receives an x-bit signal that can then be transmitted to n

different output signals. This block is also influenced by an m-bit control signal that arrives from

the program memory and is responsible for selecting which of the output signals would be assigned

with the salient signal value.

Figure 3 shows a generic hardware prototype that could function as any of the centres that comprise

the neuroregulatory system. This figure demonstrates that the design could handle n input signals

and n output signals, emulating the execution of nerve centres with the same properties. The generic

prototype also contains a program memory that can write a micro-program to execute the complete

behaviour of any centre in a step-by-step manner. It is important to note that the design of each of

the abovementioned blocks is contingent on their functioning independently of the program stored

in the program memory.

This program memory is managed via a pointer that moves position with every clock cycle from

the Clk signal. Additionally, at any moment before execution of the centre, the program memory

should be configured with the micro-program that will be executed; therefore, a one-bit MODE

signal is supplied that indicates two possible states: the Config state when the executing program

is being written (using the Config program_memory signal), and the Work state when it is working

and thus preventing the previously written program from being altered.

A signal from the decision block can be transmitted to command the program memory pointer to

move to a specific location using go to jump statements.

To carry out the operations called in the functioning of the centres and bring them to the hardware,

it was decided to separate each of them into back-to-back operations. This choice requires that the

action that must be carried out, the origin block, and the destination block be indicated for each

instruction stored in the program memory. m-bit words were used that contain a structure as shown

in Figure 5. The first a bits indicate the operation to be carried out on the data from a starting

component, the output of which is subsequently sent to a terminal component. The next b bits

indicate on which starting component the previously indicated action will be carried out; the next

c bits signal the address or register within the starting component where the value needed to carry

out the required operation is located. Another b bits indicate the terminal component where the data

will be sent, and the final c bits indicate the address or register within the terminal component where

the data should be copied.

Figure 5. Structure of the instructions.

The proposed model above defines a group of operations that can be carried out on any one centre

as well as the binary coding that indicates, at any moment, the operation that should be carried out.

Table 1 shows these operations with their corresponding operational codes. The model also takes

into account that each module present in the design could be both a starting and terminal component

in managing the data. Therefore, each of the components was also codified to be aware, at every

13

instant, from where and to where the signal values were being sent. Table 2 shows the coding

scheme for each starting component, and Table 3 shows the scheme for the terminal components.

Table 1. Operations.

Operation Code

NULL (Ø) 000

LOAD 001

AND 010

OR 011

NOT 100

= 101

> 110

Table 2. Staring components

Components

(Start)

Code

INPUT 00

MEMORY 01

ALU 10

Table 3. Terminal components

Components

(Terminus)

Code

OUTPUT 00

STACK P. 01

MEMORY 10

ALU 11

The first step in executing a centre is the configuration of the data memory and the program

memory. The data memory will contain w-bit words; up to 2C positions can be addressed to it,

where c is the number of bits selected to indicate the addresses within the data memory. The

memory will also contain the configuration values needed for execution of the centre, for which

there will be reserved the first 2C-1 memory addresses. The remaining memory addresses will be

reserved for work performed with the operation data.

The program memory will contain all of the instructions necessary to perform the execution of the

centre. The memory pointer will move position by position, running each of the instructions through

the control bus so that they can be received by the remaining system blocks.

5. Tests and Validation

5.1 Demonstrating the functioning of the CD centre on a prototype

The cortical-diencephalic (CD) centre is the highest-level nerve centre within the neuroregulatory

system and the focus of our design when carrying out tests and validation. As part of the validation

of our design, we created a testing procedure that involves the development of an example

demonstrating the functioning of the CD centre. As described previously, each centre is composed

of a structure of four functional blocks: perception, memorisation, decision, and execution. A

greater understanding of the functioning of the CD centre first requires a presentation of the truth

table (Table 4), which shows the signals and operations called in the execution of this centre.

Table 4. Truth table for the CD centre. ∀ Val ∈ R

Perception Memorisation Decision Execution
DACD MICD RICD previous state

DACD-1 MICD-1
RICD -1

current state
DACD MICD RICD

CDIPA
CDIPS CDIPA

CDIPS

< DHCD1 0 0

< DHCD2 0 1

≥ DHCD1

< DHCD2 1 0

≥ DHCD1

≥ DHCD2 x x

< DHCD1 0 0

< DHCD2 0 1

≥ DHCD1

< DHCD2 1 0

≥ DHCD1

≥ DHCD2 x x

 Val 0 0

 Val 0 1

 Val 1 0

 Val Val Val

 0 0

 0 1

 1 0

 1 0

 0 0

 0 1

 1 0

 1 0

The functioning of the CD centre consists of receiving a series of signals (DACD, MICD, RICD),

followed by a performance of the comparisons laid out in the truth table. Each condition is verified

sequentially and, when one condition is true, the corresponding output values are returned. The first

14

condition verified is (DACD < DHCD1) ^ (¬ MICD) ^ (¬ RICD) ^ (Previous State). If true, the returned

output signal values are (CDIPA, 0) and (CDIPS, 0). If the condition is not true, the next one is verified:

(DHCD1 ≤ DACD < DHCD2) ^ (¬ MICD) ^ (RICD) ^ (Previous State). If true, the output values returned

are (CDIPA, 0) and (CDIPS, 1). If this condition is also not true, the next condition would be compared:

(DHCD1 ≤ DACD < DHCD2) ^ (MICD) ^ (¬RICD) ˅ (DACD
 ≥ DHCD2) ^ (Previous State). If this condition if

true, the output signals are (CDIPA, 1) and (CDIPS, 0). It is important to note that each condition should

be verified so that an output signal is always produced.

These comparisons require threshold values and the previous stage of the centre to be carried out.

Therefore, these values must be stored in the data memory along with the values of the output

signals for each of the conditions, resulting in the memory configuration shown in Table 5. The

threshold values DHCD1 and DHCD2 would be stored in the first two positions in the memory, all

possible values of the output signals CDIPA and CDIPS in addresses 02 through 07, and lastly the value

of the previous state of the centre in address 20. The addresses 3D, 3E, and 3F would be reserved

to be used as accumulators where the results of the operations carried out would be stored, and

addresses 3A, 3B, and 3C would store the addresses in the program memory where the pointer

should jump to begin execution of the program depending on which condition from the truth table

(Table 4) was found to be true.

Table 5. Configuration of the data memory for the CD centre.

Dir.(Hex) Value Dir.(Hex) Value

00 DHCD1 20 1

01 DHCD2 21… empty

02 0 ..39 empty

03 0 3A 83

04 0 3B 88

05 1 3C 93

06 1 3D accumulator

07 0 3E accumulator

08… empty 3F accumulator

…1F empty

Following is the pseudocode that describes the functioning of the first condition to be compared:

(DACD < DHCD1) ^ (¬ MICD) ^ (¬ RICD) ^ (Previous State). This is presented to illustrate the general

work flow used by the proposed hardware to interpret each of the conditions presented by the

functioning of the CD centre:

Compare_condition (DACD < DHCD1) ^ (¬ MICD) ^ (¬ RICD) ^ (Previous State)

Inputs: DACD, MICD, RICD

Outputs: CDIPA, CDIPS

Nº Pseudocode Comment

1 Start

2 Perception_block DACD , MICD , RICD; Assigning the inputs to the first three addresses of the

perception block.
3 Execution_block CDIPA , CDIPS ; Assigning the outputs to the first addresses in the

execution block.

4 Separating the comparisons into bitwise

operations (AND, OR, NOT, >, =);

5 Compare (DACD < DHCD1)

5.1 ALU_reg1 Perception_block[0]; Load signal DACD in register 1 of the ALU

5.2 ALU_reg0 Memory[0x0]; Load threshold DHCD1 in register 0 of the ALU

5.3 Memory[0x3D] Result of ALU_reg0 >

ALU_reg1;

6 Negate_signals (MICD, RICD)

6.1 ALU_reg0 Perception_block[1]; Load signal MICD in register 0 of the ALU

6.2 ALU_reg1 Perception_block[2]; Load signal RICD in register 1 of the ALU

6.3 Memory[0x3E]  Result of not ALU_reg0;

6.4 Memory[0x3F]  Result of not ALU_reg1;

15

7 Carry out logical AND between the result of Comparing (DACD < DHCD1) and the result of negating signal
MICD;

7.1 ALU_reg0 Memory[0x3D]; Load the value stored in memory address 3D in

register 0 of the ALU.

7.2 ALU_reg1 Memory[0x3E]; Load the value stored in memory address 3D in

register 1 of the ALU.

7.3 Memory[0x3D]Result of ALU_reg0 AND

ALU_reg1;

8 Carry out logical AND between the result of operation (DACD < DHCD1) ^ (¬ MICD) and the result of negating

signal RICD;

8.1 ALU_reg0 Memory[0x3D];

8.2 ALU_reg1 Memory[0x3F];

8.3 Memory[0x3D] Result of ALU_reg0 AND ALU_reg1;

9 Carry out logical AND between the result of operation (DACD < DHCD1) ^ (¬ MICD) ^ (¬ RICD) and the

Previous State;

9.1 ALU_reg0 Memory[0x3D];

9.2 ALU_reg1 Memory[0x20]; The previous state of the centre is stored in memory

address 20.

9.3 Memory[0x3E] Result of ALU_reg0 AND

ALU_reg1;

10 Verify if the condition is true;

10.1 ALU_reg0 Memory[0x3A]; Load the memory address within the program memory

where the pointer should jump into register 0 of the

ALU

10.2 ALU_reg1 Memory[0x3E]; Lload into register 1 of the ALU the result of the (DACD

< DHCD1) ^ (¬ MICD) ^ (¬ RICD) ^ (Previous State)

10.3 IF result ALU_reg0 AND ALU_reg1 == 0;

10.4 THEN Stack_P 0; Assign a 0 to component Stack_P, indicating that the

program memory pointer should continue sequentially

to the next comparison.

10.5 ELSE Stack_P address 83; The program memory points should move to address

83 to continue executing the micro-program

10.6 After jumping to program memory address 83 the current state is stored and the outputs are returned;

11 ALU_reg0 Memory[0x3D];

12 Memory[0x20] ALU_reg0; Store the new state of the centre in memory address

0x20

13 Execution_block [0] Memory[0x02]; Value of the output signal CDIPA from memory to the

Execution Block.

14 Execution_block[1] Memory[0x03]; Value of the output signal CDIPS from to the Execution

Block.

15 Stack_P NULL operation (); Tells the program memory to start micro-program

execution from address 0x0

16 End

Table 6 shows the instructions stored in the program memory in binary format used to carry out

execution of the first condition (see Table 4) for this centre.

Table 6. Instructions for executing the first condition of the CD centre.

Operation

code

Source

block

Internal

_Add

Target

block

Internal

_Add

Description

001 00 000000 11 000001 LOAD INPUT REG 0 ALU REG 1

001 01 000000 11 000000 LOAD MEMORY ADD 0 ALU REG 0

110 10 000011 10 111101 > ALU REG 1 and 0 MEMORY ADD 3D

001 00 000001 11 000000 LOAD INPUT REG 1 ALU REG 0

001 00 000010 11 000001 LOAD INPUT REG 2 ALU REG 1

100 10 000000 10 111110 NOT ALU REG 0 MEMORY ADD 3E

100 10 000001 10 111111 NOT ALU REG 1 MEMORY ADD 3F

001 01 111101 11 000000 LOAD MEMORY ADD 3D ALU REG 0

001 01 111110 11 000001 LOAD MEMORY ADD 3E ALU REG 1

010 10 000011 10 111101 AND ALU REG 0 and 1 MEMORY ADD 3D

001 01 111101 11 000000 LOAD MEMORY ADD 3D ALU REG 0

001 01 111111 11 000001 LOAD MEMORY ADD 3F ALU REG 1

16

010 10 000011 10 111101 AND ALU REG 0 and 1 MEMORY ADD 3D

001 01 111101 11 000000 LOAD MEMORY ADD 3D ALU REG 0

001 01 100000 11 000001 LOAD MEMORY ADD 20 ALU REG 1

010 10 000011 10 111110 AND ALU REG 0 and 1 MEMORY ADD 3E

001 01 111010 11 000000 LOAD MEMORY ADD 3A ALU REG 0

001 01 111110 11 000001 LOAD MEMORY ADD 3E ALU REG 1

010 10 000011 01 000000 AND ALU REG 0 and 1 STACK P REG 0

001 01 111101 11 000000 LOAD MEMORY ADD 3D ALU REG 0

001 10 000000 10 100000 LOAD ALU REG 0 MEMORY ADD 20

001 01 000010 00 000000 LOAD MEMORY ADD 2 OUTPUT REG 0

001 01 000011 00 000001 LOAD MEMORY ADD 3 OUTPUT REG 1

000 10 000000 01 000000 Ø ALU REG 0 STACK P REG 0

The descriptions above illustrate how the execution of the CD centre checks whether the first of

the conditions in Table 4 is true; the execution of the rest of the conditions occurs similarly.

Appendix 1 contains the rest of the instructions as a complete configuration of the program memory

used to execute the CD centre.

5.2 Creating the hardware prototype

Testing and validating the proposed hardware was carried out using FPGA in order to avoid needing

to construct a physical circuit. Using this technology avoids possible errors that underlie the

physical materialisation of the hardware, such as bad connections, a broken component, or sporadic

errors from incorrect voltages, resulting in a reconfigurable, equivalent circuit. In our model, we

used the FPGA model ZYBO Zynq-XC7Z010 [49], which covers all of our requirements.

5.2.1 Signal schematic

Figure 6 shows the signals exchanged among the different modules of the hardware prototype, their

origin and terminus, their nomenclature and the number of bits that comprise them. This prototype

implements the functions described above for the centre model in the hardware and includes a large

number of variables that will be translated into signals of different sizes.

17

Figure 6. Hardware diagram of the CD centre.

After creating the hardware design shown in Figure 6, we obtained an equivalent circuit

implemented in FPGA, which uses the different resources summarised in Table 7.

Table 7. Summary of device utilisation

Logic utilisation Used Available Utilisation

Number of slice registers

Number of slice LUTs

Number of fully used slice LUT-FF pairs

7293

5050

3497

35200

17600

8846

20%

28%

39%

The hardware incorporated 7293 of the 35,200 available slice registers available in the FPGA, along

with 5050 of 17,600 Look-Up Tables. It is fortunate that only a small fraction of the available

resources are used given that the Look-Up Tables are fundamental for creating logical functions

and critical in estimating the energy consumed by the proposed design [46, 47]. Additionally, the

prototype uses 3497 of 8846 LUT-FF pairs, or 39% of the available resources. Even taking these

demands into account, our hardware prototype still requires few resources.

5.3 Isolated hardware testing

To ensure that the proposed prototype functions similarly to the biological system desired, a testing

and validation process was designed that utilised a group of the signals obtained from clinical

experiments carried out during the modelling of the neuroregulatory system and which were

previously used to validate the function of the previously developed LUT model [6, 10].

During the testing procedure, we will carry out implementation of the CD centre in the

reconfigurable hardware and will submit said implementation to isolated simulation of its behaviour

18

using the above group of signals. The expected result should coincide with the behaviour of the CD

centre obtained during the modelling phase.

5.3.1 Defining the group of test signals

The first step in carrying out the tests for the hardware design of the CD centre was to extract a

representative sample of the group of signals obtained during the modelling stages. This subgroup

consists of values for each of the signals involved in the execution of the CD centre: DACD, MICD

and RICD. The values were extracted from tests and validation of the theoretical model and were

obtained from clinical tests during the modelling stage [6] and made available in the dataset [50].

The frequency of both the data and the FPGA is 1 Hz. These continuous signals (as a result of their

origin from a biological system) were discretised by multiplying each value by 103 for use in the

digital hardware prototype:

ValueFixedPoint = wholePart (ValueFloatingPoint × 103) (14)

For simplicity, the following graphs show the time course of the values of the signals, which also

reflect the urodynamics of the system. Figure 7(a) shows the changes in signal DACD, Figure 7(b)

the changes in signal MICD, and Figure 7(c) the values of signal RICD.

Figure 7. a) Afferent signal DACD, b) Internal signal MICD, c) Internal signal RICD.

Signal DACD (Figure 7(a)) shows how the tension in the detrusor muscle increases gradually until it

experiences a sharp increase, followed by an immediate decrease to the initial value. Signal MICD

(Figure 7(b)) is inactive until it experiences a brief increase in intensity, followed by a swift return

to the initial value. Lastly, signal RICD (Figure 7(c)) is also inactive for some time before increasing

in intensity for a relatively short duration, then returning to its initial value. This dynamic describes

how the vesical pressure in the detrusor increases as an individual begins sending the desire to

urinate, until a point is reached where the person must voluntarily engage in retention. Once the

19

maximum tension value is hit, the person experiences such intense tension that a signal is produced

to trigger manual urination.

In addition to the group of input signals, we also defined the values associated with the thresholds
DHCD1 and DHCD2. Although these values are specific to each individual, they can be fixed to produce

normal LUT behaviour for a person without any dysfunctions; here, we used the values 2.00 and

18.2, respectively.

We lastly also selected the group of values that should be obtained as outputs in the signals CDIPA

and CDIPS, the time course of which are shown in Figures 8(a) and 8(b). These values were also

discretised using the method described above for the input signals.

Figure 8. a) Internal signal CDIPA, b) Internal signal CDIPS.

5.3.2 Isolated hardware simulation

Simulating the hardware consisted of submitting the FPGA circuit to the sequence of input signals

described previously and recovering the signals the system generates as a result, namely, CDIPA and
CDIPS.

Before initiating the simulation, both the program memory and data memory must be configured.

The mode signal, which is responsible for indicating the system state, must be set to configuration

mode, allowing the storage of needed configurations into both memories. The configP signal tells

the system to store the program (Appendix 1) necessary for executing the CD centre, while the

configM signal allows the data memory to store the values required for correct functioning of the

centre. Among these values are the thresholds and all possible values of the output signal, resulting

in the schematic for the data memory shown in Table 5. Once the configuring process is completed,

the mode signal is set to 1, indicating that it is now in the working state and that the CD centre

should begin functioning.

Figure 9 shows the execution performed by the hardware; the entire execution period is not

shown—only the time span containing the peak detrusor tension and the generation of signals that

result in voluntary tension and subsequent urination. The figure shows all of the input and output

signals and their behaviour, allowing them to be studied in order to understand their changes over

time.

The figure identifies six important epochs in the evolution of the signals. In epoch 1, the output

signal CDIPA, which the CD centre outputs to the preoptic area (PA), is held at 0 and corresponds to

20

the individual storing their urine. This lasts until epoch 2, where the signal takes on the value 1; it

is activated when the individual enters the urination phase. At epoch 3, the output signal once again

deactivates; urination has ceased, and urine storage resumes.

Over epoch 4, the internal output signal CDIPS, which the CD centre sends to the pontine storage

(PS) centre, remains at 0 while the individual maintains storage of urine. At epoch 5, the signal is

activated as the individual begins to feel the urge to urinate but finds themselves unable to do so in

their current situation. During epoch 6, the signal deactivates, corresponding to the moment the

individual finds a good place to urinate; the act of urination causes the signal to return to 0.

Figure 9. Values of the output signals CDIPA and CDIPS.

By studying these results, we can conclude that the synthesised hardware reproduces the behaviour

of the CD centre; the signals resulting from the execution of the hardware coincide with the values

expected and shown in Figures 8(a) and 8(b).

After the hardware synthesis on FPGA, we have estimated the worst case of power and cooling

system, using Xilinx Power Estimator [52]. This estimate produces a maximum consumption value

of 1.48w and a maximum junction temperature of 40.6ºC. This allows that using a battery of about

3000mA, it is possible to obtain continuous use of more than 200h of the chip. Another work to be

done, after we synthesize the complete chip, will be the optimization of the hardware to achieve a

very low consumption of the hardware, although this step will not be done until the synthesis of the

complete model is achieved, since we do not want to sacrifice system functionality.

6. Conclusions

This project has taken another step forward in the development of a system-on-chip analogue for

the neuroregulatory system. Based on the functioning and composition of the cortical-diencephalic

centre, a human nerve centre of the neuroregulatory system, we have proposed an original design

for a generic hardware architecture capable of emulating the behaviour of both the CD centre and

any other neuronal centre of the neuroregulatory system by varying the hardware programming.

The proposed hardware has been validated by implementing a prototype in FPGA and simulating

the hardware design of the CD centre using data obtained from real patients. The results of this

validation show that the behaviour of the resulting urodynamics curves coincides with the results

21

of tests carried out on the existing theoretical model and is consistent with results obtained from

clinical trials.

The model proposed here can be used to correct dysfunctions in one or more nerve centres that

form part of the neuroregulatory system. This is one of the most important benefits of this proposal.

Until now, treating dysfunctions required the use of black box solutions that suggest replacing

almost the entire neuroregulatory system, including functioning centres, instead of focusing on the

specific centre or centres that are not malfunctioning.

Synthesising the hardware design using FPGA demonstrates that few resources are necessary for

its implementation, rendering possible the ultimate development of the neuroregulatory system

based on a SoC with a large number of nerve centres.

In the short term, this hardware design should continue to be validated and analysed with other

nerve centres. Such work would allow for the study of the hardware requirements that are necessary

to implement each of the nerve centres that comprise the neuroregulatory system. This analysis

would in turn serve as the basis for maximum generalisation of the proposed model. Subsequently,

a chip could be designed that integrates multiple nerve centres working together to generate a

neuroregulated system. In the longer term, we propose the creation of a chip with completely

configurable nerve centres that can control both biological and artificial systems that require or can

adjust to this type of neuroregulatory control while also achieving the construction of systems that

can aid medical professionals in decision making and detecting malfunctions.

References

[1] G. Indiveri and T.K. Horiuchi. Frontiers in neuromorphic engineering. Frontiers in

neuroscience. 5 (2011), pp.118.

[2] C. Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), (1990), pp.

1629-1636.

[3] T. Kawasetsu, R. Ishida, T. Sanada, and H. Okuno. A hardware system for emulating the early

vision utilizing a silicon retina and SpiNNaker chips. 2014 IEEE Biomedical Circuits and

Systems Conference (BioCAS), (2014), pp. 552–555.

[4] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and A. Mujumdar. Bluehive - A

field-programable custom computing machine for extreme-scale real-time neural network

simulation. 2012 IEEE 20th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), (2012), pp. 133–140.

[5] L. Bendaouia, S.M. Karabernou, L. Kessal, H. Salhi, F. Ykhlef. FPGA-implementation of a

bio-inspired medical hearing aid based DWT-OLA. 2014 International Conference on Audio,

Language and Image Processing (ICALIP), (2014), pp.806-811.

[6] A. Soriano. Modeling and Simulation of the Neural Regulator of the Lower Urinary Tract,

PhD Thesis, Ph.D. Dissertation, Dept. Comp. Tech., University of Alicante, Alicante, Spain,

(2001). http://hdl.handle.net/10045/4069

[7] J.M. García Chamizo, F. Maciá Pérez, A. Soriano Payá, D. Ruiz Fernández. Simulation of the

Neuronal Regulador of the Coger Urinary Tract Using a Multiagent System. Lecture Notes in

Computer Science. Springer-Verlag, 2687 (2003), 591-598.

22

[8] D. Ruiz Fernández, J.M. García Chamizo, F. Maciá Pérez, A. Soriano Payá, Modeling the

Distributed Control of the Lower Urinary Tract Using a Multiagent System, Lecture Notes in

Artificial Intelligence, Springer-Verlag 3131 (2004) 104 -114.

[9] D.G. Méndez, Modeling and simulation of neurobehavioral lower urinary tract. System

diagnostic support, Doctoral Thesis. Department of Computer Technology, University of

Alicante, in September 2008. http://hdl.handle.net/10045/10325

[10] J.M. García, J. Romero, F. Macia, A. Soriano. Modeling and simulation of neuronal

regulator of the lower urinary tract. Urodynamics Applied, vol.15 n0.2, (2002), pp 591-598

[11] A. S. Paya, D. R. Fernández, D. Gil, J. M. García Chamizo, and F. M. Pérez. Mathematical

modelling of the lower urinary tract. Computer methods and programs in biomedicine, vol. 109,

no. 3, (2013), pp. 323–338.

[12] D. Ruiz Fernández, Modeling of self-regulation of biological systems. Characterization and

correction of neurogen urinary dysfunctions in human, Ph.D. dissertation, University of Alicante,

Alicante, Spain, (2003). http://hdl.handle.net/10045/3964

[13] J.M. García-Chamizo, A. Soriano-Paya, F. Maciá-Perez, D. Ruiz-Fernadez. Modelling of the

sacral micturition centre using a deliberative intelligent agent. Proceedings of the IV International

Workshop on Biosignal Interpretation (BSI 2002). Como (Italy). (2002), pp. 451-454.

[14] R. Fernández and S. Payá, Robust Modelling of Biological Neuroregulators, Engineering in

Medicine and Biology 27th Annual Conference, no. 5, (2005), pp. 2981–2984.

[15] García, J.M., Macía, F., Soriano, A., Flórez, F.: A Multi-Agent System uses ArtificialNeural

Networks to Model the Biological Regulation for the Lower Urinary Tract, WSES Conference on

Neural Networks and Applications. Interlaken (Switzerland). (2002), 162-167.

[16] D. Gil, M. Johnsson, J. M. García Chamizo, A. S. Paya, and D. R. Fernández, Modelling of

urological dysfunctions with neurological etiology by means of their centres involved, Applied

Soft Computing, vol. 11, no. 8, (2011), pp. 4448–4457.

[17] J. Ferber. Multi-Agent Systems. An Introduction to Distributed Artificial Intelligence.

Addison-Wesley, 1999.

[18] D. R. Fern, J. M. Garcia, and F. Macia, Modelling of Dysfunctions in the Neuronal Control

of the Lower Urinary Tract, International Work-Conference on the Interplay Between Natural and

Artificial Computation IWINAC 2005, (2005), pp. 203–212.

[19] E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri, Neuromorphic Electronic Circuits for

Building Autonomous Cognitive Systems, Proceedings of the IEEE, vol. 102, no. 9, (2014), pp.

1367–1388.

[20] J. C. Flaherty, K. S. Guillory, M. D. Serruya, and A. H. Caplan, Transcutaneous implant. US

Patent US7647097B2, 2003.

[21] M. A. Moffitt, R. Carbunaru, T. K. Whitehurst, and A. E. Mann, Electrode contact

configurations for an implantable stimulator. US Patente US7702385B2, 2005.

[22] A. B. Krishnan, K. P. Peeyush, Blood Group Determination Using Vivado System Generator

in Zynq SoC. 7th WACBE World Congress on Bioengineering 2015. Springer International

Publishing, (2015), pp. 166-169.

23

[23] F. Corradi, D. Zambrano, M. Raglianti, G. Passetti, C. Laschi, and G. Indiveri, Towards a

Neuromorphic Vestibular System, Biomedical Circuits and Systems, IEEE Transactions on, vol.

8, no. 5, (2014), pp. 669–680.

[24] H. Soleimani, A. Ahmadi, and M. Bavandpour, Biologically Inspired Spiking Neurons:

Piecewise Linear Models and Digital Implementation. Circuits and Systems I: Regular Papers,

IEEE Transactions on, vol. 59, no.12, (2012), pp. 2991-3004.

[25] S. Romero, F. J. Pelayo, C. A. Morillas, A. Martínez and E. Fernandez, Reconfigurable

retina like preprocessing platform for cortical visual neuroprosthesis. Handbook of Neural

Engineering, (2007), pp 267-279.

[26] B. Girau, C. Torres-Huitzil, Massively distributed digital implementation of an integrate-

and-fire LEGION network for visual scene segmentation, Neurocomputing, Volume 70, Issues 7-

9, (2007), pp 1186-1197.

[27] T. Kawasetsu, R. Ishida, T. Sanada, and H. Okuno, A hardware system for emulating the

early vision utilizing a silicon retina and SpiNNaker chips, in 2014 IEEE Biomedical Circuits and

Systems Conference (BioCAS), (2014), pp. 552–555.

[28] A. Martínez, F.J. Pelayo, C. Morillas, S. Romero, B. Pino, Automatic Generation of Bio-

inspired Retina-Like Processing Hardware. Computational Intelligence and Bioinspired

Systems Volume 3512, (2005), pp 527-533.

[29] A. Martinez, S. Romero, E. Ros, A. Prieto and FJ. Pelayo, Reconfigurable hardware

implementation of a model of retina. Proceedings of the Second Conference on Field

Programmable Logic and Applications (JCRA'2002), (2002), pp. 97-101.

[30] S. Mota, E. Ros, J. Díaz, R. Agis and F. de Toro, Bio-inspired motion-based object

segmentation. In International Conference Image Analysis and Recognition, Springer, Berlin,

Heidelberg, (2006), pp. 196-205.

[31] A. Mishra, and A.E. Hubbard. A cochlear filter implemented with a field-programmable gate

array. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.

49, no.1, (2002), pp. 54-60.

[32] M. P. Leong and C. T. Jin, An FPGA-Based Electronic Cochlea, Journal on Applied Signal

Processing, vol. 7, (2003), pp. 629–638.

[33] P. Zicari, Efficient and high performance FPGA-based rectification architecture for stereo

vision. Microprocessors and Microsystems, vol. 37, no 8, (2013), p. 1144-1154.

[34] Y. Meng, A Mobile Vision System with Reconfigurable Intelligent Agents. International

Joint Conference on Neural Networks IJCNN '06, (2006). pp. 1483-1488.

[35] A. Dinu, M.N. Cirstea, and S.E. Cirstea, Direct Neural-Network Hardware-Implementation

Algorithm. IEEE Transactions on Industrial Electronics, vol. 57, no. 5, (2010), pp. 1845-1848.

[36] Y. Ji, F. Ran, C. Ma, and D. J. Lilja. A hardware implementation of a radial basis function

neural network using stochastic logic. In Proceedings of the 2015 Design, Automation & Test in

Europe Conference & Exhibition. EDA Consortium, San Jose, CA, USA, (2015), pp 880-883.

[37] H. Soleimani, A. Ahmadi and M. Bavandpour. Biologically Inspired Spiking Neurons:

Piecewise Linear Models and Digital Implementation. IEEE Transactions on circuits and systems,

regular papers, vol. 59, no. 12, (2012), pp 2991-3004.

http://link.springer.com/book/10.1007/b136983
http://link.springer.com/book/10.1007/b136983
http://link.springer.com/book/10.1007/b136983
http://link.springer.com/book/10.1007/b136983

24

[38] M. Samie, G. Dragffy, A. M. Tyrrell, T. Pipe, and P. Bremner. Novel Bio-Inspired Approach

for Fault-Tolerant VLSI Systems. IEEE Transactions on very large scale integration (vlsi)

systems, vol. 21, no. 10, (2013), pp 1878-1891.

[39] L. Rodriguez, L. Fiack, and B. Miramond. A neural model for hardware plasticity in artificial

vision systems. Design and Architectures for Signal and Image Processing (DASIP), 2013

Conference on, (2013), pp. 30-37.

[40] L. Fiack, L. Rodriguez, and B. Miramond. Hardware design of a neural processing unit for

bio-inspired computing. IEEE 13th International New Circuits and Systems Conference

(NEWCAS), (2015), pp. 1-4.

[41] M.A. Tsompanas, G.Ch. Sirakoulis. Modeling and hardware implementation of an amoeba-

like cellular automaton. Bioinspiration & Biomimetics, vol. 7, no. 3, (2012), p. 036013.

[42] M.V. Kinder, E.H.C. Bastiaanssen, R.A. Janknegt, E. Marani, The Neuronal Control of the

Lower Urinary Tract: A Model of Architecture and Control Mechanisms, Archives of Physiology

and Biochemistry, 107 (1999), pp. 203-222.

[43] J. Morrison, L. Birder, M. Craggs, W.C. de Groat, J. Downie, M. Drake, C.J. Fowler, K.

Thor, Neural control, Incontinence 1, (2005), pp. 363–422.

[44] D. Gil, A. Soriano, and C. A. Montejo, Embedded System For Diagnosing Dysfunctions In

The Lower Urinary Tract. Proceedings of the 2007 ACM symposium on Applied computing,

(2007), pp. 1695–1699.

[45] J. Díaz, E. Ros, S. Mota and R. Agis, “Real-time embedded system for rear-view mirror

overtaking car monitoring,” Lecture Notes in Computer Science, Springer-Verlag, 4017, (2006),

pp. 385-394.

[46] A. Rodriguez, J. Valverde, C. Castanares, J. Portilla, E. de la Torre, T. Riesgo, Execution

Modeling in self-aware FPGA-based architectures for efficient resource management, 10th

International Symposium on Reconfigurable Communication-centric Systems-on-Chip

(ReCoSoC), (2015), pp 1 – 8.

[47] L. Wang; X. Wang; T. Wang; Q. Yang, High-Level Power Estimation Model for SOC with

FPGA Prototyping, in Fourth International Conference on Computational Intelligence and

Communication Networks (CICN), (2012) pp.491-495.

[48] F. Maciá Pérez, L. Zambrano-Mendez, J.V. Berná-Martínez, R. Sepúlveda Lima. Hardware

design of the cortical-diencephalic centre of the lower urinary tract neuroregulator system.

Computers in biology and medicine, vol. 77, (2016), pp. 156-172

[49] Zynq Z-7010 Trainer Board at Digilent, product description, (2018),

https://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/

[50] F. Maciá, J.V. Berna-Martinez, Database for analyzing the operation of the center cortico-

Diencephalic – Internal and afferent signals, (2016), http://rua.ua.es/dspace/handle/10045/56407.

[51] F. Maciá Perez, L. Zambrano-Mendez, J.V. Berna-Martinez, R. Sepúlveda Lima.

Configuration of the program memory for the CD centre, (2018),

http://hdl.handle.net/10045/75487

 [52] Xilinx Power Estimator tool estimate power consumption. V. 7 Series and Zynq®-7000

(2018). https://www.xilinx.com/products/technology/power/xpe.html

Appendices

http://www.ncbi.nlm.nih.gov/pubmed/?term=Tsompanas%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=22570143
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tsompanas%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=22570143
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sirakoulis%20GCh%5BAuthor%5D&cauthor=true&cauthor_uid=22570143
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sirakoulis%20GCh%5BAuthor%5D&cauthor=true&cauthor_uid=22570143
https://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/
https://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/
http://rua.ua.es/dspace/handle/10045/56407
http://rua.ua.es/dspace/handle/10045/56407
http://hdl.handle.net/10045/75487
http://hdl.handle.net/10045/75487
https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html

25

Appendix 1: Configuration of the program memory for the CD centre [51].

Pos. Operation

code

Source

block

Internal

_Add

Target

block

Internal

_Add

Description

0 001 00 000000 11 000001 LOAD INPUT REG 0 ALU REG 1

1 001 01 000000 11 000000 LOAD MEMORY DIR 0 ALU REG 0

2 110 10 000011 10 111101 > ALU REG 1 y 0 MEMORY DIR 3D

3 001 00 000001 11 000000 LOAD INPUT REG 1 ALU REG 0

4 001 00 000010 11 000001 LOAD INPUT REG 2 ALU REG 1

5 100 10 000000 10 111110 NOT ALU REG 0 MEMORY DIR 3E

6 100 10 000001 10 111111 NOT ALU REG 1 MEMORY DIR 3F

7 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

8 001 01 111110 11 000001 LOAD MEMORY DIR 3E ALU REG 1

9 010 10 000011 10 111101 AND ALU REG 0 y 1 MEMORY DIR 3D

10 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

11 001 01 111111 11 000001 LOAD MEMORY DIR 3F ALU REG 1

12 010 10 000011 10 111101 AND ALU REG 0 y 1 MEMORY DIR 3D

13 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

14 001 01 100000 11 000001 LOAD MEMORY DIR 20 ALU REG 1

15 010 10 000011 10 111110 AND ALU REG 0 y 1 MEMORY DIR 3E

16 001 01 111010 11 000000 LOAD MEMORY DIR 3A ALU REG 0

17 001 01 111110 11 000001 LOAD MEMORY DIR 3E ALU REG 1

18 010 10 000011 01 000000 AND ALU REG 0 y 1 STACK P REG 0

19 001 00 000000 11 000000 LOAD INPUT REG 0 ALU REG 0

20 001 01 000000 11 000001 LOAD MEMORY DIR 0 ALU REG 1

21 110 10 000011 10 111101 > ALU REG 1 y 0 MEMORY DIR 3D

22 101 10 000011 10 111110 = ALU REG 1 y 0 MEMORY DIR 3E

23 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

24 001 01 111110 11 000001 LOAD MEMORY DIR 3E ALU REG 1

25 011 10 000011 10 111111 OR ALU REG 1 y 0 MEMORY DIR 3F

26 001 00 000000 11 000001 LOAD INPUT REG 0 ALU REG 1

27 001 01 000001 11 000000 LOAD MEMORY DIR 1 ALU REG 0

28 110 10 000011 10 111101 > ALU REG 1 y 0 MEMORY DIR 3D

29 001 00 000001 11 000000 LOAD INPUT REG 1 ALU REG 0

30 001 00 000010 11 000001 LOAD INPUT REG 2 ALU REG 1

31 100 10 000000 10 111110 NOT ALU REG 0 MEMORY DIR 3E

32 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

33 010 10 000011 10 111101 AND ALU REG 0 y 1 MEMORY DIR 3D

34 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

35 001 01 111110 11 000001 LOAD MEMORY DIR 3E ALU REG 1

36 010 10 000011 10 111101 AND ALU REG 0 y 1 MEMORY DIR 3D

37 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

38 001 01 111111 11 000001 LOAD MEMORY DIR 3F ALU REG 1

39 010 10 000011 10 111101 AND ALU REG 0 y 1 MEMORY DIR 3D

40 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

41 001 01 100000 11 000001 LOAD MEMORY DIR 20 ALU REG 1

42 010 10 000011 10 111110 AND ALU REG 0 y 1 MEMORY DIR 3E

43 001 01 111011 11 000000 LOAD MEMORY DIR 3B ALU REG 0

44 001 01 111110 11 000001 LOAD MEMORY DIR 3E ALU REG 1

45 010 10 000011 01 000000 AND ALU REG 0 y 1 STACK P REG 0

46 001 00 000000 11 000000 LOAD INPUT REG 0 ALU REG 0

47 001 01 000000 11 000001 LOAD MEMORY DIR 0 ALU REG 1

48 110 10 000011 10 111101 > ALU REG 1 y 0 MEMORY DIR 3D

49 101 10 000011 10 111110 = ALU REG 1 y 0 MEMORY DIR 3E

50 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

51 001 01 111110 11 000001 LOAD MEMORY DIR 3E ALU REG 1

52 011 10 000011 10 111111 OR ALU REG 1 y 0 MEMORY DIR 3F

53 001 00 000000 11 000001 LOAD INPUT REG 0 ALU REG 1

26

54 001 01 000001 11 000000 LOAD MEMORY DIR 1 ALU REG 0

55 110 10 000011 10 111101 > ALU REG 1 y 0 MEMORY DIR 3D

56 001 01 111111 11 000000 LOAD MEMORY DIR 3F ALU REG 0

57 001 01 111101 11 000001 LOAD MEMORY DIR 3D ALU REG 1

58 010 10 000011 10 111101 AND ALU REG 1 y 0 MEMORY DIR 3D

59 001 00 000001 11 000000 LOAD INPUT REG 1 ALU REG 0

60 001 01 111101 11 000001 LOAD MEMORY DIR 3D ALU REG 1

61 010 10 000011 10 111101 AND ALU REG 1 y 0 MEMORY DIR 3D

62 001 00 000010 11 000000 LOAD INPUT REG 2 ALU REG 0

63 100 10 000000 10 111110 NOT ALU REG 0 MEMORY DIR 3E

64 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

65 001 01 111110 11 000001 LOAD MEMORY DIR 3E ALU REG 1

66 010 10 000011 10 111101 AND ALU REG 1 y 0 MEMORY DIR 3D

67 001 00 000000 11 000000 LOAD INPUT REG 0 ALU REG 0

68 001 01 000001 11 000001 LOAD MEMORY DIR 1 ALU REG 1

69 110 10 000011 10 111110 > ALU REG 1 y 0 MEMORY DIR 3E

70 101 10 000011 10 111111 = ALU REG 1 y 0 MEMORY DIR 3F

71 001 01 111110 11 000000 LOAD MEMORY DIR 3E ALU REG 0

72 001 01 111111 11 000001 LOAD MEMORY DIR 3F ALU REG 1

73 011 10 000011 10 111110 OR ALU REG 1 y 0 MEMORY DIR 3E

74 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

75 001 01 111110 11 000001 LOAD MEMORY DIR 3E ALU REG 1

76 011 10 000011 10 111101 OR ALU REG 1 y 0 MEMORY DIR 3D

77 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

78 001 01 100000 11 000001 LOAD MEMORY DIR 20 ALU REG 1

79 010 10 000011 10 111110 AND ALU REG 1 y 0 MEMORY DIR 3E

80 001 01 111100 11 000000 LOAD MEMORY DIR 3C ALU REG 0

81 001 01 111110 11 000001 LOAD MEMORY DIR 3E ALU REG 1

82 010 10 000011 01 000000 AND ALU REG 1 y 0 STACK P REG 0

83 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

84 001 10 000000 10 100000 LOAD ALU REG 0 MEMORY DIR 20

85 001 01 000010 00 000000 LOAD MEMORY DIR 2 OUTPUT REG 0

86 001 01 000011 00 000001 LOAD MEMORY DIR 3 OUTPUT REG 1

87 000 10 000000 01 000000 Ø ALU REG 0 STACK P REG 0

88 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

89 001 10 000000 10 100000 LOAD ALU REG 0 MEMORY DIR 20

90 001 01 000100 00 000000 LOAD MEMORY DIR 4 OUTPUT REG 0

91 001 01 000101 00 000001 LOAD MEMORY DIR 5 OUTPUT REG 1

92 000 10 000000 01 000000 Ø ALU REG 0 STACK P REG 0

93 001 01 111101 11 000000 LOAD MEMORY DIR 3D ALU REG 0

94 001 10 000000 10 100000 LOAD ALU REG 0 MEMORY DIR 20

95 001 01 000110 00 000000 LOAD MEMORY DIR 6 OUTPUT REG 0

96 001 01 000111 00 000001 LOAD MEMORY DIR 7 OUTPUT REG 1

97 000 10 000000 01 000000 Ø ALU REG 0 STACK P REG 0

