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Abstract 

Adenocarcinoma in female non-smokers is an under-explored subgroup of non-small cell lung 

cancer (NSCLC) where the molecular mechanism and genetic risk factors remain unclear. We 

analyzed the protein profiles of plasma samples of 45 patients in this subgroup and 60 non-

cancer subjects using surface-enhanced laser desorption/ionization time-of-fight mass 

spectrometry. Among 85 peaks of mass spectra, the differential expression analysis identified 15 

markers based on False Discovery Rate control and the Digital Wavelet Transforms further 

selected a cluster of 6 markers that were consistently observed at multiple scales of mass-charge 

ratios. This marker cluster, corresponding to 7 unique proteins, was able to distinguish the 
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female non-smokers with adenocarcinoma from non-cancer subjects with a very high accuracy, 

87.6%. We also predicted the role of competing endogenous RNAs (ceRNAs) in 3 out of these 7 

proteins. It was found in many other studies that these ceRNAs and their targeting microRNAs 

(miRNAs), miR-206 and miR-613, were significantly associated with NSCLC. This study paves 

a crucial path for further investigating the genetic markers and molecular mechanism of this 

special NSCLC subgroup. 
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Introduction 

With high mortality rate, lung cancer is the leading cause of cancer deaths worldwide and over 

80% of cases are non-small cell lung cancer (NSCLC) [1]. According to World Health 

Organization (WHO), the global cancer incidence and mortality rate of lung cancer in men are 

three times of that in women and smoking is a key risk factor [2]. Adenocarcinoma is classified 

as one of several NSCLC, which constitutes about 40% of lung cancers [3]. Interestingly, 

adenocarcinoma is more frequently observed in female and non-smokers [4,5]. In East Asia, 

about half of the female patients with adenocarcinoma never smoke, forming an under-explored 

lung cancer subgroup [6]. To explore this interesting subgroup, a recent study found that the 

protein profile of lung tumor from female non-smoker with adenocarcinoma was differentially 

expressed when compared with the adjacent normal tissue [6]. 



Proteins act as a better proxy for biomolecular activity than RNAs because they are the actual 

effectors directly interacting with the other proteins, RNAs and DNAs. Moreover, proteins could 

be extracellular, intracellular or transmembrane so that they can be detected in various body 

fluids, like blood plasma, whose collection is non-invasive [7]. Proteomics is the study of 

hundreds or thousands of proteins and their interactions in biological sample through massive 

detection and quantification methods [8]. The protein characteristics and quantity profiles of 

patients’ samples are very useful for the early detection, diagnosis, monitoring and theranosis of 

disease, and the drug target identification [9]. Mass spectrometry (MS) is a high throughput 

technology that makes use of both advanced analytical methods and bioinformatics to study the 

biological role of proteins in diseases [6]. The matrix-assisted laser desorption/ionization 

(MALDI) MS and its variants, surface-enhanced laser desorption/ionization time-of-fight 

(SELDI-TOF) MS and matrix assisted laser desorption and ionization, time-of-flight (MALDI-

TOF) MS, have been widely used for generating the protein profiles of tissue, serum and urine 

samples from patients. Among these platforms, SELDI-TOF MS is the most suitable to analyze 

body fluids [10]. Proteinchip arrays represent a powerful tool of MS that reduces sample 

complexity using selective capture strategies and increases the sensitivity in detecting the low-

abundance proteins.  

In MS analysis, proteins are identified by time-of-flight (TOF), which can be converted to the 

corresponding mass to charge ratio (m/z), and their concentrations in the processed sample are 

reflected by the signal intensities. MS generates a mass spectrum as output showing the signal 

intensities across different m/z values [7]. The analysis of mass spectrum focuses on fitting peaks 

that represent meaningful proteomic characteristics. The most straightforward strategy, proposed 

by Yasui et al., is to seek for the local maxima of a spectrum, each of which represents an m/z 



point with higher intensity than the neighboring points [11]. Making use of some filtering criteria, 

such as signal-to-noise ratio, intensity and area under the fitted curve, these maxima could be 

filtered to exclude the noise and increase the likelihood for corresponding to peptides [12]. Some 

other studies proposed to transform the mass spectrum to the wavelet coefficient space and look 

for clusters of wavelet coefficients with high values on similar position for different scales [13]. 

All the above-mentioned methods emphasize on pre-processing the spectrum using mathematical 

approach without considering the relatedness of peaks with disease and molecular regulation. 

The identified peaks would be more meaningful if they represent clusters of m/z points that 

differentiate disease and non-disease cases effectively. 

Although many studies have analyzed the tumor cells for lung cancer diagnosis, the proteomics 

data of plasma is rarely considered and the analytical approach has not been extensively explored 

and validated. This study is aimed to propose the analytical method that transforms a SELDI-

TOF spectrum to wavelet coefficient profiles at multiple scales using digital wavelet transform 

(DWT), filters the wavelet coefficients based on the differential expression analysis and 

identifies clusters, which could accurately distinguish the plasma samples from non-smoking 

women with lung adenocarcinoma and non-cancer controls. 

As a class of endogenous and non-coding RNA short fragments of 21-25 nucleotides long in 

mature forms, miRNAs could post-transcriptionally regulate the expression of their target genes 

(including oncogenes or tumor suppressor genes) through the binding to the miRNA response 

elements (MREs) of their target messenger RNAs (mRNAs). MREs represent the sequence 

motifs in 3’-untranslated region (3’-UTR) of mRNAs that complement with the targeting 

miRNAs [14]. 



Competing endogenous RNAs (ceRNAs) are RNA transcripts that interact indirectly by sharing 

the same MREs and competing for shared miRNAs. An up-regulated ceRNA attracts the 

targeting miRNAs and keeps them away from another ceRNA whose expression is indirectly 

promoted [14]. The co-regulation of ceRNAs paves the undiscovered crosstalk cascades in the 

cancer signaling pathway. It was shown that PTEN and its putative ceRNAs are co-regulated in 

prostate cancer and glioblastoma [15]. The ceRNA crosstalk depends heavily on the 

miRNA:target concentration ratio and is thus mediated by the targeting miRNAs [16]. 

Identification of miRNA regulatory modules consisting of miRNAs and the proteins of their 

target ceRNAs plays an important role for discovering the new molecular mechanism in cancer. 

 

Methods 

Proteomic Analysis of Blood Samples 

Before the enrolment, informed written consent was obtained from all subjects. We followed the 

principles of the Declaration of Helsinki. We randomly selected 45 non-smoking females with 

adenocarcinoma (cancer group) from pretreatment patients of QEH and recruited 60 non-cancer 

controls (non-cancer group). Plasma samples were collected from these two groups of subjects. 

The non-cancer group consists of 30 lung disease patients without known neoplastic tumor and 

30 healthy volunteers free of any known acute or chronic illness. We fractionated and profiled 

the plasma samples with the SELDI-TOF-MS. The array was analyzed on a Proteinchip 

PCS4000 Reader (Ciphergen Biosystems) with acquisition up to 200 kDa and the m/z spectrum 

was generated by averaging a total of 338 laser shots at an intensity of 195. The proteomic 

profile data from fractionation with pH 9 and cationic CM10 chip was considered in this study. 



Digital Wavelet Transform 

The m/z values of mass spectrum were rounded to the nearest integers and fitted to a discrete 

integer domain from 1 to 2k where k was the lowest integer such that all the m/z values are 

bounded by 2k. For each plasma sample, the level 0 spectrum was constructed by filling the 

intensities for available m/z values and zeros for the remaining. Digital wavelet transforms 

(DWTs) were performed on the level 0 spectrum for each plasma sample. Daubechies wavelet, 

db1, which is orthogonal, biorthogonal and symmetry filter with length 2, was used for DWTs. A 

profile of approximation coefficients was collected for each time of DWT. The approximation 

profile collected after the ith DWT is regarded as the level i spectrum. 

Marker Identification 

To identify the markers (m/z values) that differentiate the female non-smokers with 

adenocarcinoma from the non-cancer controls, t-test was performed on the intensities between 

two groups for each peak of the spectrum. Among the peaks of mass spectrum, p-values of 

multiple t-tests were sorted in ascending order and False Discovery Rates (FDRs) were 

calculated. The markers are regarded as significant if they satisfy the criterion FDR<0.05. The 

same analysis was performed on each wavelet coefficient of the approximation profiles at each 

level. 

Logistic Regression and Receiver-Operating Characteristics (ROC) Analyses 

The following logistic regression model generates the value of logit based on the intensities of n 

identified markers. 

 



where Ti and ai represent the intensity of the nth marker, Mn and the associated coefficient; a0 is a 

constant; logit>0 (0) indicates the probability of the cancer is higher (lower) than that of the 

non-cancer. The cancer group is referred to the female non-smokers with adenocarcinoma and 

the non-cancer group, the non-cancer controls. 

The values of logit/marker were sorted in ascending order and cut-off levels were set between 

any two consecutive values. For each cut-off level, sensitivity and specificity were calculated by 

checking the values of logit/marker against the actual outcome. Fitted ROC curves were plotted 

using the pairs of calculated sensitivity and specificity. The discriminatory abilities of logit and 

individual markers were evaluated and compared using the areas under the curves (AUC). 

Protein Prediction 

For n significant markers, incremental lists of markers, {M1}, {M1, M2}, {M1, M2, M3}, …, 

{M1, …, Mn}, were generated and entered to Mascot MS/MS Ions Search (Matrix Science, 

publicly available at http://www.matrixscience.com/) one-by-one. The search results showed the 

protein scores of predicted proteins, corresponding to the markers. Based on p = 10-S/10, a protein 

score, S, can be converted to p-value, which indicates the significance of prediction with p<0.05. 

Only significant prediction was considered for further analysis. 

MiRNA Target Prediction 

We searched for the miRNAs targeting the mRNAs of the predicted proteins using three 

representative resources: TargetScan, miRDB, and MicroCosm-Targets [17-21]. The candidate 

miRNAs were selected based on the support of at least two out of these three databases, in order 

to improve the prediction accuracy. 

http://www.matrixscience.com/


 

Results 

Plasma Protein Profiling 

On the CM10 proteinchips, 82 peaks of m/z values from 1008.94 to 229279 were detected in the 

pH 9 fraction. A domain of integer m/z values from 1 to 262144 (=218) was formed. After 

rounding the m/z values to the nearest integer and fitting the intensities of these 82 peaks to this 

domain and the rest with zero intensity, the level 0 spectrum was constructed for each plasma 

sample. In Figure 1(a-d), the points of the lowest panel show the level 0 spectra averaged over 

cancer and non-cancer groups in the m/z ranges of 2,000-33,000 and 7,600-9,800 respectively. 

Digital Wavelet Transform 

Digital wavelet transforms (DWTs) were performed on the level 0 spectrum for each plasma 

sample using Daubechies wavelet, db1. DWTs were performed for 10 times and the 

approximation profiles were collected after each DWT. The level i spectrum is referred to the 

approximation profile collected after the ith DWT. In Figure 1(a-d), the curves show the levels 7-

10 spectra averaged over cancer and non-cancer groups in the m/z ranges of 2000-33000 and 

7600-9800 respectively. 

Peaks Associated with Adenocarcinoma in Female Non-smokers 

To compare the intensities between cancer and non-cancer groups, t-test was performed for each 

peak and the significance was indicated by the value of p. After sorting p in ascending order 

among 82 peaks, FDR was calculated for each m/z value as shown in Table 1. With the criterion 

FDR<0.05, we identified 15 m/z values, whose intensities were significantly different between 



female non-smokers with adenocarcinoma and healthy controls. We also performed t-test on 

each wavelet coefficient of the approximation profiles at each level. 

Cluster of Approximation Coefficients 

The t-test pvalues for the markers, given by the original peaks or wavelet coefficients at levels 0-

10, were transformed to the values, log(1/p). The magnitude of log(1/p) directly reflects the 

significance level of marker’s association with adenocarcinoma in female non-smokers. In 

Figure 1(e,f), a cluster of six markers was consistently observed in the m/z range, 7600-9300, at 

levels 0, 7-9. Profiles at levels 1-6 exhibiting the same cluster were not shown here for simplicity. 

These six markers, namely M1, …, M6, are highlighted and in bold font in Table 1. At level 10, 

the clusters started to merge in a global scale and the newly merged cluster centered at m/z value, 

7600, covering only one of the 15 significant peaks identified by FDR criterion. 

Discriminating Power of Marker Cluster 

Logistic regression analysis of the markers, M1, …, M6, identified the following model. 

 

where T1, …, T6 represent the intensities of markers, M1, …, M6 respectively. In Figure 2, the 

ROC curves of logit, M1 and M4 are plotted and compared. It was found that the AUC of logit, 

0.876, was substantially higher than that of M1, 0.787, and M4, 0.714. 

Predicted Protein and Targeting MiRNAs 

The incremental lists of six markers were entered to Mascot MS/MS Ions Search one-by-one. 

The scores and p-values of the search results are shown in Table 2. Only the entries of M1 and 



M2 gave significant prediction results (p = 0.019953 and 0.039811 respectively), corresponding 

to 7 unique proteins. The predicted proteins’ IDs (gene symbols) are EAW79013.1 (SLC25A36), 

NP_001305698.1 (MRPL14), CAD62325.1 (EFCAB11), NP_001310608.1 (NRSN2), 

XP_016885033.1 (SPANXN4), EAW95336.1 (LIMS2), and AFI99088.1 (TRIM77). Through 

database search, we found 4 miRNAs concurrently targeting mRNAs of 3 predicted proteins. 

The regulatory modules are illustrated in Figure 3. 

 

Discussion 

Mass spectrometry generates high-dimensional data where the sample size is relatively small 

when it is used for disease detection and biomarker identification. A study proposed an approach 

for extracting the “common” peaks approximated by Gaussian kernels before the classification 

using machine learning method, AdaBoost [22]. Such approach reduced the dimension of feature 

space substantially but it cannot guarantee that the eliminated features are disease-irrelevant. On 

the other hand, False Discovery Rate (FDR) is widely used for selecting multiple disease-

relevant features whilst controlling the inflation of false positives due to multiple comparisons. 

This study applied FDR control to shortlist 15 peaks of mass spectrum that significantly 

differentiate the female non-smokers with adenocarcinoma and the non-cancer subjects. Some of 

the significant peaks may be statistical artifacts caused by m/z axis shift of peaks [11]. DWT was 

used by Randolph and Yasui to represent the mass spectra and align the peaks in multiple scales. 

However, it is questionable whether the aligned peaks is biologically meaningful [23]. Therefore, 

we further performed the Digital Wavelet Transforms (DWTs) to obtain the approximation 

profiles and analyze the differential expression at multiple scales of m/z domain. The merit of the 



proposed method is to determine the “common” peaks based on the consistent pattern of log(1/p) 

profiles resulting from the differential expression analysis of multi-scale approximation profiles. 

We observed consistently across 10 scales, from level 0 (original spectrum) to level 9, a pattern 

covering 6 peaks of the 15 shortlisted. Compared with individual marker features, the logistic 

regression model combining these 6 marker features exhibited superior ability, 0.876, for 

discriminating the female non-smokers with adenocarcinoma from the non-cancer subjects. 

Protein search of these 6 markers resulted in 7 unique proteins. The potential ceRNA role was 

found in 3 out of these 7 proteins, whose gene IDs are SLC25A36, EFCAB11 and NRSN2. A 

study developed an algorithm for exploring the impact of copy number alterations on gene 

expression and found SLC25A36 as one of the genes with recurrent copy number gains in 

NSCLC [24]. Another study conducted a genome-wide analysis of gene copy number gains and 

corresponding gene expression levels in NSCLC patients. SLC25A36 is one of the genes 

exhibiting significant association (r>0.7) between the gene copy number gain and expression 

level [25]. A genetic factor investigation was conducted on 17 members of a three-generation 

family with lung cancer susceptibility using whole-exome sequencing. EFCAB11 hosts one of 

71 germline mutations that were found in three affected family members but not in the 

unaffected [26]. It was found in the search of Oncomine Database that NRSN2 was highly 

expressed in NSCLC compared to normal lung tissues. The overexpression of NRSN2 was also 

shown in 18 tumor tissues compared with adjacent tissues in NSCLC patients. It was also found 

in the cell line experiment that the NSCLC cell growth was promoted by NRSN2 through 

PI3K/Akt/mTOR pathway [27]. 

We predicted that the ceRNAs of SLC25A36, EFCAB11 and NRSN2 were targeted by miR-206, 

miR-613, miR-6766-5p and miR-6756-5p. It was found in cell line experiment that miR-206 and 



miR-613 as single agents or in combination could sensitize the cisplatin-resistant lung cancer 

cells to cisplatin treatment through the suppression of 6-phosphogluconate dehydrogenase [28]. 

In 76.8 % of 56 primary NSCLC tissues, down-regulation of miR-613 was found when 

compared to the adjacent tissues. It was also observed that the miR-613 mimic induced cell cycle 

arrest and reduced cell viability and colony formation in NSCLC cell culture, and inhibited 

tumor growth in xenograft model [29]. To the best of our knowledge, the association of miR-

6766-5p or miR-6756-5p with cancer has not been reported in the other studies. A meta-analysis 

was performed on 2.83 billion raw reads in 737 mouse and human small RNA data sets. The 

researchers confidently annotated 240 human splicing-derived miRNAs, the vast majority of 

which are novel genes, including two hosting miR-6766-5p or miR-6756-5p [30]. In a study 

differentiating  429 breast cancer patients from 895 healthy controls, miR-6756-5p is combined 

with miR-1246 and miR-8073 to form a neural network cascade model, which detected breast 

cancer with accuracy, 97.1% [31]. 

Contemporary lung cancer research has distinguished itself from the traditional one with the 

unprecedentedly large amount of data and tremendous diagnostic and therapeutic innovations. 

Data are currently generated in high-throughput fashion with the integration and application of 

genomics, proteomics, metabolomics and bioinformatics, each of which plays an essential role 

for molecular biomarker discovery. High-throughput mass spectrometry facilitates better 

understanding of the disease, including its diagnosis, monitoring, treatment and prognostics. In 

the era of molecular targeted therapy, specific treatment to the potential target using technologies, 

such as immunotherapy and RNAi, has been translated from bench to bedside application and 

thus makes molecular biomarker discovery more meaningful for lung cancer management [32]. 

The findings of this study could help identifying the novel genetic risk factors, including 



ceRNAs and non-coding miRNAs, of an under-explored subgroup of non-small cell lung cancer 

representing adenocarcinoma in female non-smokers. 
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Figure 1 (a,c,e) Analytical results in the range of m/z ratio 2000-33000. (b,d,f) Analytical 

results in the range of m/z ratio 7600-9800. (a-d) Points at level 0 represent original mass 

spectrum and the curves at levels 7-10 represent the approximation profiles obtained by DWTs 

for 7-10 times respectively. (a,b) Intensities are averaged over plasma samples of female non-

smokers with adenocarcinoma (cancer group). (c,d) Intensities are averaged over plasma samples 

of non-cancer controls (non-cancer group). (e,f) The value of log(1/p) against m/z value, where p 

represents the p-value of t-test comparing cancer and non-cancer groups. 



 

Table 1 The first 15 Peaks selected by the criterion, FDR<0.05, from the list in ascending 

order of p value. The cluster concurrently supported by levels 7-9 approximation profiles covers 

six of these peaks, M1, …, M6 (highlighted and in bold font). 

Marker m/z p FDR 
M1 8608.438 4.13x10-9 1.78x10-7 

M2 9146.840 2.12x10-7 4.56x10-6 

M3 8942.507 1.01x10-6 1.45x10-5 

M7 4468.357 1.07x10-5 0.000115 

M8 4306.476 2.37x10-5 0.000204 

M9 14733.68 3.89E-05 0.000279 

M4 8826.615 0.000102 0.000627 

M5 8133.093 0.000398 0.002142 

M10 7465.883 0.001361 0.006511 

M11 17230.83 0.001888 0.008129 

M12 9627.812 0.002423 0.009484 

M13 2028.677 0.008516 0.028204 

M14 1502.769 0.007884 0.028287 

M15 1900.81 0.010255 0.031537 

M6 7945.342 0.016744 0.04806 

 

 

 

Figure 2 Fitted ROC curves and AUCs of M1 (dash dotted), M4 (dotted) and logit 

combining M1, …, M6 (solid). 



 

Table 2 Summary of protein search of six markers 

Entry 
Number of 

Proteins Score p-value 

M1 12 17 0.019953 

M1, M2 12 14 0.039811 

M1, M2, M3 12 12 0.063096 

M1, M2, M3, M4 12 11 0.079433 

M1, M2, M3, M4, M5 13 10 0.100000 

M1, M2, M3, M4, M5, M6 12 9 0.125893 

 

 

 

Figure 3 MiRNA regulatory modules 

 

 

 

 




