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Abstract

Atrial Fibrillation (AF), either permanent or intermittent (paroxysnal AF), increases the risk of
cardioembolic stroke. Accurate diagnosis of AF is obligatory for initiation of effective treatment
to prevent stroke. Long term cardiac monitoring improves the likelihood of diagnosing paroxys-
mal AF. We used a deep learning system to detect AF beats in Heart Rate (HR) signals. The
data was partitioned with a sliding window of 100 beats. The resulting signal blocks were directly
fed into a deep Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM). The
system was validated and tested with data from the MIT-BIH Atrial Fibrillation Database. It
achieved 98.51% accuracy with 10-fold cross-validation (20 subjects) and 99.77% with blindfold
validation (3 subjects). The proposed system structure is straight forward, because there is no
need for information reduction through feature extraction. All the complexity resides in the
deep learning system, which gets the entire information from a signal block. This setup leads
to the robust performance for unknown data, as measured with the blind fold validation. The
proposed Computer-Aided Diagnosis (CAD) system can be used for long-term monitoring of
the human heart. To the best of our knowledge, the proposed system is the first to incorporate
deep learning for AF beat detection.
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1. Introduction

Atrial Fibrillation (AF) is the most common sustained cardiac rhythm disorder in adults
[1]. The disease affects around 0.4% of the adult population and it gets more prevalent with
age. Less than 1% of the population under the age of 60 is affected, and over 6% of those over
the age of 80 years are affected [2]. It is predicted that the incidence of AF increases, because
of the aging population. The disease is associated with inefficiencies in blood flow dynamics
which substantially increase the risk of stroke and systemic thromboembolism, resulting in
high mortality and morbidity [3, 4]. Some patients with AF are asymptomatic, but others
have accompanying symptoms, such as fainting, palpitations, chest pain, fatigue, and heart
failure, which seriously diminish the quality of life for the patients [5]. The link between AF and
increased stroke risk was established in the Framingham study, which revealed that nonrheumatic
AF is an independent stroke risk predictor among 5,070 participants [6]. AF is characterized
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by highly variable ventricular beat intervals [7]. The distribution of RR intervals during AF
differs from the distribution during normal sinus rhythm [8]. In clinical practice, these beat-
to-beat variations are detected manually [9]. The sensitivity of this method is above 90% and
its specificity is above 70% [10]. Antithrombotic prophylaxis can then be used to reduce the
stroke risk from AF [11]. However, a prerequisite for antithrombotic medication is an accurate
diagnosis. Unfortunately, antithrombotic medication is associated with bleeding risk and the
manual method is neither sensitive nor specific enough to meet the demand for diagnosis, and
medication initiation. Furthermore, intra- and inter-observer variability diminish the reliability
of manual diagnosis. Automation can potentially improve the sensitivity and specificity [12].

In some patients, the episodes of AF occur paroxysmally, with normal sinus rhythm in
between. The timing of occurrence of paroxysmal AF is unpredictable. Both permanent and
paroxysmal AF can predispose to increased stroke risk [13]. The challenge for Computer-Aided
Diagnosis (CAD) is twofold: How to diagnose AF accurately as well as to detect these AF periods
reliably with non-invasive methods that can be used at any time even outside the hospital [14].
Electrical phenomena of the heart muscle is measured by placing passive electrodes on the skin.
The electrical activity of the heart activates phasic heart muscle contraction that in turn gives
rise to rhythmic cardiac pulse. Electrocardiography is a noninvasive method for measuring that
electrical activity [15, 16, 17]. Electrocardiogram (ECG) measurements can be performed at a
single seating, or be recorded over an extended period of time, for instance over 24 hours (Holter
monitoring). Unfortunately, it has been shown that after catheter ablation procedure for AF,
the rate of recurrence of AF episodes is underestimated, and the success rate of catheter ablation
is highly overestimated, when determined from 24-h Holter ECG recordings [18]. This issue can
be addressed by considerably extending the monitoring period so that the likelihood of detecting
AF episodes increases. However, existing techniques for continuous long-term monitoring reduce
the patients’ quality of life though inconvenient data acquisition methods. The inconvenience can
lead to a premature termination of the data acquisition, which adversely affects diagnostic quality
[19]. For example, state of the art Holter systems use multiple electrodes, which must be placed
by trained technologists. In contrast, beat to beat intervals, which establishes the Heart Rate
(HR), once stripped of the morphological component of the ECG signal, can be measured with
a single sensor that may be placed by the patient himself. AF detection algorithms are effective
for short duration beat interval recordings, offering the prospect of simple and rapid diagnostic
tests based on beat intervals alone [20]. CAD systems are mandatory for long-term monitoring,
because manual data interpretation of the huge amount data readout is impracticable [21]. For
computer based systems, detecting AF periods solely based on HR signals is difficult, because
the data is noisy, and the capability of traditional machine learning algorithms is limited [22].
State of the art CAD systems tackle these problems with information reduction through feature
extraction, ensuring that the machine learning algorithm is not overwhelmed. The resulting
systems under-perform for unknown data and large datasets [23].

We aim to reduce workload of the clinicians and to enable long-term monitoring by providing
a robust diagnosis support system for AF. The proposed system structure is minimalist: there is
just data partitioning and automated decision support with a deep learning system. That implies
the space for design errors is also minimal. Furthermore, the decision-making system gets all the
information within the selected data block. There is no information reduction through feature
extraction. Consequently, the proposed system is robust and accurate. The AF detection system
scored 98.51% accuracy with 10-fold cross-validation. A 99.77% blind fold accuracy indicates
a good robustness. These performance figures make us confident that the system will perform
well for unknown data in a practical environment, such as AF long-term monitoring. Our work
opens up a viable path to extend the monitoring period for diagnosis, treatment monitoring
and drug efficacy tests. Furthermore, the results justify our choice to use deep learning for AF
detection.
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Table 1: Bidirectional Long Short-Term Memory (LSTM) architecture

Layer Type Output shape Number of parameters

1 Input 100, 1 0

2a LSTM (forward) 100, 400 161600

2b LSTM (backward) 100, 400 161600

3 Global 1D max pooling 400 0

4
Fully connected
Rectified Linear Unit (ReLU)

50 20050

5 Dropout 50 0

6 Fully connected (Sigmoid) 1 51

The remainder of the paper is structured as follows. The next section introduces the materials
and methods with a specific focus on the deep learning system. Section 3 states the AF detection
results for well-known data. The subsequent discussion section relates our findings to results
from other researchers based on the same data. We also state limitations and further work
in this section. The conclusion section completes the paper by summarizing the approach and
highlighting the main point of the discussion.

2. Materials and methods

This section introduces the data and the processing methods that were used to design the AF
detection system. The discussion starts by describing the data and the pre-processing methods.
The pre-processed data is directly fed into a deep learning system. As such, that system holds
all the computational complexity. Hence, this section focuses on the deep learning algorithm
and the design decisions which led to the proposed CAD system.

2.1. Data used

The experiments were conducted based on data from the MIT-BIH Atrial Fibrillation Data-
base [24, 25]. This database includes 23 long-term ECG Holter recordings from different subjects.
Each dataset has a duration of 10 hours containing two ECG signals sampled at 250 Hz with
AF annotation. These recordings contain also beat annotations and rhythm annotations perfor-
med manually by expert clinicians. Furthermore, the R peaks are labelled and the RR interval
sequence was extracted based on these labels. The RR interval sequences have been split into
overlapping sequences of 100 beats2 for each HR trace. A beat sequence is labelled as AF if it
contains one or more beats that were classified as showing signs of atrial fibrillation, all other
sequences are labelled as normal.

Data from 20 patients has been used for training and 10-fold cross-validation of the model,
with the data from the remaining 3 patients completely withheld for use in a blind-fold validation
stage after training and validation of the model and tuning of the model hyper-parameters.
This step ensures that the proposed method generalises not only to unseen data, but to unseen
patients as well.

2.2. Bidirectional Long-Short Term Memory Networks

Deep learning algorithms try to develop the model by using all available information from
the input [23]. Extracting this information yields the implicit knowledge which underpins the
robust decision making process. Hence, the deep learning approach is more practicable than
conventional machine learning, such as Support Vector Machine (SVM) [26].

299 beats overlap
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Recurrent Neural Network (RNN) models have gained increasing popularity in recent years,
because they overcome one of the key limitations of using standard machine learning algorithms
– the assumption that inputs and outputs to a model are independent of each other [27]. In
many problems, such as natural language processing, this assumption is false – for example, to
classify sentiment within a sentence it is important to be able to put the individual words of the
sentence into context.

RNNs do this by allowing the network to retain and utilise state information (i.e. information
about what has happened in previous time steps / inputs). This provides RNNs with a “memory”
which captures information about all elements of the input. However, Bengio et al. showed
that, whilst standard RNNs can theoretically handle input dependencies over long-intervals,
in practice training such networks with gradient descent becomes more inefficient when the
temporal span of the input sequence dependencies increases [28]. This results in RNNs becoming
difficult to train successfully.

LSTM architecture improves upon standard RNN models by incorporating a gating mecha-
nism which improves the handling of time step information from long-interval input sequences
[29]. That mechanism controls the amount of information, from previous time steps, that contri-
butes to the current output. The LSTM gating mechanism implements three layers: 1) input-,
2) forget- and 3) output-layer. The training algorithm determines which information is remem-
bered and indeed which information is forgotten [30]. Much of the current success of RNNs has
been achieved using LSTM architecture based models [31, 32].

Schuster and Paliwal proposed the use of bidirectional RNNs for problems where the en-
tire input sequence is available [33]. Bidirectional RNNs utilise past and future data from
an input sequence to train both a forward state RNN (operating in the positive time dimen-
sion – t0, t1, ..., tn) and a backward state RNN (operating in the negative time dimension –
tn, tn−1, ..., t0). This allows the network to make more accurate predictions due to the increased
context provided. In recent years, bidirectional LSTM models have shown great promise in
fields such as speech recognition, with Graves and Schmidhuber showing that such bidirectional
networks can be significantly more effective than unidirectional LSTM architectures [34].

2.3. Proposed system architecture

The details of the proposed bidirectional LSTM model are shown in both Table 1 and Figure
1. The number of LSTM cells in each of the forward and backward layers was set to twice the
input sequence length (empirically this has been shown to perform well on a range of natural
language and time series classification tasks studied by the authors), with two fully connected
layers used as the top model to produce the final classification. Global max pooling in one
dimension was used between the bidirectional LSTM layers and the fully connected layers to
compress the features of the output sequences produced by the bidirectional LSTM layers.

Effectively the bidirectional LSTM layers act to learn and extract the features from the
input HR data sequences, before passing these features to the fully connected top model for
classification as to whether signs of AF are present or not. The model proposed in this paper
was implemented using Keras and Tensorflow [35, 36, 37].

2.4. Model training

Xavier initialisation [38] was used to initialise all the weights of the model, and gradient
descent backpropagation, using the Adam optimiser [39], was used to update the weights. The
initial learning rate of the Adam optimiser was set to 1e-3 and the binary cross-entropy function
was used to evaluate the loss of the network. A minibatch size of 1024 input sequences was used
during this training process – providing a good trade-off between available Graphics Processing
Unit (GPU) memory and speed of training.

Recurrent dropout [40] was applied (with a probability of 0.1) during training to both the
inputs and hidden states of the LSTM cells and standard dropout [41] was applied between the
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Figure 1: The bidirectional LSTM architecture used for AF classification
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fully connected layers (again, with a probability of 0.1) to reduce overfitting of the model and
improve model generalisation. Furthermore, the training performance of the proposed model
was evaluated using the binary cross-entropy function as this provides a better understanding of
the model performance across a range of operating conditions (as opposed to the classification
accuracy which only describes the performance of a model at a single point). The binary cross-
entropy function compares two probability distributions (that of the true distribution and the
predicted distribution) to provide more information about the nature of the search landscape.

A stratified 10-fold cross-validation strategy was used to evaluate the model performance
and to tune both the model architecture and the hyperparameters (although minimal tuning
was used to obtain the results shown in in the next section). Stratified cross-validation was
necessary to ensure that each fold was representative of the balance of the full data set. Results
from this stratified 10-fold cross-validation are shown in Section 3.1.

3. Results

This section introduces the 10-fold cross-validation results for training and testing as well as
the blind-fold validation results. The bi-directional LSTM model, proposed in this paper, was
trained using an nVidia Quadro M5000 GPU with 8GB of GDDR5 graphics RAM. The average
time needed to train a single epoch of this model was approximately 215 s. Initial experiments
showed that the model converges after between 60 – 80 epochs of training, so 80 epochs were
used in this study to ensure full convergence of the model and limit opportunities for overfitting.

3.1. 10-fold cross-validation results

Figures 2 and 3 show the training and validation set performance against the number of
epochs3. These figures show the mean of the performance for each of the 10-folds as a solid line,
and the standard deviation of the performance as the shaded region. As can be seen from these
figures, whilst the performance on the training set is slightly better than that of the validation
set, the model has converged to a stable value with none of the typical signs of overfitting such as
the training performance continuing to improve, whilst validation performance stagnates (and
even worsens).

Figure 2: Training and validation accuracy over epochs.
The solid line is the mean of the 10 folds and the shaded
area indicates the variance.

Figure 3: Training and testing loss function over the
epochs. The solid line is the mean and the shaded area
indicates the variance.

3One epoch is a single pass through all the training data, followed by evaluation of the model on the validation
data.
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Table 2: Overall cross validation performance of the proposed bi-directional LSTM classifier

TP TN FP FN Accuracy Sensitivity Specificity Area Under Curve (AUC)

430,615 523,241 7,040 7,407 98.51% 98.32% 98.67% 0.9986

Table 3: Overall blind fold validation performance of the proposed bi-directional LSTM classifier

TP TN FP FN Accuracy Sensitivity Specificity AUC

91,888 65.699 255 116 99.77% 99.87% 99.61% 1 4

The confusion plot for the stratified 10-fold cross-validation process is shown in Figure 4
and the Receiver Operating Characteristic (ROC) curve is shown in Figure 5. In these plots,
the results from applying the model to the validation set in all 10 folds of the cross-validation
process were aggregated and then used to create the confusion plot and the ROC curve. Table
2 shows the overall performance of the cross-validation process.

Figure 4: Confusion plot from the stratified 10-fold cross-
validation process

Figure 5: ROC curve from the stratified 10-fold
cross-validation process

It can been seen from the results in Figures 4 and 5 and Table 2, that the proposed bi-
directional LSTM classifier achieves an overall classification accuracy of 98.51% with stratified
10-fold cross-validation - classifying 98.67% of normal HR sequences correctly and 98.32% of
HR sequences showing signs of atrial fibrillation correctly.

3.2. Blind-fold validation results

Following this stratified 10-fold cross-validation process, further evaluation of the proposed
model was undertaken using blindfold validation of AF and normal HR sequences from 3 com-
pletely held out patients, as described in Section 2.1. Results from this completely held out test
set are shown in Figures 6 and 7, and summarised in Table 3.

It can been seen from the results in Figures 6 and 7 and Table 3, that the proposed bi-
directional LSTM classifier achieves an overall classification accuracy of 99.77% on the test set
of completely unseen patients - classifying 99.61% of normal HR sequences correctly and 99.87%
of HR sequences showing signs of atrial fibrillation correctly.
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Figure 6: Confusion plot from the 3 completely withheld
patients

Figure 7: ROC curve from the 3 completely wit-
hheld patients

4. Discussion

Data is always a concern for learning systems. Indeed, the proposed automated detection
system for AF is no exception. We have used the physionet MIT-BIH AF database, because
this enables competition and cooperation. Competition comes from the fact that the database
is well known and classification results are available from other research projects, see Table 4.
Cooperation is possible, because the data is freely available and our processing methods were
stated in Section 2. However, the data is balanced for sinus rhythm and AF. That implies that it
is heavily weighted with AF patients compared to a real patient population. That is a problem,
especially for AF screening. For screening applications, we expect that our performance figures
are biased toward high sensitivity and false positives for lower prevalence of the abnormality.

Table 4 shows a selection of scientific studies which are based on heart rate from the physi-
onet MIT-BIH AF database [21]. All these studies have achieved good validation results with
a conventional processing structure of feature extraction followed by machine learning. The
processing structure we propose does not need feature extraction, all the information available
in the training data set is passed on to the deep learning system. Hence, it can extract the
implicit knowledge which enables it to make good decisions even for unknown data.

Looking beyond the narrow area of AF detection with Deep Learning (DL) applied to HR,
we found only one similar work. Chen et al. who used deep learning to detect Congestive
Heart Failure (CHF) beats with an accuracy of 72.41% [42]. Their system incorporated the
Sparse-Auto-Encoder (SAE) algorithm which increases the robustness of the model. Apart from
HR, there are other physiological signals that can be used to diagnose Cardiovascular Diseases
(CVDs). Deep learning was used successfully to analyze a wide range of these physiological
signals [23]. Sannino De Pietro achieved an accuracy of 99.09% for AF detection with tensorfolow
deep learning on the ECG signals in the Physionet AF database [43]. Zihlmann et al. have
used a convolutional RNN for ECG classification [44]. Their system achieved and accuracy
of 80.5%. Deep Convolutional Neural Network (CNN) was used extensively for ECG analysis
[45, 46, 47, 48, 49]. Deep Artificial Neural Network (ANN) have be used for multiple heath care
applications [50, 51, 52].
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Table 4: Selected work on the automated detection of AF
beats using RR interval signals from the MIT-BIH Atrial Fi-
brillation database.

Author Data pre-processing Feature extraction met-
hod

Analysis method Results

Artis et al., 1991
[53]

100 beat window 99 be-
ats overlap

Threshold based inter-
vals

ANN 92.86% sensitivity and 92.34%
positive predictive accuracy

Tateno and Glass,
2001 [54]

50 consecutive AF be-
ats, no overlap

∆RR is defined as being
the difference between
two successive RR inter-
vals.

Kolmogorov-Smirnov
test and CV test

Sensitivity 94.4%, Specificity
97.2% both with Kolmogorov-
Smimov statistics.

Logan and Hea-
ley, 2005 [55]

600 consecutive beats,
no overlap

∆RR and RR interval
histogram

Kolmogorov-Smirnov
test

sensitivity = 96% and specifi-
city = 89%.

Ghodrati et al.,
2008 [56]

30 beat window no over-
lap reported

Normalized absolute de-
viation and normalized
absolute difference

Threshold sensitivity of 89%

Ghodrati and Ma-
rinello, 2008 [57]

30 beat window no over-
lap reported

Probability density
function

Threshold evaluated
with ROC

sensitivity of 92%

Babaeizadeh et
al., 2009 [58]

Beat to beat analysis RR interval Hidden Markov model 92% sensitivity and 97% posi-
tive predictive value

Yaghouby et al.,
2010 [59]

64 beat window, overlap
not reported

Statistical and geo-
metrical features plus
feature dimension
reduction

Genetic algorithm 99.11% Accuracy

Lian et al., 2011
[60]

128 beat window ∆RR Threshold on statistical
values

95.9% sensitivity and 95.4%
positive predictive value

Huang et al., 2011
[61]

bins of 50 beats ∆RR and RR interval
histogram

Kolmogorov-Smirnov
test

specificity = 96.1%.

Yaghouby et al.,
2012 [5]

30 beat window no over-
lap reported

Six morphological fea-
tures

Gaussian mixture mo-
del

sensitivity of 98.09%, specifi-
city=91.66%

Rincón et al.,
2012 [62]

600 beat window no
overlap reported

Hybrid RR interval and
ECG features

Fuzzy classifier sensitivity of 96%, specifi-
city=93%
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Zhou et al., 2014
[63]

Median filter Shannon entropy Threshold evaluated
with ROC

sensitivity 96.72%, specificity
95.07%, accuracy 96.05%

Petrėnas et al.,
2015 [64]

8 beat sliding window Median filter and thres-
holding for data label-
ling

Threshold sensitivity of 97.1%, specifi-
city of 98.3%

Henzel et al., 2017
[65]

beat by beat evalua-
tion. Windows of va-
rying length are used
to extract the statistical
features.

4 statistical features
and the beat itself

Generalized Linear Mo-
del evaluated with ROC

accuracy 93%, sensitivity of
90%, specificity 95%

Proposed sy-
stem

100 beat window 99
beats overlap

None Recurrent neural
network

Cross validation: accu-
racy 98.51%, Sensiti-
vity 98.32%, Specificity
98.67%, Positive pre-
dictive accuracy 98.39%.
Blind fold validation:
accuracy 99.77%, Sensi-
tivity 99.87%, Specificity
99.61%, Positive pre-
dictive accuracy 99.72%.
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4.1. Limitations

A limitation of our study comes from the fact that we have used data blocks with 100 RR
intervals. These short segments might not capture all the nonlinear properties of the signal
adequately and therefore the deep learning system does not get all the information. However,
the choice of a 100 beat window was made with regard to a practical real-time diagnosis system.
This 100 beat window would allow for minimal latency in any automated alert of AF detection
via heart rate monitoring. Another shortcoming is the limited number of subjects. More data
from a larger subject range would lead to the extraction of more implicit knowledge. In turn
that might result in a model that is even more robust. A problem we encountered was the fact
that it takes design time to train the model. During the design phase, training speed is major
limitation, because it prevented us to explore all possible network parameters. Even massively
parallel5 GPU processors could not speed up the processing sufficiently.

Another limitation of our study comes from instrumentation. We have used RR intervals
that were extracted from ECG signals. However, to realize the advantages of HR the signal
has to be measured directly, i.e. not being extracted from ECG. Appropriate instrumentation
has to ensure that these measurements reflect the RR intervals in the same way as if they were
extracted from ECG. In future, we plan to investigate the impact of the heart rate sensor.

4.2. Future work

The future work is centered on the long-term monitoring of the human heart [66]. Internet of
Things (IoT) technology is needed to facilitate data transfer and disseminate control messages
[67]. Apart from the technology aspects, there is also much scope to acquire more depth and
breadth through academic research. More depth is achieved by detecting different AF types and
predict the onset of AF. Having cost effective long-term monitoring systems allows us to extend
the breath of research by investigating a range of different heart diseases, such as CHF [68].
Apart from addressing these medical engineering aspects, further work is planned to conduct
a full ablation study to investigate the importance of individual architectural and algorithmic
components of the proposed model (such as the number of LSTM cells, optimisers, learning
rates, and fully connected classification layer sizes).

5. Conclusion

Our approach to AF detection in HR signals is straight forward: we partition the data
with a sliding window and feed the resulting blocks into a deep learning system. There is
no need for information reduction through feature extraction. During the training phase, the
learning algorithm can extract all the available information to create the implicit knowledge
which underpins the subsequent decision-making processes. As a consequence, the proposed
decision support system delivers accurate and robust results. To be specific, the system achieved
an accuracy of 98.51% with 10-fold cross-validation. The 99.77% blind fold accuracy indicates
a good robustness. These results are similar to performance measures that were reported for
ECG based CAD systems. However, HR measurements are more convenient for the patient and
they can be carried out for longer.

Having an accurate and robust AF detection system using RR intervals is a prerequisite for
long-term monitoring. The goal for such long-term monitoring is to produce more data which
holds more information about the patient health. Deep learning can help us to make sense of
that data and thereby reduce the workload of clinicians. Furthermore, such computer aided
diagnosis reduces the risk of inter- and intra-observer variability. Computer based systems do
not suffer from fatigue and the results are reproducible. Furthermore, the learning algorithm

5The term ‘massively parallel’ refers to the use of a large number of processors
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model can be updated, such that the decision support system improves over time. These systems
have the potential to benefit patients by delivering an accurate diagnosis as well as unintrusive
and uninterrupted treatment monitoring. We hope that this work is the first in a series of
scientific studies on deep learning for AF detection.
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[65] N. Henzel, J. Wróbel, K. Horoba, Atrial fibrillation episodes detection based on classification
of heart rate derived features, in: Mixed Design of Integrated Circuits and Systems, 2017
MIXDES-24th International Conference, IEEE, pp. 571–576.

[66] U. R. Acharya, O. Faust, D. N. Ghista, S. V. Sree, A. P. C. Alvin, S. Chattopadhyay, T.-C.
Lim, E. Y.-K. Ng, W. Yu, A systems approach to cardiac health diagnosis, Journal of
Medical Imaging and Health Informatics 3 (2013) 261–267.

[67] M. S. Hossain, G. Muhammad, Cloud-assisted industrial internet of things (iiot)–enabled
framework for health monitoring, Computer Networks 101 (2016) 192–202.

[68] U. R. Acharya, O. Faust, V. Sree, G. Swapna, R. J. Martis, N. A. Kadri, J. S. Suri, Linear
and nonlinear analysis of normal and cad-affected heart rate signals, Computer methods
and programs in biomedicine 113 (2014) 55–68.

17


	Introduction
	Materials and methods
	Data used
	Bidirectional Long-Short Term Memory Networks
	Proposed system architecture
	Model training

	Results
	10-fold cross-validation results
	Blind-fold validation results

	Discussion
	Limitations
	Future work

	Conclusion

