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A B S T R A C T

Positron Emission Tomography (PET) imaging has an enormous potential to improve radiation therapy treat-
ment planning offering complementary functional information with respect to other anatomical imaging ap-
proaches.

The aim of this study is to develop an operator independent, reliable, and clinically feasible system for
biological tumour volume delineation from PET images. Under this design hypothesis, we combine several
known approaches in an original way to deploy a system with a high level of automation.

The proposed system automatically identifies the optimal region of interest around the tumour and performs a
slice-by-slice marching local active contour segmentation. It automatically stops when a “cancer-free” slice is
identified. User intervention is limited at drawing an initial rough contour around the cancer region. By design,
the algorithm performs the segmentation minimizing any dependence from the initial input, so that the final
result is extremely repeatable.

To assess the performances under different conditions, our system is evaluated on a dataset comprising five
synthetic experiments and fifty oncological lesions located in different anatomical regions (i.e. lung, head and
neck, and brain) using PET studies with 18F-fluoro-2-deoxy-d-glucose and 11C-labeled Methionine radio-tracers.

Results on synthetic lesions demonstrate enhanced performances when compared against the most common
PET segmentation methods. In clinical cases, the proposed system produces accurate segmentations (average
dice similarity coefficient: 85.36 ± 2.94%, 85.98 ± 3.40%, 88.02 ± 2.75% in the lung, head and neck, and
brain district, respectively) with high agreement with the gold standard (determination coefficient R2=0.98).
We believe that the proposed system could be efficiently used in the everyday clinical routine as a medical
decision tool, and to provide the clinicians with additional information, derived from PET, which can be of use in
radiation therapy, treatment, and planning.

1. Introduction

Positron Emission Tomography (PET) is a non-invasive medical
imaging technique which has the advantage over other anatomical
imaging techniques, such as Computerized Tomography (CT) and
Magnetic Resonance (MR) of providing direct information about pa-
tient's functional processes. Metabolic indicators, and in general para-
meters derived from PET imaging, might be predictive of patient
therapy response to the pharmacological treatment of cancer [1] and
are useful in obtaining an objective evaluation of the changes in the

patient condition [2,3]. As a matter of fact, metabolic parameters are
often faster changing and more indicative of therapy effects than
morphological changes [2]. PET imaging possesses an enormous po-
tential to improve clinical cancer treatment decision making [4]. For
this reason, PET imaging is being increasingly considered for the
quantitative assessment of individual response to therapy and for
clinical testing of novel cancer therapy protocols. In this context, the
first parameter historically introduced, the Standardized Uptake Value
(SUV) provides punctual information about the investigated tissue and
has gained a central role in PET studies [5]. Unfortunately, SUV alone
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does not provide any information about lesion volume and conse-
quently additional quantitative indices have been introduced, such as
the biological tumour volume (BTV) and the tumour lesion glycolysis
(TLG) [6,7]. TLG, in particular, is obtained as the product of the SUV
with the BTV and provides both volumetric and metabolic information.
Therefore, for efficient identification of the TGL, and to obtain accurate
and reproducible PET parameters, it is of utmost importance to employ
a reliable BTV segmentation strategy.

In addition, quantitative analysis of cancer tissues in PET is a crucial
step towards precise radiation therapy treatment planning. To date, MR
plays a key role in radiation therapy planning, providing several ad-
vantages over CT including high quality detailed images, and excellent
soft-tissue contrast. Conversely, CT attenuation maps convey a funda-
mental source of geometric information which is not available in MR,
where image distortion could be produced by static magnetic field non-
uniformities [8]. Inclusion of PET in radiotherapy protocols can provide
additional information to target the oncological lesion even more effi-
ciently [9]. Accurate BTV definition is essential for escalating the ra-
diation dose without increasing normal tissue injury, and may be used
for enhanced dose delivery to the target, in turn improving the Radia-
tion Treatment Planning (RTP) [10]. Nevertheless, the BTV segmenta-
tion in PET images is a precarious task both because of their typically
low resolution and the relatively high level of noise [11,12]. Further,
results strongly depend on the algorithm used [13]. The choice of a
standard method for BTV contouring is still a challenging and debated
issue, so that manual contouring is still typically adopted in clinical
practice. Of course, manual contouring depends on the operator ex-
pertise and clinical specialization. It is also extremely time-expensive
because dozens of slices must be inspected. To date, several automatic
or semi-automatic PET segmentation methods have been proposed
[13–15]. A brief overview of the state-of-the-art is reported in Section
1.1. In general, the level of performance imposed by the everyday
clinical routine, makes properties such as repeatability (i.e. the result
should be operator independent), and a real-time data processing
workflow not only desirable, but necessary.

In the proposed study, we focus on the uptake of 18F-fluoro-2-
deoxy-d-glucose (FDG) and 11C-labeled Methionine (MET) to establish
an innovative segmentation system and assess its performances under
different conditions in the clinical environment. The use of FDG for
oncology imaging accounts for approximately 90% of all PET imaging
procedures. When compared with its neighbouring normal tissue, a
pathological mass presents an increased adsorption of FDG (which is an
analogue of glucose). By this mechanism, a new characterization of the
oncological diseases is possible, thereby opening new opportunities for
a patient-customized approach to diagnosis and therapy. However, FDG
is not an efficient radio-tracer when the body district of interest pre-
sents highly active metabolic activity and a different radio-tracer must
be used. A typical example is the brain, where high uptake of glucose is
a normal condition. It has been reported that the extent of tumour cell
invasion in brain metastases can be detected by MET PET even more
clearly than by CT or MRI [16,17]. For this reason, we considered MET
as an alternative radio-tracer.

The present study tackles the volume reconstruction challenge using
SUV. We combined several known approaches in an original way to
devise a system with a high level of automation. Reconstruction is
started by creating an optimal initial mask on an automatically iden-
tified slice. The mask is evolved into an optimal contour which is then
propagated to the neighbouring layers using a slice-by-slice marching
approach. Finally, volume reconstruction is automatically stopped
when a suitable stopping condition is met. This latter feature represents
a key point toward the automatic and operator independent BTV seg-
mentation. To assess the performance of the present system and to in-
vestigate the reliability and repeatability of the results, we performed
comparative tests with other methods. To do so, we used both body
phantoms containing objects of known a-priori volume and shape, and

fifty tumours located at various anatomical districts (i.e. lung, head and
neck, and brain) and different PET radio-tracers.

The article is organized as follows: Section 2 describes the proposed
segmentation system and the framework used to assess the system
performance. The dataset used for the system evaluation is described in
Section 3, test results are shown in Section 4, while discussion and
conclusions are provided in Sections 5 and 6, respectively.

1.1. Background

A huge number of PET segmentation methods are present in the
literature. Among others, thresholding [18,19] and region growing
(RG) [20] methods are the most widely adopted, especially because
they are simple to implement. Unfortunately, they show a drop in
performance when low contrast, and heterogeneous cancer regions are
considered [14,21]. Indeed, segmentations of small or non-spherical
tumours are often below the expectations [22]. The new adaptive RG
algorithm [23] repeatedly applies a confidence connected RG algorithm
with an increasing relaxing factor f. A maximum curvature strategy is
used to automatically identify the optimal f-value. This algorithm, in
the case of relatively homogeneous background, results robust to
parameter settings and region of interest selection, without scanner,
imaging protocol, or tumour dependencies.

Variational approaches based on gradient differences between
healthy and cancer tissues are mathematically efficient but sensitive to
noise and subject to numerical fluctuation [24,25]. Learning methods,
such as artificial neural networks [26], and support vector machines
[27] are efficient, but the training of such algorithms usually requires
large and diversified databases. Fuzzy C-Means (FCM) [28] is ex-
tensively used in PET image delineation for the fuzzy nature of the
lesion contours. The FCM reveals accurate for large targets of simple
shape, while lesions of complex shape are not easily managed [29].
Affinity propagation [30] considers multi-focal radiotracer uptake
patterns, but so far it has been proved a viable solution only in animal
studies. Stochastic models, such as Gaussian mixture model, based on
statistical differences in intensity distribution between foreground and
background can be considered optimal for noisy images, provided that a
proper noise model is used [31–33]. The latter approaches have been
tested on simulated studies or on a few patient studies where the
ground truth is defined manually by a nuclear medicine expert. In ac-
tive contour (AC) algorithms, an initial contour around the target de-
forms and moves towards the target edges. This deformation is handled
by minimizing what is termed as the energy function. Li et al. [34] used
RG as a pre-processing step to optimize the AC's initial contour. Un-
fortunately, the result tended to overestimate the tumour volume [23].
Similarly, ACs can be found combined with anisotropic diffusion fil-
tering, followed by a multi-resolution contourlet transform [35].
However, the latter approach main limitation is a heavy dependence on
user-defined parameters. In order to improve delineation accuracy,
histogram FCM clustering and textural information were used to con-
strain the AC [36]. The method however proved to suffers in presence
of nearby high physiologic uptake and was susceptible to initial crop-
ping area. Graph-based approaches yield efficient segmentation by
using foreground and background seeds to locate different tissues [37].
However, while seed identification can be automated (e.g. Ref. [29]),
normal anatomical structures (i.e. brain, heart, bladder, and kidneys)
are prone to be mistakenly identified as initial target seeds, giving
misleading guidance to the segmentation process [38,39].

Alternative studies exist which tackle the challenge of automatically
discriminating between normal and pathological tissues in PET.
Unfortunately, a full comparison of such algorithms is not possible as
the relative studies often concern different body district and specific
types of abnormality, e.g., lung tumours [40–42], oesophageal tumours
[43], and nasopharyngeal tumours [44]. Studies on discrimination of
pathological structures in whole-body PET have been conducted as
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well, and some preliminary results have shown that different anato-
mical areas pose different challenges [45,46]. In addition, numerous
PET-based radiomics studies have been proposed and the results of the
relative analysis are highly dependent on the method used to derive the
BTV [47,48].

The combination of PET and CT or MRI in a single scanner is de-
sirable, as it offers the advantage of generating complementary in-
formation. However, a one-to-one relationship between anatomical and
functional images is not always appropriate [38]. When PET/CT or
PET/MRI imaging is employed, BTV delineation should be obtained
avoiding the use of the anatomical information provided by CT and MRI
measurements or alternatively, the latter should be used very carefully
[49]. For example, Yezzi et al. [50] proposed ACs to simultaneously
segment and register features from multimodal images. Rundo et al. [9]
combined two computer-assisted and operator-independent single
modality methods, previously developed and validated obtaining a fully
automatic multimodal PET/MRI segmentation method. Co-segmenta-
tion methods which assume no significant anatomical and functional
changes between the images acquired using different modalities, gen-
erally yield a single target volume where the information of each
modality is not optimally exploited, or at worse, lost.

2. Overview of the proposed system

In order to overcome the general limitations of the above mentioned
studies, we combined and adapted to PET imaging several existing
technologies. Doing so, we created a new smart system (Fig. 1) whose
main purpose is to deploy a segmentation strategy to be used in radio-
therapy treatment planning, and outcome evaluation. The proposed

system is applicable to various types of lesion, different anatomical
districts and can perform segmentation on PET studies based on dif-
ferent radiotracers. Our approach reduces at minimum the intra-ob-
server and inter-observer dependencies with respect to manual deli-
neation, without introducing any user-dependent parameter. The AC
segmentation algorithm at the core of the system is applied using a
slice-by-slice approach, starting from an initial, automatically in-
dividuated slice. Process is terminated when a suitable stopping con-
dition is met. Consequently, the system presents a high level of auto-
mation. In the following we provide a high level description of our
approach.

Briefly, the region containing the cancer must be localized by the
operator to avoid healthy tissues having high radio-tracer uptake or
critical conditions, i.e. when the lesion is located near the heart. The
PET Digital Imaging and Communications in Medicine (DICOM) dataset
is then converted into SUV images to normalize the voxel activity,
taking into account functional aspects of the disease. Based on this
minimal input, where the user is required to highlight a region on just a
single PET slice, the algorithm performs all subsequent operations au-
tomatically. The first step consists of a pre-segmentation which com-
putes a user independent region of interest (ROI). The algorithm au-
tomatically finds an optimal starting mask, which may lay on a slice
different from the one initially highlighted by the operator. Once the
independent ROI has been obtained, the relative initial mask is feed to
the next step of the system, where the segmentation is performed using
a Local region-based Active Contour (LAC) segmentation algorithm,
appropriately modified to support metabolic images as explained in
Section 2.2. The obtained LAC segmentation is propagated to the ad-
jacent slices using a slice-by-slice marching approach. Propagation is

Fig. 1. The proposed segmentation system. a) to avoid any false positive, the region containing the lesion is localized by the operator; b) PET dataset is converted into
SUV images to incorporate functional information; c) The PET slice containing maximum Standardized Uptake Value is found d) RG is used to identify the user
independent ROI on the slice; e) initial ROI is sent to the next logical block of the system; f) segmentation is performed using the LAC algorithm; g) segmentation
mask is propagated to the adjacent slices (slice-by-slice marching approach); h) the stop condition is evaluated (see Section 2.2); i) segmentation on the next slices is
performed until stop condition is false; l) an operator independent BTV is finally obtained.
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performed in parallel both upward and downward within the SUV vo-
lume to obtain the BTV, until a suitable stopping condition is met. In the
following, a detailed discussion of the various steps is presented.

2.1. User independent pre-segmentation step

We defined the proposed system as semi-automatic because in total
body FDG-PET examinations, an initial user input is still required to
roughly identify the area containing the cancer. The motivation is to
avoid false positives when cancer is situated near anatomical structures
such as brain, heart, bladder, kidneys, and ureters where high FDG
uptake is to be considered normal. However, user intervention is
minimal and limited at drawing a rough contour around the cancer
area, on just one PET slice (Fig. 1-a). No further intervention is needed.
The input method (e.g. touch screen, stylus, etc.) depend on user's
preference. In the present study input was performed by mouse.

Pre-processing the uptake data in PET examinations is mandatory
for inter-patient and follow-up comparisons. Among PET metrics, SUV
is the most widely used quantification parameter giving a measure of
cellular metabolism. For this reason, we integrated SUV information in
our system. The PET dataset is converted into weighted SUV unit (g/ml)
[51] images (Fig. 1-b), as suggested in Ref. [38]. SUV is calculated as
the ratio of tissue radioactivity concentration (RC) in kBq/ml and in-
jected dose (ID) in MBq at the time of injection divided by body weight
(Mp) in kilograms, thereby taking into account essential functional as-
pects of the patient:

∗SUV RC
ID

Mi p (1)

RC is calculated as the ratio between the image intensity and the
image scale factor. ID is the product between actual activity and dose
calibration factor [5,52].

Based on the region highlighted by the user (ROI0), the first logical
block of our algorithm consists of an automatic pre-segmentation step
which computes a user independent ROI. This goal is achieved by first
identifying a volume of interest (VOI) which is formed by propagating
ROI0 to adjacent slices.

Every time a new slice (index j) is considered, ROI0 is propagated to
obtain ROIj, and the maximum SUV within ROIj is detected (SUVmax

j ). If
this value exceeds 42% [53] of SUVmax

0 found within the initial slice,
then the new slice is added to the volume. A new ROIj is then computed
in the slice j using the region growing (RG) method [20] to follow the
evolution of the lesion along the SUV volume. In particular, the SUVmax

j

voxel is used as target seed. Otherwise, the growing is stopped. In this
way, a cylindroid (i.e. a cylinder with a non-circular base) is obtained.

The next pre-segmentation step is to locate the voxel of maximum
SUV within this volume of interest, SUVmax

VOI (Fig. 1-c). Note that this
maximum value may reside on a different slice than the one selected by
the user, but it will belong to the same anatomical anomaly.

The rough segmentation of the newly identified slice using the RG
algorithm (Fig. 1-d) represents the output of the pre-segmentation step
(Fig. 1-e) which will feed the next logical block of the system (Fig. 1-f).

Note that in this pre-segmentation process, the region highlighted
by the user does not need to be carefully drawn. A rough inclusion of
the anomalous area is sufficient. Further, manual drawing does not
need to be repeated on any other slice. As a result, the pre-segmentation
process generates an output which is independent to local variations in
the initial user input, and for that, thereby making the result extremely
repeatable. Furthermore, the RG algorithm is only used to obtain a
rough estimate of the contour encircling the highest radio-tracer uptake
area within the slice containing the SUVmax

VOI . This contour is then feed
into the next section of the system, the “Slice Marching Segmentation”
as shown in Fig. 1, where the delineation is further refined through a
more sophisticated segmentation algorithm (Fig. 1f), accompanied by
an automated data-driven stopping condition (Fig. 1h).

Consequently, we can expect the final BTV (Fig 1l) to contain the
cancer within its limits and the segmentation to account for extremely
irregular lesion shapes. Three examples of ROI bounding regions deli-
neated on PET images by the RG method are shown in Fig. 2 (a–c).

2.2. Slice Marching Segmentation step

The LAC algorithm blends benefits of purely local edge based active
contours and fully global region based active contours. At each point
along a prominent intensity edge of an object, nearby points inside and
outside the object will be modelled well by the mean intensities within
the local neighbourhoods on either side of the edge. This is the moti-
vation behind the model proposed by Lankton et al. [54]; where the
contour energy to be minimized is defined as:

∮ ∫ ∫⎜ ⎟
⎛
⎝

⎞
⎠

= − + −E χ x s x u s dx χ x s x v s dx ds( , )(I( ) ( )) ( , )(I( ) ( ))
C R

l l
R

l l
2 2

in out

(2)

where Rin and Rout represent the regions inside and outside the curve C;
where s represents the arc-length parameter of C, where χ represents
the characteristic function of the ball of radius l (local neighbourhood)
centred around a given curve point C(s), where I represents the in-
tensity function of the image to be segmented, and where u s( )l and v s( )l
denote the local mean image intensities within the portions of the local
neighbourhood χ x s( ,l ) inside and outside the curve respectively
(within Rin and Rout). These neighbourhoods are defined by the function
χ , the radius parameter l, and the position of the curve C. Note that the
function χ x s( ,l ) evaluates to 1 in a local neighbourhood around each
contour point C(s) and 0 elsewhere, thereby localizing the processing of
image information. The shape of the contour C then divides each such
local region into interior local points and exterior local points in ac-
cordance with the contour's role to segment the domain of I. The

Fig. 2. Operator independent ROI genera-
tion on PET images. Figures a, b, and c show
the pre-segmentation output (Fig. 1e) on
three different body districts: lung (a), brain
(b) and head and neck (c), respectively. The
white contour with black asterisks represent
the input provided by the user, while the
blue asterisks contour shows the result of
the RG algorithm after the slice containing
the maximum SUV is identified. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the
Web version of this article.)
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resulting flow is more robust to initial curve placement and image noise
like region-based flows described on [36]; and yet it also capable of
capturing significant local structure and partitioning the image without
making strong global assumptions about its makeup. To be successful,
the present segmentation technique relies on the assumption that
nearby points inside and outside the true edge of an object, will be
modelled well by the mean intensities within these localized regions. As
a result, the energy (2) is more global in nature than edge-based flows
but with a “tunable” degree of locality defined by the neighbourhood
radius l.

Actually, the LAC method for 3D MR datasets was applied by
Lankton et al. [54] via independent segmentation of the 2D slices. A
more powerful and coherent segmentation procedure could be per-
formed on all slices simultaneously by evolving a single surface within
the corresponding three-dimensional space. While we are currently
investigating such 3D shape evolution for future evaluation and pub-
lication, the present work moves a step toward 3D data segmentation
improving upon Lankton et al. by introducing a system to automatically
govern the slice-by-slice strategy. Further improvements consist of in-
troducing the SUV measurements (functional information), an optimal
identification of the starting slice, the production of an initial mask for
LAC segmentation, and a fully automatic stopping condition. The latter,
in particular is a key feature in order to achieve automation.

We now describe these new improvements integrated into the LAC
algorithm.

In step f) (see Fig. 1), an initial mask is obtained from user in-
dependent smart pre-segmentation (seen Section 2.1). To incorporate
SUV in the LAC algorithm, the energy (2) for the PET image segmen-
tation approach is adapted as:

∮ ∫

∫

⎜

⎟

⎛
⎝

⎞
⎠

= −

+ −

E χ x s x u s dx

χ x s x v s dx ds

( , )(SUV( ) ( ))

( , )(SUV( ) ( ))

C R
l l

R
l l

2

2

in

out (3)

where SUV represents the intensity function of the standardized uptake
value to be segmented, and where u s( )l and v s( )l denote the local mean
SUV intensities within the portions of the local neighbourhood χ x s( ,l )
inside and outside the curve respectively (within Rin and Rout). These
neighbourhoods are defined by the function χ , the radius parameter l
(in our study l =3 has been determined to provide the best perfor-
mance using trial and error strategy, see appendix), and the position of
the curve C. Note that the function χ x s( ,l ) evaluates to 1 in a local
neighbourhood around each contour point C(s) and 0 elsewhere,
thereby localizing the processing of SUV image information. The shape
of the contour C then divides each such local region into interior local
points and exterior local points in accordance with the contour's seg-
mentation of the SUV. The local means are specified in terms S s( )Il ,
S s( )El , A s( )Il , and A s( )El which represent the local sums of SUV in-
tensities and the areas of their respective portions of the local neigh-
bourhood χ x s( ,l ) inside and outside the curve (within Rin and Rout).
More precisely, the local interior region may be expressed as

∩R χ x s( , )in l and local exterior region as ∩R χ x s( , )out l .

= =u s
S s
A s

v s
S s
A s

( )
( )
( )

, ( )
( )
( )l

I

I
l

E

E

l

l

l

l (4)
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R
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R

l E
R
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l

out (6)

= ⎧
⎨⎩

∈ −χ x s when x l Ball C s
otherwise

( , ) 1 ( ( ));
0 ;l

(7)

After the segmentation step f) is achieved on the slice containing the
SUVmax

VOI , the resulting segmented mask is used to initiate parallel seg-
mentations on the neighbouring slice above and below. Subsequently,
for all the other slices in both directions, we similarly use the seg-
mentation results of the previous slices as the initial mask inputs as
shown in step g) Fig. 1. The LAC method is inherently capable of locally
widening or tightening where necessary when the contour is propa-
gated from slice to slice. Since, this behaviour is driven by the image
properties rather than by an inherent knowledge of whether the cancer
is present, a stopping criterion is necessary to prevent the LAC algo-
rithm from misbehaving or even diverging when it reaches a slice
where the cancer is absent (i.e. when there is nothing to be segmented).

Therefore, we devised a fully automatic stopping condition as
shown in step h) Fig. 1. For the slice under consideration, at each point
on the cancer edge, nearby points inside and outside the cancer must
have a different local mean SUV. If the cancer is present, a positive
difference between background and foreground intensity must occur,
and consequently the algorithm can safely proceed with the next
neighbouring slice (Fig. 1-i). When the system encounters a slice where
the local mean v s( )l on Rout is greater or equal to the local mean SUV
u s( )l on Rin, which is the opposite of what is expected, the slice is
classified as cancer-free and the slice-to-slice segmentation propagation
is halted (Fig. 1-l) in that direction. The approach can be mathemati-
cally summarized as:

=

⎧

⎨

⎪⎪

⎩
⎪
⎪

≥

segmentation process is stopped when v s

u s is true

segmentation process is continues

otherwise

Stop Condition

( )

( ) ;

;

l

l

(8)

In this way, slice after slice, the BTV is obtained and the segmen-
tation process is automatically stopped, thereby avoiding the need for
any user intervention. In the following section, the criteria to judge the
quality of the segmentation results is outlined.

2.3. Framework for performance evaluation

A framework for the evaluation of the proposed segmentation
system is presented. Overlap-based and spatial distance-based metrics,
according to the formulations presented in Refs. [55–57], are con-
sidered to determine the accuracy achieved by the proposed computer-
assisted segmentation system (assessed volume) sSeg against the gold-
standard (reference volume) sref (in our study, manual segmentations
performed by three experts are used to define a consolidated reference
as described in the next Section 3.4).

The overlap and difference between the two contours were mea-
sured according to true positive (TP), false positive (FP), true negative
(TN) and false negative (FN) voxels. In particular, we calculated the
mean, standard deviation, 95% confidence interval (CI) and coefficient
of variation (CV) of sensitivity, positive predictive value (PPV), dice
similarity coefficient (DSC), Hausdorff distance (HD), and Mahalanobis
distance (MHD).

Sensitivity, also called the true positive volume fraction (TPVF), is
the fraction of the total amount of tissue in the proposed segmentation
system sSeg which overlaps with the reference volume sref [55]. A perfect
segmentation algorithm would be 100% sensitive (segmenting all
voxels from the target voxels) and 100% specific (not segmenting any
from the background voxels). In particular, TPVF [58] is a crucial
measure in radiotherapy in order to obtain optimal RTP avoiding
cancer recurrence.
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Specificity, also called the true negative volume fraction (TNVF), is
the fraction of tissue defined in the reference volume sref that is missed
by the segmentation system sSeg. Considering that the number of true
negatives depends on the space volume I, the specificity makes little
sense and only the sensitivity conveys useful information. The specifi-
city can be replaced with the positive predictive value (PPV) [57].

PPV, also called precision, is the fraction of the total amount of
tissue in the reference volume sref which overlaps with the segmenta-
tion system sSeg.

DSC value [55] measures the spatial overlap between the reference
volume sref and the segmentation system sSeg: a DSC value equal to
100% indicates a perfect match between two volumetric segmentations,
while a DSC whose value is 0% indicates no overlap:

=
∩

+
= ×

× + +
×DSC

s s
s s

TP
TP FP FN

2 2
2

100%Seg

Seg

ref

ref (9)

Nevertheless, overlap-based metrics are highly dependent on the
segmentation size. For this reason, distance-based metrics are highly
recommended when the boundary segmentation is critical, such as in
BTV delineation for RTP. In particular, HD is used to measure the most
mismatched boundary voxels between automatic and manual BTV: a
small median of HD means an accurate segmentation, while a large
median of HD means no accuracy.

The HD [56,59] between two finite point sets A and B is defined by:

=HD max h A B h B A{ ( , ), ( , )} (10)

The two distances h(A, B) and h(B, A) are termed as forward and
backward Hausdorff distances of A to B. h(A, B) identifies the point a∈A
that is farthest from any point b∈ B and it measures the distance from a
to its nearest neighbour in B. h(B, A) identifies the point b∈ B that is
farthest from any point a∈A and it measures the distance from b to its
nearest neighbour in A.

Each point of A (or B) must be within distance h(A,B) of some point
of B, and there is at least one of A that is exactly distance h(A,B) from
the nearest point of B considered as the most mismatched point.
Symmetric consideration for h(B,A), with respect to B instead of A.

h(a,B) is defined as minb∈B h(a,b) where h(a,b) is the Euclidean
distance, and, similarly, h(b, A) is defined as mina∈A h(b, a).
Consequently, h(A, B) is defined as the maxa∈A h(a, B), and h(B, A) is
defined as the maxb∈B h(b, A). Then,
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where the Euclidean distance is defined on n-dimensional Euclidean
space. Similarly for h(B,A). Thus, HD measures the degree of mismatch
between A and B by measuring the distance of the point of A that is
farthest from any point of B, and vice versa.

Since medical images are usually characterized by noise and the HD
is generally sensitive to outliers, the HD averaged over all points in A
and B has been considered [56]:

=HD max d A B d B A{ ( , ), ( , )} (12)

where = ∑ −∈ ∈
d A B N a b( , ) (1/ ) minA Ba b

.

A variant of the MHD has been considered to take into account the
correlation of all points belonging to two different points clouds [56].
The MHD between the sets of voxels contained in sSege sRef is given by:

= − −−Seg Ref S Seg RefMHD (μ μ ) (μ μ )T 1 (13)

where μSeg and μRef are the means of the two segmentations. S is the
common covariance of the two sets and is given by

=
+
+

S
n S n S

n n
Seg Ref1 2

1 2 (14)

where SSeg, SRef are the covariance matrices of the voxel sets and n1, n2
are the numbers of voxels in each set. In phantom experiments, shape

modifications and volume translations are unlikely to be observed. In
these studies, sensitivity, PPV, DSC and HD measurements can be
considered more than sufficient for performance assessment, as re-
ported in Ref. [55]. For this reason, MHD has been considered in only
patient studies.

Finally, to perform statistical test between the proposed system and
human segmentations, the combination of sensitivity and PPV, as re-
commended in Ref. [15], has been used. Further, to facilitate the eva-
luation and ranking of the results, three new accuracy scores have been
defined:

• score = 0.5 × sensitivity +0.5 × PPV;

• score radiotherapy planning (RT) = 0.6 × sensitivity + 0.4 × PPV;

• score follow-up (FU) = 0.4 × sensitivity + 0.6 × PPV.

In radiotherapy planning, the aim is to reduce the risk of missing the
target, even if it means delivering higher dose to the surrounding
healthy tissues and organs-at-risk. For this reason, sensitivity could be
considered more important than PPV. For therapy follow-up the aim is
to obtain consistent volume measurements in sequential PET scans and
to avoid including background/nearby tissues. As a result, PPV could be
considered more important than sensitivity.

The performance of the proposed system is compared to other state
of the art PET image segmentation methods. In particular, the fixed
thresholding (42% of the SUVmax) method (T42%) [53], the RG method
[20], the FCM clustering method [28], the enhanced RW method such
as described in Ref. [38], and the original LAC method [54] have been
used for comparison. The software package used to provide manual
gold-standard and proposed segmentation BTVs and evaluation task has
been implemented in the Matlab R2016a simulation environment
(MathWorks, Natick, MA, USA), running on an iMac computer with a
3.5 GHz Intel Core i7 processor, 16 GB 1600MHz DDR3 memory, and
OS X El Capitan.

3. Data

3.1. Phantom studies

National Electrical Manufacturers Association International
Electrotechnical Commission (NEMA IEC) phantom is used for pre-
liminary performance testing [18,29,38]. The phantom is composed of
an elliptical cylinder (D1=24 cm, D2=30 cm, h=21 cm) with six
different spherical lesions of size 10, 13, 17, 22, 28, and 37mm in
diameter placed at 5.5 cm from the centre of the phantom. Both body
phantom and spheres are filled with a known amount of radioactive
tracer to simulate oncological lesions. It could be argued that cancer is
often inhomogeneous and irregularly shaped in contrast with spherical
targets and that tracer-filled spheres suffer from cold-body effects when
compared to the real case (the human body) [15,60]. However, the aim
of this test is to evaluate the efficiency of the system and fairly compare
its performance with other methods under identical conditions where
results may be quantitatively and reliably evaluated. For this purpose,
using a well-defined sharp-edged target is preferable because the only
uncertainty on the exact boundary location is introduced by the point
spread function of the measuring system. The ratio between sphere
concentrations and background radioactivity concentrations ranged
from 1.5:1 to 8:1 for five independent experiments: 1.5:1 for the
phantom “I”, 3:1 for the phantom “II”, 5:1 for the phantom “III”, 7:1 for
the phantom “IV”, and 8:1 for the phantom “V”. Performance results are
calculated considering small spheres (sphere diameter less than or
equal to 17mm) and large spheres (sphere diameter greater than
17mm). This choice was motivated by the fact that large biases are
introduced [61] when the lesion size is smaller than 2–3 times the Full
Width at Half Maximum (FWHM) of the PET point spread function. The
PET/CT acquisition protocol is described in Section 3.3.
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3.2. Clinical studies

In the present study, we retrospectively considered 50 cases ac-
quired at the Nuclear Medicine Department of the Cannizzaro Hospital
(Catania, Italy). The dataset contains 50 PET examinations of patients
with lung, head & neck, and brain cancers that had been referred for a
diagnostic PET/CT scan before radiotherapy treatments. Segmentations
were performed off-line and the results had no influence on the treat-
ment protocol, nor on the patient management. No sensitive patient
information was accessed. As such, the institutional Hospital Medical
Ethics Review Board approved this study protocol and all subjects in-
volved were properly informed and released their written consent. In
FDG PET studies, patients fasted for 12 h before the PET examination,
and successively were intravenously injected with FDG. The PET/CT
oncological protocol began 60min after the injection. Patients breathed
normally during the PET and CT examinations, and scanning was exe-
cuted from the top of the skull to the middle of the thigh with the arms
along the body. In MET PET studies, for only brain acquisitions, pa-
tients fasted for 4 h before the PET examination. The PET/CT protocol
began 10min after the MET injection.

3.3. PET/CT acquisition protocol

The acquisitions for both phantom experiments and clinical studies
were performed within the same Nuclear Medicine Department using
the same equipment, a Discovery 690 PET/CT scanner with time of
flight (General Electric Medical Systems, Milwaukee, WI, USA). The
phantom and patient protocols included a SCOUT scan at 40mA, a CT
scan at 140 keV and 150mA (10 s), and 3D PET scans (2.5 min per bed
position). PET images were reconstructed using a 3D ordered subset
expectation maximization (OSEM) algorithm. All imaging data were
encoded in the 16-bit DICOM format.

Each PET slice consists of 256×256 voxels with a grid spacing of
2.73mm3 and thickness of 3.27mm3. Consequently, the size of each
voxel is 2.73×2.73×3.27mm3. Thanks to the injected PET radio-
tracer (FDG or MET), tumours appears as hyper-intense regions.

The non-diagnostic CT scan is performed for attenuation correction
and anatomic localization of the tumour contextually to PET image
acquisition. The CT slice consists of 512×512 voxels with size
1.36×1.36×3.75mm3.

3.4. Gold standard

Phantoms offer the advantage of known target boundaries.
Consequently, we used the match between segmented CT images and
the known position of the spherical shapes to quantitatively evaluate
the performance of the proposed segmentation system.

In patient studies, knowledge of the ground truth would require
exact knowledge of the pathology region. In PET imaging, histo-
pathology analysis provides the only valid ground truth for quantita-
tive assessment [57]. Since in radiotherapy the histopathology ana-
lysis is unavailable, the actual gold-standard is impossible to retrieve.
To assess the clinical effectiveness and feasibility of a proposed seg-
mentation method it is therefore standard practice to refer to manual
delineations performed by expert professionals as a substitute for
ground truth [15]. The BTV delineation is actually a critical task
performed by expert physicians to determine which areas to include or
exclude in the planned target volume. Yet, manual delineation carries
a certain amount of subjectivity and is often influenced by the clinical
specialization of the operator. For example, radio-therapists will, on
average, draw larger boundaries than oncologists. For this reason, we
used as gold-standard the segmentations performed by three experts
with high clinical and PET imaging insight and different expertise (the
chief nuclear medicine physician –M.I. author-, the chief radiotherapy
physician –M.S. author- and an expert radiotherapy physician –G.R.
author-).

In order to investigate the inter-observer variance, a simultaneous
ground truth estimation tool was employed (as suggested by Ref. [62]),
and the results from three observers were combined to define a con-
solidated reference.

4. Results

4.1. Clinical testing and results on phantoms

Performance results have been divided in two tables considering
small spheres (sphere diameters: 10, 13, and 17mm) and large spheres

Table 1
Sensitivity, PPV, DSC, HD rates obtained over NEMA IEC phantoms (IIeV).
Phantoms have the following signal contrast: (II) 3:1, (III) 5:1, (IV) 7:1, and (V)
8:1. Three different spherical lesions of size 10, 13, and 17mm in diameter are
considered to assess the performance of the proposed segmentation system.
Mean value, standard deviation (std), 95% confidence interval (CI) and coef-
ficient of variation (CV) are reported in the last rows.

NEMA
IEC
Phantom

Sphere
Diameter

Sensitivity [%] PPV [%] DSC [%] HD [voxels]

II 10mm 66.71% 76.22% 71.15% 1.00
III 67.62% 76.71% 71.96% 1.47
IV 75.81% 73.50% 74.63% 1.00
V 71.10% 82.16% 76.22% 1.11
II 13mm 66.73% 92.31% 77.40% 1.00
III 75.04% 81.81% 78.38% 1.08
IV 66.01% 97.17% 78.60% 1.00
V 70.03% 91.30% 79.20% 1.00
II 17mm 66.00% 97.16% 78.61% 1.21
III 69.95% 96.33% 81.06% 1.28
IV 73.43% 92.00% 81.60% 1.20
V 71.61% 94.07% 81.35% 1.07

Mean 70.00% 87.56% 77.51% 1.12
± std ±3.49% ±8.87% ±3.46% ±0.15
± CI ±1.97% ±5.02% ±1.95% ±0.08
± CV ±4.98% ±10.13% ±4.46% ±0.13

Table 2
Sensitivity, PPV, DSC, HD rates obtained over NEMA IEC phantoms (IeV).
Phantoms have the following signal contrast: (I) 1.5:1, (II) 3:1, (III) 5:1, (IV)
7:1, and (V) 8:1. Three different spherical lesions of size 22, 26, and 37mm in
diameter are considered to assess the performance of the proposed segmenta-
tion system. Mean value, standard deviation (std), 95% confidence interval (CI)
and coefficient of variation (CV) are reported in the last rows.

NEMA IEC
Phantom

Sphere
Diameter

Sensitivity [%] PPV [%] DSC [%] HD [voxels]

I 22mm 72.03% 72.51% 80.52% 1.77
II 91.20% 88.05% 89.60% 1.17
III 92.01% 85.81% 88.82% 1.06
IV 90.52% 86.42% 88.41% 1.07
V 96.33% 87.90% 91.90% 1.00
I 26mm 89.22% 81.32% 84.87% 1.71
II 92.91% 90.90% 91.90% 1.18
III 91.87% 88.98% 90.31% 1.05
IV 94.40% 90.20% 92.20% 1.00
V 99.80% 85.21% 91.91% 1.05
I 37mm 89.04% 90.90% 89.90% 1.60
II 99.90% 88.22% 93.72% 1.19
III 99.90% 88.63% 93.90% 1.05
IV 99.41% 91.50% 95.35% 0.97
V 99.82% 93.81% 96.70% 0.89

Mean 93.22% 87.36% 90.67% 1.18
± std ±7.18% ±5.09% ±4.07% ±0.28
± CI

(95%)
±3.64% ±2.58% ±2.06% ±0.14

± CV ±7.71% ±5.83% ±4.49% ±0.23
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(sphere diameters: 22, 28, and 37mm) as explained in Section 3.1.
Tables 1 and 2 show sensitivity, PPV, DSC and HD values in five in-
dependent phantom experiments carried with different ratios between
sphere concentration and background radioactivity concentration:
1.5:1 for the phantom “I”, 3:1 for the phantom “II”, 5:1 for the phantom
“III”, 7:1 for the phantom “IV”, and 8:1 for the phantom “V”.

Table 1 shows the volumetric accuracy results for the smaller
spheres, while Table 2 shows the volumetric accuracy results for the
larger spheres. In Table 1, the results for the phantom “I” are missing
because the ratio between sphere and background concentrations is too
low (the target radioactivity concentration is only more than one-and-a-
half times the background radioactivity concentration), and no PET
region with high uptake concentration is visible for spheres with dia-
meter < 22mm. No significant difference between background and
target is observed. For the same reason, the accuracy improved for all
spheres, regardless of their volume, when the ratio between sphere
concentration and background radioactivity concentration was in-
creased. Phantom images with different signal contrast (1.5:1 and 8:1,
respectively) are shown in Fig. 3.

In general, due to the PVE, the separation of small targets from the
background region is very challenging, and the difficulty increases in
critical conditions (i.e. low signal contrast). The volumes of smaller
spheres are underestimated (mean difference between segmented and
actual volumes=−19.12 ± 10.69%) with more false negatives than
false positives. As expected, large errors occur in lesions less than 2 cm
in diameter [11].

Table 2 shows the results for all spheres with a diameter greater
than 17mm. In all conditions, excluding the phantom ‘I’ for the
aforementioned reason, a DSC rate above 90% and a sensitivity rate
greater than 90% are observed. These performances are generally ac-
cepted as excellent. A slight oversizing is observed (mean difference
between segmented and actual volumes=6.69 ± 5.23%), never-
theless, larger margins can help to prevent the extension of tumour
infiltration in radiotherapy treatments [63].

In addition, high sensitivity, PPV and DSC, and low HD confirm the
accuracy of the proposed segmentation system even when compared
against the most common segmentation algorithms used in BTV

extraction (RW, original LAC, RG, FCM, and T42%). Fig. 4 reports the
quantitative comparison between the semi-automatic segmentation and
the gold-standard considering all phantom experiments. Despite lim-
itations due to the use of phantoms, results show that the proposed
segmentation system out-performs the other algorithms tested for
comparison.

4.2. Clinical testing and results on patients

The evaluation of the segmentation system presented in this study
was performed retrospectively (i.e. data were acquired before begin-
ning of the radio-therapy and only at later time employed for the
purposes of this study), on 50 tumours: in detail, 10 patients with lung
cancer (FDG PET), 25 patients with head & neck cancers (FDG PET),
and 15 patients with brain metastases (MET PET).

Performance was evaluated against a “ground truth” manual deli-
neation provided by three expert operators [62]. Automatically seg-
mented BTVs showed high agreement with the ground truth delinea-
tions (the determination coefficient R2= 0.98, see Fig. 5).

To assess the performance level represented by automatically and
manual segmentations provided by three expert operators, we used
STAPLE algorithm [62]. Results are provided in Table 3 as “mean ±
standard deviation (± CI) [± CV] of the combination of sensitivity
and PPV (see Section 2.3).

Tables 4–6 show sensitivity, PPV, DSC, HD, and MHD results for the
three lesion datasets (lung, head & neck, and brain). Since in the Can-
nizzaro Hospital dataset the segmented BTVs are greater than 2.5ml
(lesions with a sphere-equivalent diameter greater than 17mm), no
distinction between lesion volumes is reported as for phantom sphere
results in the previous section. In addition, most segmented BTV
(∼90%) are homogenous (one single peak is visually detected on the
histogram of lesion voxel values). Fig. 6 reports the quantitative com-
parison between the operator independent segmentation and the gold-
standard.

In addition, in Table 7 the proposed segmentation system is com-
pared with the original LAC and RW methods (both methods obtained
similar results and outperformed T42%, RG and FCM methods in

Fig. 3. PET/CT images of I and V phantoms. Phantoms have the following signal contrasts: (a) 1.5:1, (c) 8:1. PET volume rendering of phantom I (b), and V (d).
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Fig. 4. Sensitivity, PPV, DSC, and HD comparisons (mean and range) of the proposed system to the ones commonly used in the literature in delineation of PET
images.
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phantom experiments, for this reason, T42%, RG and FCM methods
were not considered in patient studies). The proposed segmentation
yielded better performance in minimizing the difference between
manual and automated BTVs than the other two reference methods. As
a final test, in order to confirm that the system is indeed user-in-
dependent, a sub-dataset of 15 lesions (5 lung cancers, 5 head & neck
cancers, and 5 brain metastases) was independently segmented using
the proposed system by five different operators (the three experts
mentioned above and two non-specialists). The result consisted of five
identical BTVs. Without the RG pre-segmentation descripted in Section
2.1, BTVs changed less than 6% among users using manual ROIs drawn
in the slice with the SUVmax

VOI by the five users in the above mentioned
sub-dataset. Changing more significant (up to 50%) occurred if the
users chose different PET slices among them to contour the lesion.

5. Discussion

PET quantification and segmentation are crucial for the accurate
interpretation of clinical PET images and are of foremost importance to
obtain operator-independent evaluations and results. The repeatability
of the BTV delineation may be ensured only by using computer-assisted
methods. For this reason, lesion delineation must be obtained using
algorithms able to yield an accurate segmentation with consequent
accurate calculation of parameters such as SUV, BTV, and TLG, mini-
mizing operator-dependence and increasing result repeatability.

The key novelty of the proposed approach is the integration of
different methodologies that have been appropriately combined and
adapted to the PET imaging to obtain a new, smart system for the de-
lineation of an operator independent BTV to be used for RTP or therapy
evaluation purposes. The system achieves a high degree of automation
without the need for any user-defined parameter.

First, we integrate the body-weighted SUV [51] in our system to pre-
process the uptake data of PET images. The SUV normalizes the voxel

Fig. 5. Linear regression of manually and automatically segmented tumour
volumes. The determination coefficient R2= 0.98 demonstrates high correla-
tion between them. The first-order coefficient 1.10 indicates that segmentation
slightly overestimates tumour volume. The constant offset of −2.5 indicates
that automatic segmentation may not identify small lesions (< 2.5ml).

Table 3
Performance level of the three manual segmentations and of the proposed automatic segmentation.

Score Score RT Score FU

Expert 1 95.76% ± 0.23(±0.27)[± 0.25] 95.17% ± 0.31(± 0.35)[± 0.33] 96.36% ± 0.41(± 0.46)[± 0.42]
Expert 2 87.41% ± 0.88(±1.00)[± 1.01] 84.89% ± 0.95(± 1.07)[± 1.12] 89.92% ± 0.82(± 0.93)[± 0.91]
Expert 3 89.84% ± 1.85(±2.09)[± 2.06] 87.94% ± 2.42(± 2.74)[± 2.71] 91.73% ± 1.28(± 1.45)[± 1.40]
Our System 90.68% ± 1.34(±1.52)[± 1.48] 90.80% ± 1.35(± 1.53)[± 1.49] 90.57% ± 1.34(± 1.51)[± 1.47]

Table 4
Mean Sensitivities, PPVs, DSCs, HDs, and MHDs for 10 lung cancer studies using
FDG-PET examinations are reported. Mean value, standard deviation (std), 95%
confidence interval (CI) and coefficient of variation (CV) are reported in the last
rows.

Lung
Cancer

Sensitivity [%] PPV [%] DSC [%] HD [voxels] MHD
[voxels]

#1 91.60% 81.70% 86.40% 2.49 1.60
#2 97.60% 82.80% 89.60% 1.98 1.39
#3 98.50% 71.60% 82.90% 2.59 2.09
#4 85.00% 85.00% 85.00% 1.08 0.83
#5 98.90% 83.20% 90.40% 1.48 0.72
#6 88.80% 77.20% 82.60% 1.69 0.84
#7 91.00% 73.60% 81.40% 1.14 0.48
#8 96.70% 78.40% 86.60% 1.25 0.91
#9 94.70% 76.30% 84.50% 2.60 0.67
#10 93.50% 76.60% 84.20% 2.38 0.60

Mean 93.63% 78.64% 85.36% 1.87 1.01
± std ±4.55% ±4.41% ±2.94% ±0.62 ±0.51
± CI (95%) ±2.82% ±2.73% ±1.82% ±0.38 ±0.32
± CV ±4.86% ±5.60% ±3.44% ±0.33 ±0.51

Table 5
Mean Sensitivities, PPVs, DSCs, HDs, and MHDs for 25 head & neck cancer
studies using FDG-PET examinations are reported. Mean value, standard de-
viation (std), 95% confidence interval (CI) and coefficient of variation (CV) are
reported in the last rows.

Neck & head
Cancer

Sensitivity [%] PPV [%] DSC [%] HD [voxels] MHD
[voxels]

#1 98.70% 81.30% 89.10% 1.46 0.43
#2 83.30% 89.70% 86.40% 1.00 0.69
#3 89.80% 76.20% 82.40% 1.07 0.74
#4 85.50% 94.60% 89.80% 0.85 0.59
#5 93.20% 74.80% 83.00% 1.17 0.36
#6 96.20% 81.30% 88.10% 1.42 1.41
#7 93.90% 89.90% 91.80% 1.19 1.18
#8 99.50% 71.80% 83.40% 2.79 0.60
#9 96.90% 78.80% 86.90% 2.46 1.37
#10 97.50% 77.10% 86.10% 2.59 0.72
#11 73.10% 90.50% 80.90% 1.00 0.71
#12 99.60% 73.70% 84.70% 1.40 0.69
#13 93.80% 73.80% 82.60% 1.03 0.94
#14 91.40% 86.50% 88.90% 1.00 0.78
#15 88.80% 74.60% 81.10% 2.78 2.28
#16 77.60% 84.90% 81.10% 1.07 1.01
#17 89.80% 86.30% 88.00% 1.14 0.75
#18 91.90% 87.00% 89.40% 0.90 0.81
#19 91.40% 80.00% 85.30% 1.37 1.27
#20 96.30% 83.90% 89.70% 0.90 1.16
#21 97.30% 80.70% 88.20% 1.88 1.98
#22 80.80% 95.10% 87.40% 0.94 1.07
#23 78.70% 92.50% 85.10% 0.93 1.00
#24 93.30% 70.00% 80.00% 1.33 1.52
#25 96.60% 84.30% 90.00% 0.99 0.58

Mean 91.00% 82.37% 85.98 1.39 0.99
± std ±7.33% ±7.30% ±3.40% ±0.61 ±0.46
± CI (95%) ±2.87% ±2.86% ±1.33% ±0.24 ±0.18
± CV ±8.05% ±8.86% ±3.95% ±0.44 ±0.47
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activity considering acquisition time, administered activity, and pa-
tient's weight. Others PET parameters (i.e., SUVlbm or SULpeak [2])
could be used rather than body-weighted SUV as well with minor
changes to the system that would still lead a convergent, fully

repeatable, and user independent segmentation. We use the body-
weighted SUV because it is the most common parameter used in our
nuclear medicine department.

Second, while the system still exploits an initial ROI provided by the
user to avoid false positive or critical conditions, an automatic pre-
segmentation process is used to compute a robust user independent ROI
in the vicinity of the user input. This is then automatically fed as input
into the detailed segmentation algorithm. Third, segmentation is per-
formed using a slice-by-slice marching approach based on the LAC
method appropriately modified to support PET images. And as final
feature a fully automatic stop condition is provided. Due to the high
level of automation for the whole process, the final results become
completely independent of variation in the initial user input, as con-
firmed by the inter operator segmentation test in Section 4.2.

The main reason to require the user to provide an initial ROI is
because the distribution of FDG is not limited to malignant tissue. FDG
enters the cells according to glucose transport mechanism. For this
reason, in order to avoid healthy but active structures where a high
radiotracer uptake is to be considered normal, the target lesions must
be highlighted by the operator. The region growing is used to “expand”
the initial user-provided manual segmentation (performed on one slice)
to a three-dimensional volume enclosing the anomalies of interest. We
chose region growing because it is able to identify a contour encircling
the tumour area starting from a single seed point (the voxel with
SUVmax

j ) always obtaining the same starting contour (Fig. 1e). The use of
alternative segmentation methods for the computation of the user in-
dependent ROI would lead to a slight BTV variation. However, the
identification of the hottest slice (the slice with SUVmax

VOI) in which to
compute the user independent ROI is mandatory to avoid a great
variability of the final segmentations (see Section 4.2). The proposed
pre-segmentation process used to identify the hottest slice and,

Table 6
Mean Sensitivities, PPVs, DSCs, HDs, and MHDs for 15 brain cancer studies
using MET-PET examinations are reported. Mean value, standard deviation
(std), 95% confidence interval (CI) and coefficient of variation (CV) are re-
ported in the last rows.

Brain
Cancer

Sensitivity [%] PPV [%] DSC [%] HD [voxels] MHD
[voxels]

#1 93.50% 89.90% 91.70% 0.62 1.06
#2 90.10% 78.60% 83.90% 1.33 1.14
#3 88.40% 82.80% 85.50% 1.54 0.97
#4 76.75% 99.18% 86.33% 0.58 0.61
#5 86.47% 95.89% 90.83% 0.58 0.56
#6 96.20% 75.60% 84.70% 1.91 1.18
#7 91.80% 79.50% 85.20% 2.37 1.22
#8 94.50% 84.70% 89.40% 0.79 0.85
#9 86.80% 83.30% 85.00% 1.24 1.05
#10 91.20% 88.70% 90.00% 1.40 0.93
#11 91.80% 82.90% 87.10% 1.54 0.71
#12 85.20% 97.00% 90.70% 1.38 0.59
#13 93.20% 90.30% 91.70% 1.54 1.07
#14 93.00% 84.70% 88.70% 1.81 1.72
#15 93.60% 85.80% 89.50% 0.65 0.57

Mean 90.17 86.60% 88.02 1.28 0.95
± std ±4.89% ±6.89% ±2.75% ±0.54 ± 0.32
± CI (95%) ±2.47% ±3.49% ±1.39% ±0.28 ± 0.16
± CV ±5.42% ±7.95% ±3.12% ±0.42 ± 0.33

Fig. 6. Three results achieved by the proposed segmentation method on PET images (lung cancer #2, head and neck cancer #25, and brain cancer #13) are reported
in figure (a, c, e), respectively. At the bottom right or left, the lesion regions are zoomed. The proposed segmentations (red contours) and the gold standards (black
contours) are superimposed. The three-dimensional reconstructions of the tumours are shown in figure (b, d, e): manual (yellow) and proposed (red) BTVs are
rendered with transparent surfaces to emphasize volume intersections. (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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consequently, to compute the user independent ROI is crucial to obtain
repeatable results.

Further, in the case of brain lesions, as reported in Ref. [16], a fully
automatic method can be implemented by taking advantage of the great
sensitivity and specificity of MET radiotracers in the discrimination
between healthy versus cancer. Hence initial user input, which we re-
quire in FDG-PET studies, could be completely avoided in brain studies.

Performance measurements of the proposed segmentation system
have been obtained by phantom experiments consisting of hot spheres
in a warm background. While such phantoms don't replicate all the
properties of real tissue, they nevertheless represent a useful tool to
assess common reference performances across different algorithms. One
of the main drawbacks of this validation is the plastic wall which se-
parates the spheres from the background. Indeed, PET image quantifi-
cation should be carried out in phantoms with inactive background to
reduce the cold wall effect [60]. Nevertheless, this condition is too
different from actual clinical conditions; the model proposed by Ref.
[60] may not be useful to test segmentation algorithms [64]. To ease
the problem, we insert hot spheres in a warm background. Another
drawback of the body phantom validation comes from the use of
homogeneous spheres. However, in our patient studies, almost all the
tumours are characterized by a fairly homogeneous distribution of
uptake. A single peak is generally detected on the histogram of seg-
mented lesions (see Section 4.2). In this context, therefore, segmenta-
tion performance using phantom experiments can be considered a sui-
table tool to judge the reliability of the method.

In particular, the proposed segmentation system showed high de-
gree of similarity (DSC and sensitivity greater than 90% for the spheres
with a diameter greater than 17mm) and provided better results in
minimizing the difference between actual and automated BTVs than the
other state-of-the-art methods.

Nevertheless, when lesion sizes are smaller than 2–3 times the
FWHM of the point spread function of the PET image resolution re-
constructed by the PET imaging system, the under-estimation of me-
tabolic activity due to PVE cannot be assumed to be negligible. The
separation of small oncological lesions from the background region is
still very challenging [65].

Concerning patient studies, knowledge of the ground truth is im-
possible to obtain while patients are still undergoing radiotherapy, and
unfortunately, the only valid ground truth for quantitative segmenta-
tion evaluation is obtained by histological investigations, in general
performed after that long radio-therapic cycles altered the cancer mass
morphology. Although histological specimen is used in some studies
[34,35], the approach may be problematic because irregular contrac-
tions can occur during tissue fixation. Consequently, manual delinea-
tion of three experts was used as a gold-standard. Nevertheless, the
manual BTV delineation is a challenging task even for expert physicians
in deciding which regions to include or exclude in the RTP. It is dif-
ferent between operators (for example, radiotherapy planning experts
tend to draw larger contours than nuclear medicine physicians and that

obviously has a strong impact on the resulting surrogate of truth). For
this reason, to assess the applicability of the proposed algorithms in a
clinical environment and variable conditions (radiotracers and body
districts), manual segmentations were used to produce a consolidated
reference (as suggested in Ref. [62]).

Fifty patients that had been referred for a diagnostic PET/CT scan
before radiotherapy treatments have been considered. Patients under-
went PET examinations with FDG or MET radiotracers because different
body districts have been considered (10 lung cancers, 25 head & neck
cancers and 15 brain metastases). Results show that the proposed seg-
mentation approach can be considered clinically feasible, since it has
been integrated in the current clinical practice. In addition, auto-
matically segmented tumour volumes showed high agreement with the
manual segmentations (R2=0.98). Considering that the proposed
system has been implemented in the Matlab R2016a environment and
comfortably runs on a standard iMac machine, a qualified IT staff could
integrate the system in the PET workstations, as a built-in PET tool for
use in medical environment, with a minimum effort. This solution could
significantly improve imaging workflow allowing clinicians to include
BTV information into the RTP, so obtaining a therapy customized on
the patient. In addition, while in our study the user initial input was
provided by mouse, user input experience could be easily enhanced
using alternative input methods (e.g. stylus, touch-screen, etc.), without
affecting the result.

Finally, the proposed approach is different with respect to joint
segmentation approaches (PET-CT-MR). The assumption of a “ground
truth” joint volume, defined on fused multimodal imaging data is
sometimes misleading. The assumption that a one-to-one correspon-
dence between metabolic and anatomical regions exists is unrealistic
[38]. Lesions may present smaller uptake regions compared to anato-
mical region. In the same way, the PET lesion may show additional area
compared to lesion boundaries in CT or MR images. Since different
imaging modalities could convey different information, multimodal
segmentation may actually compromise the quality of segmentation
producing disagreement between anatomical and metabolic bound-
aries. As a result, the tumour volumes defined on PET and on CT or MRI
could be highly different [9]. For this reason, multimodal studies must
be combined in a smart fashion with a customization/adaptation of the
segmentation method according to the specific clinical scenario. For
example, in the clinical case shown in Ref. [66], semi-automatic BTV
radically changed the RTP because uptake is found outside the anato-
mical volume in an involved lymph node which is not visible in CT
images. However, the extraction of anatomical structures by CT ex-
amination can still convey useful information to locate health tissues
(i.e. brain, heart, bladder, and kidneys) so to avoid ambiguities and
false positives and removing the confounding contribution of FDG-avid
normal tissues from the analysis. In addition, further investigations will
be carried out to assess the prognostic usefulness and long-term clinical
impact of the prosed system, comparing the extracted BTV with clinical
outcomes, progression-free survival and overall survival.

Table 7
Sensitivities, PPVs, DSCs and HDs for cancer studies using the proposed system, original LAC and RW methods.

Cancer Sensitivity [Mean ± std] PPV [Mean ± std] DSC [Mean ± std] HD [Mean ± std]

Our System
Lung 93.63 ± 4.55% 78.64 ± 4.41% 85.36 ± 2.94% 1.87 ± 0.62
Head & Neck 91.00 ± 7.33% 82.37 ± 7.30% 85.98 ± 3.40% 1.39 ± 0.61
Brain 90.17 ± 4.89% 86.60 ± 6.89% 88.02 ± 2.75% 1.28 ± 0.54

Original LAC
Lung 92.68 ± 5.67% 71.92 ± 12.36% 80.33 ± 9.51% 3.29 ± 0.74
Head & Neck 80.32 ± 10.82% 83.88 ± 12.06% 78.73 ± 6.68% 2.81 ± 0.49
Brain 91.16 ± 6.16% 77.38 ± 13.89% 83.55 ± 9.03% 2.88 ± 0.54

RW
Lung 92.55 ± 5.66% 74.72 ± 7.44% 82.03 ± 6.52% 2.29 ± 0.77
Head & Neck 79.03 ± 7.29% 84.58 ± 9.57% 82.59 ± 4.95% 1.41 ± 0.40
Brain 88.12 ± 8.36% 86.68 ± 3.43% 86.75 ± 5.14% 1.31 ± 0.64
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6. Conclusions

In the proposed study, several methodologies have been combined
to obtain a system for the smart segmentation of PET volumes. The key
advantages of the presented system are that:

• segmentation is performed after converting the PET data in SUVs,
which convey patient-specific functional information.

• based on minimal user input (i.e. a rough manual delineation on just
one PET slice), a pre-segmentation step identifies the most relevant
PET slice and provides an initial properly localized contouring to be
used for a subsequent segmentation using LAC.

• a more detailed segmentation process based on LAC and performed
following a slice-by-slice based approach provides the flexibility
necessary to segment cancer with very irregular shapes.

• an automatic stopping condition is implemented.

As a result, the presented algorithm produces cancer segmentations
which are completely independent from variations in the input pro-
vided by the user. Such an input is minimal and, since subsequent
processing steps are fully automatized, no further interaction is re-
quired. Inter-operator variations in the initial input still result in
identical segmentations.

Phantom studies were used to verify the effectiveness of the algo-
rithm on well-known, sharp-edged targets. Comparison of the results
with the output of multiple alternative algorithms was performed. A
large dataset of clinical cases was used to investigate the performance
of the system as compared with selected, state of the art alternatives.
Such comparison was performed on a statistical basis commonly used
and considered as a reference practice in the field. The overall and final
conclusion is that this system could easily comply with the demands of
everyday clinical activity and could be used to extract in-vivo bio-
markers of cancer in treatment response evaluation or to enhance the
dose delivery in radiotherapy treatment, in order to avoid cancer re-
currence.
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Appendix

In Eq. (3), the radius parameter l has been determined to provide the best performance in our dataset by trial and error strategy.
When using energies based on local features, the radius defining the local neighbourhood (number of pixels comprised at its edge) defines how

sensitive to local features the segmentation is meant to be. By tuning this parameter, one can choose the degree to which local and global behaviour
are blend. A small radius behaves as an edge detector based on the statistics of the pixels immediately adjacent to one being investigated. Vice versa,
if the radius is let to grow to includes the entire image, then the local region statistics will coincide exactly with the global statistics, and the
behaviour would be the same as performing a global region-based flow.

One aspect that must be considered for the choice of the radius is the order of magnitude of the tumour size and the amount of surrounding noise.
When attempting to capture tumours that are very small with nearby noise, as is the case in our study, a small localization radius is advisable.

In our preliminary experiments, this parameter ranged from 3 (very local, small compared to tumour size) to 9 (more global, size large when
compared to the features of the tumour edge). To our opinion the selected range covered well enough the values of interest of this parameter with
respect to the data at hand. After our testing, the best value empirically determined was “3”.

Fig. A1 shows an example in the head/neck area segmented using four different local radii (3, 5, 7, and 9).

Fig. A1. The figure shows the same initial contour on the PET image (blue line) and resulting segmentations using localizing radius 3 (a), 5 (b), 7 (c), and 9 (d)
respectively (gold standard and resulting segmentations are shown as yellow and red lines in each image, respectively).

On the one hand (and as expected), the result suggests a small degradation of the result as the radius increases (i.e. as the energy becomes more
global). On the other hand, segmentations were only slightly influenced by the radius.

We therefore selected the most suitable value for the data at hand. To practical purposes this aspect does not impact the automatism of the
system.
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