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Abstract

microRNAs (miRNAs) functioning in gene silencing have been associated with cancer 

progression. However, common abnormal miRNA expression patterns and their potential roles in 

cancer have not yet been evaluated. To account for individual differences between patients, we 

retrieved miRNA sequencing data for 575 patients with both tumor and adjacent nontumorous 

tissues from 14 cancer types from The Cancer Genome Atlas (TCGA). We then performed 

differential expression analysis using DESeq2 and edgeR. Results showed that cancer types can be 

grouped based on the distribution of miRNAs with different expression patterns between tumor 

and non-tumor samples. We found 81 significantly differentially expressed miRNAs 

(SDEmiRNAs) in a single cancer. We also found 21 key SDEmiRNAs (nine over-expressed and 12 

under-expressed) associated with at least eight cancers each and enriched in more than 60% of 

patients per cancer, including four newly identified SDEmiRNAs (hsa-mir-4746, hsa-mir-3648, 

hsa-mir-3687, and hsa-mir-1269a). The downstream effects of these 21 SDEmiRNAs on cellular 

function were evaluated through enrichment and pathway analysis of 7,186 protein-coding gene 

targets mined from literature reports of differential expression of miRNAs in cancer. This analysis 

enables identification of SDEmiRNA functional similarity in cell proliferation control across a 
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wide range of cancers, and assembly of common regulatory networks over cancer-related 

pathways. These findings were validated by construction of a regulatory network in the PI3K 

pathway. This study provides evidence for the value of further analysis of SDEmiRNAs as 

potential biomarkers and therapeutic targets for cancer diagnosis and treatment.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNAs with two forms, the premature miRNA 

(length 50–125 bp) and the processed, mature form (length 18–24 bp) [1]. miRNAs function 

in gene silencing by binding to mRNAs, causing either mRNA destabilization or inhibition 

of translation [2]. From the beginning of the 21st century, pioneer researchers have 

increasingly catalogued the close relationship between miRNAs and cancer development. 

For example, Calin et al. [3] discovered the deletion or down-regulation of miR15/miR16 in 

chronic lymphocytic leukemia, Takamizawa et al. [4] showed under-expressed hsa-let-7 is 

related to a lower survival rate in lung cancer, Chan et al. [5] knocked down hsa-mir-21 in 

glioblastoma cells which activated apoptosis, and Li et al. [6] found hsa-mir-10b enabled 

cell metastasis in breast cancer. These studies not only laid the foundation for a number of 

studies on the roles of these miRNAs in different cancer types, but also paved the way to the 

increasing identification of cancerassociated miRNAs [7].

Furthermore, it is believed that there are significantly fewer known human miRNAs (1,881 

premature and 2,588 mature in miRBase as of 2016 [1]) than total mRNAs because each 

miRNA has multiple target mRNAs. Due to this one-to-many relationship, studying miRNA 

expression profiles could contribute more efficiently to construction of the molecular 

regulatory network as a whole, especially in characterizing cancer-associated regulation of 

molecular pathways or biological processes. miRNAs can be classified as either tumor 

suppressors or oncogenes (oncomirs) according to their expression profiles in cancer [8]. In 

breast cancer, at least 20 oncogenic miRNAs or cluster families have been identified to 

promote cell proliferation, invasion, migration, or angiogenesis [9]. Cluster families are 

groups of several miRNAs transcribed together and co-expressed. Similarly, more than 30 

tumor suppressive miRNAs or cluster families have been observed to play a role in cell 

apoptosis and negative control of cell proliferation or migration [9]. In cancer metastasis, 

these miRNAs can change the expression of genes essential for cellular homeostasis and for 

robustness of cell fate decisions, often through various signaling pathways [10]. Therefore, 

to gain a comprehensive view of the cancer landscape, it is imperative to characterize 

miRNAs on a large scale and integrate evidence that has been observed across multiple 

cancer types to build more inclusive regulatory networks.

In large-scale studies, roles of miRNAs have been found to be important in cancer diagnosis, 

prognosis, and therapy for multiple cancer types [10–12]. Several computational studies 

have also predicted the networks of miRNAs in human diseases, including cancers, based on 
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either machine learning methods or similarity strategies [13, 14]. Each cancer type has a 

unique miRNA expression signature that can be classified into different prognostic groups 

[15]. With an increasing number of studies about cancer incidence, there has been a 

corresponding increase in observations of tumors with different underlying molecular 

mechanisms even within a single cancer type [16, 17]. Cancer subtypes can also be 

identified by miRNA expression profiling, as in the case of non-small cell lung cancer where 

miRNAs have classified three subtypes by different driving factors (ALK, EGFR, and 

KRAS) [18]. The diagnostic and prognostic roles of miRNAs further indicate their potential 

as therapeutic targets and as candidates for clinical trials [19]. Recently, miRNAs have been 

gradually introduced into personalized medicine approaches for cancer or other disease 

therapies [20, 21]. Based on the apparent importance of miRNAs in cancer, a number of 

studies have been conducted on miRNA expression profiles in which statistical analysis have 

been used to determine changes between disease and control samples to characterize cancer-

specific miRNAs in one or two cancers. However, pan-cancer analysis of miRNA expression 

has not been explored to identify similarity and differences across multiple cancers.

With the introduction of newer, more sensitive procedures in library sample preparation, 

accompanied by decreasing costs of next-generation sequencing (NGS) methods [22], 

researchers can now acquire a comprehensive miRNA abundance profiling through deep 

sequencing [23], despite known complications like low abundant miRNAs and miRNA 

processing complexity. Several normalization methods for miRNA sequencing (miRNA-seq) 

data have been widely used in previous studies [24, 25], including edgeR (Trimmed Mean of 

M values, TMM) [26] and DESeq [27]. In this study, we performed differential expression 

analysis by both DESeq2 [28] and edgeR [26] for paired miRNA-seq data (tumor and 

surrounding nontumorous tissues) from The Cancer Genome Atlas (TCGA: http://

cancergenome.nih.gov;https://portal.gdc.cancer.gov/), following the methods described by 

Yang S et al. [29] and used in the study of Metpally RP et al. [22].

Although previous studies have demonstrated critical roles of miRNAs in the prognosis of 

cancer types and subtypes, our research singled out key miRNAs observed to have 

significantly differential expression (SDEmiRNAs) for 14 TCGA cancer types 

independently. The distribution of these SDEmiRNAs with different expression trends 

enables us to group the 14 cancers and identify different potential developmental 

mechanisms of each cancer.Comparing the expression profiles of these SDEmiRNAs in 

individual cancer types, we were able to compile a list of miRNAs which are significantly 

differentially expressed in individual cancers. These unique SDEmiRNAs specific to one 

cancer could be considered biomarkers of each respective cancer, and may influence patient 

survival rate, suggesting roles as drivers. We also identified a subset of key SDEmiRNAs 

that are significantly over- or under-expressed with high patient frequencies in at least eight 

cancer types (over-expression implies functional up-regulation). From the functional and 

enrichment analyses of their cancer-related target genes and pathways, we find that these 

SDEmiRNAs might be common functional and executive factors promoting cancer 

development via similar molecular mechanisms across multiple cancers. As an example, we 

constructed common regulatory networks of several SDEmiRNAs in signaling pathways 

across different cancer types, despite great differences among their target genes in multiple 

tissues. Notably, our study proposes that some identified SDEmiRNAs that are barely 
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studied in cancer development due to their relatively low expression levels have been found 

to be significantly differentially expressed in a wide range of cancer types, showing their 

potential to play vital roles in cancer development.

Thus, this study evaluates the expression profiles of human miRNAs in 14 cancer types, 

investigates the roles of individual SDEmiRNAs to cancer types where they have not 

previously been studied, proposes potential driver miRNAs in both individual and multiple 

cancers, classifies the types of functions of key SDEmiRNAs in different tissues according 

to a narrow subset of cellular molecular mechanisms, and, therefore, provides a means for 

better discovery of cancer development mechanisms that could improve downstream clinical 

studies by prioritizing miRNA and targets for translational study. Results are integrated in 

the open-source BioXpress v3.0 (https://hive.biochemistry.gwu.edu/bioxpress) to support 

further analysis.

Results and Discussion

Data collection and overall evaluation before differential expression analysis

The TCGA project provides a comprehensive database with a unified data analysis pipeline 

for collecting and analyzing samples. We were able to collect tumor-only expression data for 

1,904 miRNAs in 32 TCGA/ICGC cancer types generated by the HiSeq platform (7,994 

TCGA patients and 168 ICGC patients) and 1,668 miRNAs in 12 TCGA cancer types 

generated by Genome Analyzer (1,439 TCGA patients), from a total of 9,601 patients. From 

these datasets, 22 TCGA cancer types contained paired data (tumor data with matched 

adjacent non-tumorous data) from the HiSeq platform: we set a threshold for patient counts 

(greater than 10, covering more than 95% of total patients with paired data), leaving 14 

cancer types to be used in further analysis (BLCA, BRCA, PRAD, STAD, KIRP, KIRC, 

KICH, LUAD, LUSC, LIHC, THCA, ESCA, UCEC, and HNSC – please see Table 1 for full 

cancer names). These cancer types included a total of 575 TCGA-only patients (1,152 paired 

samples) with an average of 1,393 expressed miRNAs for each cancer.

To obtain an overview of the expression profiles of miRNAs in paired samples from the 14 

cancer types, Reads Per Million miRNA (RPM) values of each miRNA (provided by TCGA) 

in each TCGA patient were first used to calculate regular fold change (FC) values between 

cancer and corresponding non-tumorous samples. After comparing these FC values, we 

found that the total number of over-expressed miRNAs is two-fold higher than that of under-

expressed miRNAs. However, when considering only those miRNAs with FC > 2 for over-

expression and FC < 0.5 for under-expression, and with patient frequencies > 35% in at least 

eight cancers, the distribution of miRNAs with over- and under-expression are similar to 

each other in each cancer (Figure 1). This suggests that many moderately over-expressed 

miRNAs could be effectors driven by other factors and may vary by patient.

This expression distribution also highlights 27 miRNAs (11 over-expressed miRNAs and 16 

under-expressed miRNAs) that are found in more than 60% of patients (Figure 1) in eight or 

more cancers. Most of these miRNAs have been previously reported in at least one 

publication to be associated with cancer, some of which are well-studied tumor suppressors, 

including hasmir-133b, and hsa-mir-139, or contribute to cell invasion, such as hsa-mir-301b 
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[30, 31]. Notably, hsa-mir-1247 was recently found to be a prognostic marker in pancreatic 

cancer as a suppressor [30] and hsa-mir-1258 targets heparanase (HPSE) to suppress breast 

and nonsmall cell lung cancer [32, 33]. hsa-mir-1269a, hsa-mir-3687, and hsa-mir-3648 

were also recently identified to be involved in cancer development [34–36], so their 

molecular mechanisms in cancer have yet to be thoroughly researched. Additionally, two 

miRNAs reported in 2011 [37], hsa-mir-4746 and hsa-mir-4664, were over-expressed in 11 

and eight cancers with average patient frequencies of 74.42% (average FC = 3.95) and 

75.49% (average FC = 8.07), respectively, although their average expression levels are lower 

than many well-studied miRNAs, which may lead to difficulties in quantification and 

qualification.

Our data are consistent with previous studies on individual miRNAs in cancers, validating 

the reliability and confidence of our data, and suggesting potential similar roles of the subset 

of 27 miRNAs found in development of multiple cancers, based on their similar expression 

profiles. It is also important to note that 21 of these 27 miRNAs were reported to be 

significantly differentially expressed (SDEmiRNAs) in the same cancer types by the 

statistical analysis described in the following sections,.

miRNA differential expression analysis

SDEmiRNAs could be used to distinguish cancer types—Previous studies have 

proposed multiple methods to identify tissue-specific miRNAs in distinguishing cancer 

primary origins, such as feature selection strategies introduced by Tang et al. [38]. However, 

as more stable and mature tools, DESeq2 [28] and edgeR [26] have been prevalent in 

expression research [39]. In this study, we utilized both DESeq2 and edgeR to perform 

miRNA differential expression analysis in 14 cancer types, applying statistical tests to 

minimize potential false positive errors resulting from the differences among individuals and 

samples. Data from all patients for a single cancer type were analyzed together resulting in 

reporting average differential expression levels by cancer type. Both DESeq2 and edgeR 

provide p values and adjusted p values (or FDR in edgeR). The results of the two tools 

showed a similar ranking of significantly differentially expressed miRNAs (SDEmiRNAs) 

when ranked by adjusted p values. We found 10 to 15% of miRNAs with significant 

differential expression in each cancer type reported by both DESeq2 and edgeR (Table 1). 

As shown in Figure 2A, of all 1,870 miRNAs in our integrated database, the specific 

distributions of the quantities and types of the 656 SDEmiRNAs vary between cancer types, 

suggesting the existence of unique SDEmiRNA patterns for each of these cancer types. 

These unique patterns of SDEmiRNAs could potentially reduce the amount of miRNAs 

required for prognosis of cancer types based on the findings of Lu et al. [15]. The results of 

differential expression analysis of each miRNA is available in BioXpress, shown by both 

figures and table (Figure S1).

Moreover, similar SDEmiRNA expression patterns are shown in LUAD and LUSC from 

lung tissue, as well as in KICH, KIRP, and KIRC from kidney tissue, as expected. However, 

among 387 SDEmiRNAs in either LUAD or LUSC (Figure S2A), 190 have log2FC values 

greater than 1 (∆log2FC > 1), 140 (36.2% of 387) of which have the opposite expression 

trend for both cancers, suggesting they could be key factors underscoring the differences 
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between LUAD and LUSC. We performed a similar pairwise comparison among KICH, 

KIRP, and KIRC using the set of 330 SDEmiRNAs with ∆log2FC > 1 in at least one of the 

three cancer types. Findings show that KIRP and KIRC have more similar SDEmiRNA 

expression patterns than KIRP and KICH, and KICH and KIRC (Figure S2B-D). To the best 

of our knowledge, this is the first time that analysis suggests the development of KICH could 

be mechanistically more distant than the development of KIRC and KIRP.

Expression patterns of SDEmiRNAs group cancer types based on different mechanisms 
during cancer development

We counted the number of SDEmiRNAs with the same expression trend in at least 80% of 

patients (by log2FC values) for each cancer type (Table 1, and the corresponding patient 

frequencies in Figure S3). Results showed different cancer types have different proportions 

of SDEmiRNAs: some cancers have more over-expressed SDEmiRNAs than under-

expressed; some have a balance between over- and under-expressed SDEmiRNAs; and other 

cancer types have more under-expressed SDEmiRNAs (Figure S3). Similar results were 

obtained when the log2FC values of all SDEmiRNAs were used to display their distributions 

in all cancer types (Figure 2C).

In four cancer types (KICH, KIRP, LIHC, and THCA), the numbers of under-expressed 

SDEmiRNAs are much higher than those of over-expressed SDEmiRNAs while, for most of 

the cancer types (BLCA, ESCA, KIRC, LUAD, LUSC, PRAD, STAD, and UCEC), the 

median expression values of SDEmiRNAs are greater than zero. Because the main function 

of miRNA is to suppress target genes, the significant number of under-expressed miRNAs 

corresponds to the up-regulation of oncogenes, which may play a more important role in the 

occurrence and progression of the four cancers characterized predominantly by under-

expression of miRNAs. Conversely, the down-regulation of tumor suppression genes might 

be more important in cancer occurrence and progression for those cancers characterized 

predominantly by over-expression of miRNAs. Cancers like BRCA, HNSC, and KIRC have 

an almost symmetric distribution of SDEmiRNAs about log2FC = 0 (Figure 2C), suggesting 

regulation of both oncogenes and tumor suppression genes could be equally important for 

disease progression. However, it could also be possible that the similar distribution between 

over- and under-expressed miRNAs indicates that these miRNAs are equally unimportant to 

disease and may suggest other mechanisms are primarily at work in these cancer types.

Although there are distinguishable differences in development patterns in different types of 

cancer, our results suggest that the distribution of SDEmiRNAs can group cancers into one 

of three categories based on the distribution of miRNA expression changes and related 

regulatory mechanisms employed by each group during cancer initiation and progression. 

We propose application of these findings will improve efficiency of future research on 

exploring mechanisms of cancers by organizing studies by group instead of individual 

cancer types.

SDEmiRNAs unique to one of the 14 cancer types—Although we are mostly 

interested in SDEmiRNAs implicated in multiple cancers (as discussed in depth below), 

SDEmiRNAs that only exist in a single cancer type could be biomarkers specific for that 
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cancer type. To investigate this potential, we set up screening conditions to identify those 

SDEmiRNAs affecting a single cancer type: 1) SDEmiRNA should be reported to be 

significant by both DESeq2 and edgeR for a given cancer type; 2) SDEmiRNA should not 

exist in the remaining 13 cancers; 3) the patient frequency for this SDEmiRNA should be 

greater than 50% in this cancer; 4) the log2FC value for this SDEmiRNA should be greater 

than 1 or smaller than −1.

As shown in Table S1, we identified a total of 81 SDEmiRNAs with significant expression 

trends in a single cancer type, 57 of which have patient frequencies higher than 60% (Table 

2). Several of these SDEmiRNAs have much lower expression in tissues compared with 

previously well-studied miRNAs, and have not been functionally studied in cancer 

development, especially pertaining to their roles in the corresponding cancer types reported 

in this study. However, this does not negate their potential cancer-related functions. In order 

to further explore the results, as an example, we performed survival analysis on four 

SDEmiRNAs unique to BRCA (absolute log2FC values > 1) by using miRpower [40]. 

Except hsa-mir-329–2 which is not in miRpower, the remaining three SDEmiRNAs suggest 

significant survival differences (log-rank p value < 0.01) between groups with under-/over-

expression of each SDEmiRNA after optimizing the patient threshold (Figure S4): hsa-

mir-4784 (Hazard Ratio (HR) = 1.82), hsa-mir-1262 (HR = 0.58), and hsa-mir-320c-1 (HR = 

0.68). The differences of survival rates between patients with under- and over-expression 

were consistent with our results. Such miRNAs should be prioritized for further analysis.

Pan-cancer analysis of key SDEmiRNAs

As shown in Figure 2B, after unsupervised clustering of all SDEmiRNAs, several 

SDEmiRNAs follow the same trend of either over-expression or under-expression across 

most of the cancer types, suggesting that these SDEmiRNAs may function similarly across 

different cancer types. To further study the key SDEmiRNAs affecting multiple cancers, we 

identified a subset of 90 miRNAs that have significant differential expression in at least eight 

cancer types (58% of total cancer types).

Selected SDEmiRNAs were verified against experimentally validated 
databases, text mining , and machine-learning-based prediction databases—
Before proceeding with the analysis, we first confirmed these 90 key SDEmiRNAs 

generated from DESeq2 and edgeR using four experimentally validated databases. Among 

2,280 significantly differentially expressed miRNA-cancer correlations, 208 (9.12%) 

correlations were recorded in the union of the four databases (HMDD, Mir2disease, 

miRCancer, and miRiaD) to be exclusively over- or under-expressed in certain types of 

cancer. Furthermore, we randomly selected 24 of the 90 SDEmiRNAs (with a total of 226 

miRNA-cancer interactions) as the input for a text mining tool (DEXTER) [41]. After 

mapping and manual curation, we extracted 157 (69.47%) interactions (Table S2). None of 

the 24 SDEmiRNAs were identified by DEXTER to have opposite expression trends as 

compared to the trends we reported in our study.

Notably, from the 90 selected SDEmiRNAs, we defined a subset based on conservation of 

theirdifferential expression trend across cancer types: 47 SDEmiRNAs are all over-expressed 

and 18 are all under-expressed in eight or more cancer types (a total of 65 SDEmiRNAs with 
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the same significant differential expression trend in eight or more cancers) (Table S3). We 

compared these results with two miRNA-disease prediction databases: Infer microRNA-

disease association (http://server.malab.cn:50001) [42] and MicroRNA-Disease Association 

Prediction (MDAP) (http://server.malab.cn/MDAP) [43]. In 466 unique associations in Table 

S3 (considering only mature miRNA sequences), except 21 miRNAs (with 185 associations) 

which were identified after publication of these two databases, 163 of the remaining 281 

associations (58%) were confirmed by the two prediction databases.

Key SDEmiRNAs with at least 60% patient frequencies were considered 
reliable and may have similar functions across multiple cancers—Of 65 

SDEmiRNAs that have the same significant expression change trend in eight or more 

cancers (Table S3), 54 SDEmiRNAs belong to 40 miRNA families, according to 

MirGeneDB v2.0 [44]. Among them, all members of 22 families are included in the list, 

although most of the families have only one or two members. However, the similar 

expression trends of these SDEmiRNAs suggest their high consistency of activities and 

potential functions across 58% of investigated cancers, and therefore, these small families 

can be classified into larger ones (Table S3). Individually, six newly reported miRNAs were 

included in the 65 SDEmiRNAs: hsamir-3170, hsa-mir-3677, hsa-mir-4326, hsa-mir-4652, 

hsa-mir-7706, and hsa-mir-105–2 (Table S3). Among them, hsa-mir-4652 is the top 

significantly over-expressed miRNA with largest log2FC value (average log2FC = 5.34, 

patient frequency larger than 60% in seven cancer types). We found no cancer-related 

studies that have explored the mechanisms of these six miRNAs in cancers, suggesting their 

high potential for involvement in cancer development, especially hsa-mir-4652.

Comparing the 65 SDEmiRNAs identified by differential expression analysis to the 27 

miRNAs with regular FC > 2 or FC < 0.5 across 60% of patients (in ‘Data collection and 

evaluation’ section, Figure 1) in at least eight cancer types, we found an overlap of nine 

over-expressed and 12 under-expressed SDEmiRNAs between the two datasets (a total of 21 

miRNAs) (Table 3). This subset not only includes well-studied miRNAs such as hsa-mir-145 

and hsa-mir-210 reported in previous publications, but also newly identified miRNAs such 

as hsa-mir-4746 (in ‘Data collection and evaluation’ section), hsa-mir-3648, hsa-mir-3687, 

and hsa-mir-1269a. Two of the over-expressed and five of the under-expressed key miRNAs 

are in the top five significantly over- and under-expressed miRNAs of the 65 ranked by 

average log2FC values (Table 3).

Molecular mechanisms for the newly identified hsa-mir-1269a have rarely been published 

for the cancer types we report here, but Min et al. have recently found a single-nucleotide 

variation in hsa-mir-1269a that could contribute to the occurrence of hepatocellular 

carcinoma [45]. In our results, hsa-mir-1269a has log2FC value consistently larger than 2.20 

in each of its eight associated cancer types (average log2FC = 5.18), with the average 

frequency of affected patients greater than 64.58% for a strict fold change requirement (FC 

> 5 for each patient). Other members of the 21 key SDEmiRNAs (Table 3) include hsa-

mir-183 and hsa-mir-96, belonging to the mir-183-96-182 cluster, which functions to induce 

cell proliferation and cancer development [46]. Notably, unlike the other two miRNAs from 

the same cluster, hsa-mir-182 only shows significant differential expression but not high 

patient frequencies. Considering our relatively stringent criteria on FC values (FC > 2 or FC 
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< 0.5), the changes of hsa-mir-182 in most patients are not as strong as those of hsa-mir-183 

and hsa-mir-96.

Overall, our study groups 14 cancer types with potential different molecular mechanisms of 

development based on the distribution of SDEmiRNAs, as well as proposes that some 

SDEmiRNAs previously indicated to play a role in distinct cancer types may function 

similarly in the development of additional cancer types, and classifies certain small miRNA 

families into larger ones. Moreover, the results correspond well with those of previously 

published studies and include evaluation of the 21 key SDEmiRNAs with high patient 

frequencies in a comprehensive pan-cancer analysis. Newly identified miRNAs hsa-

mir-4746, hsa-mir-3648, hsamir-3687, and hsa-mir-1269a could also be important factors in 

multiple cancer types, although their relations to cancer were rarely reported by previous 

studies due to their low expression levels compared to others.

SDEmiRNA targets enrichment and functional analysis

Each of the 65 SDEmiRNAs discussed above (with the same significant differential 

expression trend in eight or more cancer types) participates in some form of molecular 

regulation, either inducing or inhibiting cell proliferation and cancer metastasis in different 

cancer types. To better understand the general pathways or biological processes by which 

SDEmiRNAs contribute to the occurrence and development of multiple cancer types, we 

extracted experimentally validated non-tissue-specific targets for those SDEmiRNAs without 

tissue or cancer information, as well as tissue-specific targets.

Distribution and functional analysis of non-tissue-specific targets of 65 
SDEmiRNAs—60 of 65 selected miRNAs were found to have a total 9,896 targets with a 

total of 29,087 miRNA-target interactions (the other five miRNAs had no available target 

information). Among the target genes, 901 genes are considered to be cancer census genes 

from COSMIC or cancer biomarkers from EDRN, corresponding to 58 miRNAs. Cancer 

census genes are those genes with substantial evidence for their relations to cancer from 

published research [47]. hsa-mir-21 alone regulates 471 cancer-related genes, and hsa-

mir-93 regulates 234 cancer-related genes. We then identified a subset of 27 cancer-related 

genes that are targets of more than 10 miRNAs, and among all miRNAs involved in 

regulating these 27 genes, 36 are found that target four or more. As shown in Figure 3, some 

of the cancer-related genes, such as CCND2 (G1/Sspecific cyclin-D2) (oncogene), MDM2 

(E3 ubiquitin-protein ligase Mdm2) (oncogene), CDKN1A (Cyclin-dependent kinase 

inhibitor 1) (tumor suppressor), and SMAD4 (Mothers against decapentaplegic homolog 4) 

(tumor suppressor), could be regulated by multiple miRNAs and the numbers of targets of 

hsa-mir-106b, hsa-mir-19a, hsa-mir-195, hsa-mir-130b, and hsa-mir21 are greater than that 

of other miRNAs with identified targets.

For the 21 key SDEmiRNAs with high patient frequencies (FC > 2 or < 0.5) (Table 3), in 

addition to hsa-mir-4652, which has the largest log2FC values and greater than 60% patient 

frequency in seven cancers, 18 were found to have 428 cancer-related genes out of their 

3,987 non-tissue-specific targets. Fifteen of the 21 key SDEmiRNAs regulate 25 cancer-

related genes. Eleven of these SDEmiRNAs function in enzyme binding (p value = 8.30e-03, 
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by STRING), lending credence to their regulatory roles in cancer development. Well-studied 

miRNAs such as hsa-mir-195, hsa-let-7c, and hsa-mir-183 have more than 70 cancer-related 

targets each. In particular, hsa-mir-1269a has 57 (five cancer-related), hsa-mir-4652 has 133 

(12 cancerrelated), hsa-mir-4746 has 54 (six cancer-related), hsa-mir-3648 has 14 (one 

cancer-related), and hsa-mir-3687 has 14 (no cancer-related) non-tissue-specific targets. Our 

analysis by Ingenuity Pathway Analysis (IPA) suggests these targets participate in various 

important networks and cellular processes (Table 4). For cancer-related targets of hsa-

mir-1269a and hsamir-4652, most are involved in cell survival, such as cell cycle 

progression, cell migration, and apoptosis (Figure 4A-B), while the functions of targets of 

hsa-mir-4746 are less uniform and geared toward specific cellular processes, such as Th17 

immune response and morphology of macrophages (Figure 4C). The one cancer-related 

target of hsa-mir-3648 is CCND1 (G1/Sspecific cyclin-D1) involved in cell cycle control.

By targeting a wide range of cancer-related genes, 65 SDEmiRNAs, especially 21 key 

SDEmiRNAs, participate in multiple processes, contributing to cancer development. 

Moreover, those newly identified SDEmiRNAs could be equally important as other well-

studied miRNAs, despite their relatively lower expression levels. This study suggests that 

SDEmiRNAs may contribute to cancer by regulating targets within small regions or 

participating in short-term stress response, which requires less dosage.

Distribution and functional analysis of tissue-specific targets of 65 SDEmiRNAs

We also collected tissue-specific targets for the 65 SDEmiRNAs (significantly expressed in 

at least eight cancer types) (Table S3) and explored the potential molecular mechanisms of 

those tissue-specific targets in light of their observed expression trends and biological 

processes in which they participate. All selected miRNAs and their targets were mapped to 

11 cancer types by DOIDs. A total of 9,572 target genes were found, of which 7,325 were 

mapped to reviewed UniProtKB accession numbers (Table S4). 7,186 of the implicated 

significant, reviewed target genes are included in BioXpress v3.0, which reports genes with 

significant expression changes derived from paired tumor and non-tumorous data from 

TCGA: currently, there are 5,971 genes showing significant differential expression in 

multiple cancer types in BioXpress (Table S5). miRNA target genes for lung cancer and 

kidney cancer are a combination of those identified for TCGA cancer types LUAD and 

LUSC, KICH and KIRP and KIRC, respectively, and have the same expression trend across 

these TCGA cancer types.

Mapping to Gene Ontology (GO) terms and PANTHER pathway IDs resulted in retrieval of 

12,467 GO terms and 130 PANTHER terms. According to the screening conditions 

described in the methods section, 99 terms were selected in Table S6 (22 PANTHER terms 

and 77 GO terms). The criteria of the screening were such that we expected to lose 

potentially valuable GO or PANTHER terms, but we chose to follow a conservative method 

to reduce possible false positive results. The most common molecular functions in which 

these miRNAs and their targets participate in cancer are negative regulation of ERK1 and 

ERK2 cascade (GO:0070373), canonical Wnt signaling pathway (GO:0060070), and 

positive regulation of sequence-specific DNA binding transcription factor activity (GO:

0051091). Each of these functions are involved in ten types of cancer, with more than 40 
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SDEmiRNAs, and more than 30 targets, respectively. This result not only is consistent with 

Gosline et al. [48], which suggested the strong regulation of miRNAs on transcription 

factors in mice, but also suggests most of these SDEmiRNAs could promote the activity of 

transcription factors.

The distribution of related GO and PANTHER terms suggests the participation in regulation 

of cell proliferation and apoptosis through different mechanisms, and frequently implicated 

cancer pathways were found in our list, including the p53 pathway, Wnt signaling pathway, 

TGFβ/SMAD signaling pathway, and others. We also found that the occurrence and 

development of these cancer types may share similar molecular mechanisms with other 

diseases or processes, including Alzheimer’s disease (AD) (with involved amyloid secretase 

and presenilin pathways), for which the product the key gene implicated in AD, the amyloid 

precursor protein, is overexpressed in multiple cancer types [49] and other 

neurodegenerative diseases.

Of the 21 key SDEmiRNAs (with both significant differential expression and at least 60% 

patient frequencies in at least eight cancer types) (Table 3), in addition to hsa-mir-4652, 19 

were found to have tissue-specific targets. We identified the top one or two genes that are 

targeted by the greatest number of SDEmiRNAs in each cancer type. In breast cancer, 

CCND1 and IGF1R (Insulin-like growth factor 1 receptor) are found to be the targets of nine 

and seven key SDEmiRNAs, respectively. IGF1R is also the most popular target of eight 

SDEmiRNAs in lung cancer, and of seven SDEmiRNAs in head and neck cancer. CCND1 

promotes G1/S transition during mitotic cell cycle by regulating CDK4 (cyclin-dependent 

kinase 4), and is up-regulated in various cancer types including breast cancer [50, 51]. 

IGF1R is also a well-studied oncogene that allows cell proliferation and growth, and inhibits 

apoptosis [52]. Our RNA-seq analysis in BioXpress v3.0 shows that CCND1 is significantly 

over-expressed in BRCA, while IGF1R has significant over-expression in BRCA, LUSC, 

and HNSC. We suspect the roles of CCND1 and IGF1R could be vital for development of 

these cancers, compared to other cancer-related genes, based on the abundance of miRNAs 

that can regulate them.

Furthermore, in breast cancer, hsa-mir-1269a has one target (EN2, Homeobox protein 

engrailed-2) which is a sequence-specific DNA binding protein positively regulating 

transcription from RNA polymerase II promoter. hsa-mir-4652 has two targets (GALNT3, 

EIF4EBP1) in lung cancer. GALNT3 (Polypeptide N-acetylgalactosaminyltransferase 3) 

functions as an iron binding enzyme in glycosylation, while EIF4EBP1 (Eukaryptic 

translation initiation factor 4E-binding protein 1) binds to IRES-dependent translational 

initiation to repress protein translation and participates in insulin receptor signaling pathway 

and G1/S transition of mitotic cell cycle (Table 4). hsa-mir-4652 has another target (H2AFX, 

Histone H2AX) involved in DNA and histone binding in head and neck cancer. CancerMiner 

predicted 12 targets of hsa-mir-3648 in head and neck cancer (Table S4) with functions 

including ATP binding, cell cycle control, lipid metabolism, protein folding, and nucleobase 

biosynthesis. hsa-mir-4746 has a common target, PPM1D (Protein phosphatase 1D), in both 

breast and lung cancer. Because of its function in protein dephosphorylation, PPM1D is 

involved in G2/M transition of mitotic cell cycle and suppression of cell proliferation in 

cancer [53]. The importance of the functions of their target genes in gene/cellular regulation 
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suggests abnormally expressed hsa-mir-1269a, hsa-mir-4652, and hsamir-4746 may 

contribute to the development of corresponding cancer types.

Based on their expression profiles in at least eight cancer types, as well as the cellular 

functions of their cancer-related targets, those SDEmiRNAs with conserved expression 

change trend in at least eight cancers, especially the 21 key SDEmiRNAs with high patient 

frequencies, show great potential as drivers in the development of multiple cancers. Our 

study first identified the common essential miRNAs across different cancers, followed by 

identification of potential common molecular functions despite different tissues. This list 

should guide the direction of future cancer research efforts and increase the efficiency of 

discovering detailed mechanisms across cancers by targeting the scope of study to high-

value miRNA candidates.

Construction of regulatory networks of SDEmiRNAs and their targets

Suppression of a negative regulator will result in up-regulation of the regulator’s target 

molecule. Similarly, because miRNAs function to suppress gene expression, miRNA 

inhibition of a negative regulator will also result in up-regulation of the target molecule. 

There are some cases in which a miRNA can have two targets such that one target regulates 

the other. In these cases, up-regulated targets of over-expressed miRNAs or down-regulated 

targets of under-expressed miRNAs are considered to be indirect targets: miRNAs either 

inhibit the negative regulators or activate the positive regulators of the differentially 

expressed target genes, respectively.

Across eight cancer types, there are 34 SDEmiRNAs that regulate 14 potential target genes 

in the angiogenic patterning of blood vessels (GO:0001569), which is essential for 

establishing abnormal tumor blood vessels [54]. Our results here show hsa-mir106b, hsa-

mir-93, and hsamir-21, which are over-expressed in six cancers and target eight genes (out 

of the 14 possible targets), play important roles in tumor blood vessel generation. All three 

SDEmiRNAs directly target one key tumor suppressor gene, TGFBR2 (TGF-beta receptor 

II) [55], leading to its under-expression. Unlike over-expressed miRNAs with a relatively 

large number of targets, most under-expressed miRNAs only target central genes of 

angiogenesis, including TGFBR2 (indirect), VEGFA (vascular endothelial growth factor A) 

(direct), and CTNNB1 (beta-catenin) (direct). These trends could suggest that during 

patterning of blood vessels in these eight cancer types, most tumor suppressive miRNAs 

regulating angiogenic central genes are repressed, while the three oncogenic miRNAs above 

activate a variety of relevant genes, efficiently promoting the tumorigenic process.

To further elucidate the underlying mechanisms of miRNA involvement in cancer, we 

constructed a network of miRNA regulation of signaling pathways across different cancer 

types. The PI3-kinase (PI3K) pathway (PANTHER: P00048) is one of the most important 

pathways that participates in the regulation of cancer development and growth [56]. PTEN, 

an important tumor suppressor, is a negative regulator of the PI3K pathway [57]. As shown 

in Figure 5, eight target genes of 16 miRNAs are involved in the PI3K pathway across seven 

cancer types, based on KEGG (Release 79.1, http://www.genome.jp/kegg/) and studies from 

Waugh MG [58], Ying Z et al. [59], and Yun YR et al. [60]. miRNAs involved in regulating 
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FGFR family members were also shown in Figure 5, adding another potentially important 

miRNA, hsa-mir-381, to the pathway.

Most over-expressed miRNAs silence PTEN across different cancer types, increasing the 

signal passing from PIK3 to AKT3, and some miRNAs regulate PI3KR1 

(phosphoinositide-3kinase regulatory subunit 1, a gene of PI3K Class I). hsa-mir-21, for 

instance, is a well-known, over-expressed miRNA in various cancer types. Our results in 

Figure 5 indicate that hsa-mir-21 could inhibit PI3KR1 in breast, liver, kidney, and lung 

cancer, while it promotes PI3KR1 in thyroid cancer, suggesting that for cancer types other 

than thyroid cancer, other members of the PI3K classes of enzymes may play more 

important roles in cancer progression. Furthermore, we suggest that different SDEmiRNAs 

could still regulate the same molecular processes in different cancer types, even if their 

target genes may vary from each other. This network integrates current discoveries on 

SDEmiRNAs, their targets, and related functions, displays SDEmiRNA regulation in 

multiple cancer types, and, therefore, provides a straightforward view of what could be 

accomplished in additional analysis. Similar networks could be constructed based on other 

results reported herein, and could ultimately lay the foundation for future targeted studies 

regarding the role of miRNA expression in cancer.

Materials and Methods

Data

miRNA sequencing data—This study started with miRNA sequencing data integration 

and filtering, and performed expression analysis and downstream functional analysis (Figure 

6). All miRNA-seq data (both counts of raw reads and Reads Per Million miRNA mapped 

(RPM) values, annotated to miRNA names level) were downloaded from TCGA 

(Release-2016–03) (http://cancergenome.nih.gov) by using TCGA-Assembler [61] with 

default parameters (Figure 6). Data was then divided into two groups: paired data—data 

with both tumor and adjacent non-tumorous samples from the same patient, and tumor-only 

expression data—data coming exclusively from all tumor samples in all TCGA cancer types 

with miRNA-seq data. Paired data were limited to those generated on the HiSeq platform 

which generated more matched samples than other platforms, whereas tumor-only 

expression data were focused on data generated either on HiSeq or Genome Analyzer (GA) 

of Illumina [62] systems, analyzed in separate groups for data from each platform. Two 

additional projects (MALY, Malignant Lymphoma done by Germany, and OV, Ovarian 

Cancer done by Australia, Release 20), available only through the International Cancer 

Genome Consortium (ICGC, https://icgc.org/) and generated by Illumina-HiSeq system, 

were imported into the tumor-only expression dataset. Fold change value (FC) was 

calculated by (RPM)tumor / (RPM)non-tumor for one miRNA in one cancer type. Each miRNA 

was mapped to its corresponding HGNC ID (HUGO Gene Nomenclature Committee, Issued 

in Autumn/Winter 2015: http://www.genenames.org), miRBase ID (Release 21) [1], and 

Ensembl ID (Release 82) [63] using customized python (v2.7) and R (3.3) scripts.

Databases for Validation of miRNA—To validate the selected differentially expressed 

miRNAs, we used four experimentally validated databases generated from text mining: 

Hu et al. Page 13

Comput Biol Med. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cancergenome.nih.gov/
https://icgc.org/
http://www.genenames.org/


HMDD (v2.0) [64], Mir2disease (2008) [65], miRCancer (March2016) [66], and miRiaD 

(2016) [67]. We also applied our text mining tool, DEXTER, to extract miRNA-cancer 

correlations from publications [41]. The basic search term is “ [miRNA name] is [over-

expressed / under-expressed / significantly higher / lower] in [cancer tissue/sample] 

compared to [normal / non-tumorous sample]”. Results were manually curated before 

reported as validated records. The cancer terms for each reported interaction between 

miRNA and specific cancer types were then mapped to Disease Ontology [68] cancer slim in 

order to unify the integrated dataset [69]. We also incorporated information regarding 

miRNA expression changes in cancer types (up/down-regulation) from these databases, 

when available.

miRNA Targets—Five experimentally validated miRNA target databases generated from 

text mining were used in our study: miRTarbase (Release 6.0) [70], miRecords (Apr 2013) 

[71], miRWalk 2.0 (miRNAtarget interaction databases) [72], miRTex (May 2015) [73], and 

Tarbase-DIANA lab v6.0 [74]. These databases were generated by different algorithms but 

with a common motive, which is to extract miRNA-target-cancer/tissue interactions from 

published papers. Most of these published papers were validating the interactions or stating 

that the interactions were commonly accepted by previous studies. CancerMiner (1.0), a 

database for tissue-specific miRNA target predictions based on TCGA data [75], was also 

included in the integrated miRNA target database for this study. This database was built 

upon multivariate linear model for expression association of miRNA and mRNA from 

TCGA, and rank-based association recurrence score that showed the possible association of 

miRNA-target interactions and cancer types [75].

GO (Gene Ontology) IDs [76] and PANTHER pathway IDs and terms were downloaded 

from UniProt (http://www.uniprot.org/, Release 2016_08) and PANTHER ((Protein 

ANalysis THrough Evolutionary Relationships, Release 11.0: http://www.pantherdb.org/) 

[77] for each target in the resulting database.

Data Normalization and Differential Expression Analysis

We used DESeq2 version 1.8.1 [28] and edgeR version 3.10.2 [26] (R packages) to 

normalize paired miRNA sequencing data and to analyze the differential expression of 

miRNAs in each cancer type. These tools are both based on a negative binomial distribution 

assumption [29, 39], and both tools have been proven to generate normalized data of high 

quality and to perform similarly in differential expression analyses, as well as in fold change 

estimates [78, 79]. DESeq2 fits a generalized linear model for each miRNA with the fold 

change estimate shrunken by empirical Bayes [28]. A Wald test was used in DESeq2 for 

statistical analysis and calculating p values for the significance of differentially expressed 

miRNAs in each cancer type. edgeR, however, uses the TMM method for normalization of 

sequencing data. To estimate parameters for the negative binomial model, we applied 

common dispersion, trended dispersion, and tagwise dispersion for our multi-factor cases. 

These dispersions were shrunken by an empirical Bayes procedure towards a consensus 

value [26], and edgeR applied Fisher’s Exact Test to determine differential expression [26]. 

False discovery rate (FDR) was reported by edgeR for the significance of multiple 

comparisons conducted. The input data for the two tools were raw read counts (without 
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normalization), excluding any miRNAs with no expression among all patients. For both 

tools, we designed the model matrix with two categories, one with levels “cancer” and “non-

tumor”, the other with TCGA patient IDs. The cutoff for the significant adjusted p-value of 

each gene is 0.05/n (using Bonferroni’s Approach, where n is the total number of expressed 

miRNAs in each cancer type), considering the difference of cancers. miRNAs with 

significant adjusted p-values generated by both DESeq2 and edgeR were considered to be 

differentially expressed in a given cancer type. Results from differential expression analysis 

for paired and tumor-only expression data were integrated into BioXpress version 3.0 [80]. 

The Heatmap with clustering for significantly differentially expressed miRNAs across 

different cancer types was generated by R package gplots 3.0.1.

Survival Analysis

miRpower [40] was used to suggest the influence of miRNAs on patient survival rate in 

breast cancer. This platform is continuously updated with TCGA datasets, and has been cited 

by dozens of studies [81, 82, 83]. By providing “auto select best cutoff”, miRpower is able 

to optimize the cutoff of the patient groups for different investigated miRNAs. In our study 

here, TCGA was selected as the only dataset to be considered, and therefore, miRNAs from 

breast cancer (BRCA) were under survival analysis (1,061 TCGA patients in total).

miRNA Target Data Integration and Enrichment

After extracting all targets for selected miRNAs (those significantly over- or under-

expressed in at least eight cancer types), we separated these targets into two categories: 

tissue-specific targets (records clearly including the miRNA-target connection in a specific 

tissue or cancer type), and non-tissue-specific targets (records containing only a miRNA-

target connection). Tarbase provided the majority of records for the tissue-specific target 

group. We excluded associations derived from microarray studies and integrated those 

records with cancer metastasis annotation. Reported regulatory changes (up/down) of 

miRNAs were also retrieved. Selective records from miRWalk 2.0 were included in the 

tissue-specific target group if the records were involved in miRNAs-organ interactions or 

miRNA-gene-OMIM interactions generated by miRWalk text mining search on PubMed 

database. To include more tissue-specific targets, we also integrated data from a predicted 

database, CancerMiner, which applied mRNA and miRNA expression, DNA copy number, 

and promoter methylation data from TCGA to predict miRNA-mRNA-cancer type 

associations [75]. CancerMiner data were included only for records not found in Tarbase or 

miRWalk. Expression changes of all tissue-specific target genes in corresponding cancer 

types were extracted from BioXpress v3.0 [80]. For the non-tissuespecific target group, we 

first excluded those targets that were also in the tissue-specific target section. Some records 

from Tarbase that do not contain tissue or cancer information were included. Gene names of 

the records from miRTex were first manually curated and mapped to synonyms available in 

UniProtKB, and records with miRNA-gene associations were selected while miRNA-

miRNA interactions were excluded. miRNA-gene targets from miRWalk 2.0 and records 

from miRTarbase and miRecords were all classified into the non-tissue-specific target group. 

All cancer types from those databases were mapped to DOIDs.
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Tissue-specific target genes were mapped to UniProtKB accession numbers [84], 

maintaining only those genes that have been manually annotated and reviewed in 

UniProtKB/Swiss-Prot. For each GO or PANTHER term, we merged all the target genes 

involved and their regulating miRNAs. In order to reduce false positive errors and to exclude 

highly generic terms of GO, GO terms of genes associated more than eight cancer types and 

fewer than 50 target genes were selected. We also collected non-tissue-specific targets that 

are considered to be cancer census genes from COSMIC (version 78) [85] and biomarkers 

from EDRN (Downloaded in Feb, 2016, https://edrn.nci.nih.gov/). Enrichment analysis of 

these non-tissue-specific targets was done using STRING (version 10.0) [86] and Ingenuity 

Pathway Analysis (IPA) (March 2017).

Conclusion

Different cancer types have unique expression patterns of SDEmiRNAs. Our study sought to 

identify prevalent expression-based or mechanistic features of SDEmiRNAs associated with 

cancer development.. Applying our miRNA analysis findings, we propose that the number of 

miRNAs needed to classify the 14 cancer types could be reduced, both in the cancers 

described herein and in other cell type cancers from the same location. Moreover, based on 

the inhibition role of miRNA, development of different cancer types may rely on either more 

tumor suppressors or more oncogenes, resulting in three categories of cancers. We also 

identified 81 unique SDEmiRNAs with significant differential expression in specific 

cancers: these SDEmiRNAs might have unique functions (including potential roles as 

drivers) in each cancer, even affecting patient survival rates, although most have not yet been 

studied in the corresponding relevant cancer type.

We then identified a set of 21 key SDEmiRNAs (including four relatively recent 

identifications, hsa-mir-4746, hsa-mir-3648, hsa-mir-3687, and hsa-mir-1269a) that have 

high enrichment in patients for at least eight cancer types, as well as hsa-mir-4652 with high 

enrichment in seven cancer types. These key SDEmiRNAs may have a wider scope of 

potential regulatory mechanisms across multiple cancer types while acting similarly despite 

different cancer types than what researchers have reported in one or two cancers so far. To 

explore the possible molecular mechanisms of these key SDEmiRNAs, enrichment analysis 

of the SDEmiRNAs and their targets in different cancer types was performed, findings of 

which suggested that different miRNAs participate in a limited amount of cancer-associated 

molecular processes/pathways through regulating different targets. To the best of our 

knowledge, this is the first report suggesting that miRNAs may use similar mechanisms in 

development of these cancer types.

The construction of a regulatory network of SDEmiRNAs with their experimentally 

validated targets combines results of current studies and highlights the potential research 

directions for further analysis. Our study here provides a rationale for the continued 

exploration and validation of the functional roles of selected key SDEmiRNAs in cancers, 

and, therefore, promotes on the use of BioXpress to facilitate further analysis on the role of 

these important miRNAs in cancer.
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Highlights

• A large-scale investigation of miRNAs between tumor and adjacent 

nontumorous samples

• A novel perspective to group cancer types based on the expression profiles of 

miRNAs

• Identification of common potential biomarker miRNAs across eight or more 

cancer types

• A method to build common regulatory networks of key miRNAs across 

multiple cancers
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Figure 1. Overview of miRNA counts vs. patient frequency for over- and under-expressed 
miRNAs with original FC > 2 of FC < 0.5 in at least eight cancer types from paired data
FC is used to distinguish the overall expression trend of miRNAs (by comparing FC values 

from tumor and non-tumor samples from the same patient). Each dot on the red line 

represents the count of over-expressed miRNAs per patient frequency, and dots on the blue 

line represent counts of under-expressed miRNAs. Across more than 35% of patients, the 

numbers of miRNAs with over- and under-expression are similar to each other. 11 over-

expressed miRNAs and 16 under-expressed miRNAs appear in more than 60% of patients 

for at least eight cancer types: these miRNAs are listed in the text box. These miRNAs in 

multiple cancer types suggest their potential roles in the development of these cancers.

Hu et al. Page 24

Comput Biol Med. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Differential expression analysis of miRNAs and distribution of log2FC values of 
significantly differentially expressed miRNAs across 14 cancer types
A. Heatmap showing significantly over- and under-expressed miRNAs in at least one cancer 

type - vertical axis is miRNAs. The expression change of miRNA is represented by log2FC 

values generated by DESeq2 and edgeR. Log2FC values less than zero are considered as 

under-expressed miRNAs (green), while log2FC greater than zero represents over-expressed 

miRNAs (red). The miRNA patterns of each cancer type vary from each other. B. Counts of 

cancer types in which each miRNA is over- or under-expressed - vertical axis stands 

miRNAs (same as Figure 2A). Green bars represent the counts of cancer types in which a 

miRNA is under-expressed, and red ones are for cancer type counts in which a miRNA is 
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over-expressed. After unsupervised clustering, some miRNAs show the same trend of over-

expression or underexpression across most cancers. It suggests that these miRNAs may have 

similar function across different cancer types. C. The vertical axis represents the average of 

log2FC values generated from DESeq2 and edgeR for each miRNA in each cancer type. For 

each cancer, all of its miRNAs that are significantly differential expressed are included. The 

numbers of over- and under-expressed miRNAs per cancer vary from each other, suggesting 

the up-regulation of oncogenes is more important in the occurrence of some cancers, while 

the down-regulation of tumor suppression genes is more important in other cancers.
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Figure 3. Non-tissue-specific cancer-related genes which are targets of more than 10 miRNA 
types
Each unique color represents one miRNA with at least four targets and the ribbon width 

suggests the interactions between the miRNAs and target genes. 27 cancer-related genes are 

targets of more than 10 miRNAs, and among all miRNAs involved in regulating these 27 

genes, 36 target four or more cancer-related genes. Some of the cancer-related genes could 

be regulated by multiple miRNAs, and the numbers of targets of some miRNAs are greater 

than those of others. These miRNAs play vital roles in cancer progression via regulating 

cancer-related genes.
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Figure 4. Networks and pathways of non-tissue-specific cancer-related targets of hsa-mir-1269a, 
hsa-mir-4652, and hsa-mir-4746
A. Four out of five non-tissue-specific cancer-related targets of hsa-mir-1269a with grey 

shapes participate in 15 cellular processes with white shapes. Each arrow represents one 

correlation between a target and a process. GPI, TCF12, and SCD are involved in most of 

the processes, compared to PLAG1. B. Network of eight out of 12 cancer-related targets of 

hsa-mir-4652. These targets all participate in multiple cellular processes. C. Network of all 

six cancer-related targets of hsa-mir-4746. Except BLVRB, other targets share similar 

processes with each other. Based on the important roles of these cellular processes in cancer 

development, the three newly identified SDEmiRNAs may function in cancers through these 

processes.
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Figure 5. Regulatory network of miRNA on PI3-kinase pathway
Blue arrows indicate the regulation among genes in the PI3-kinase pathway (arrows with 

vertical short line segments represent inhibition role of up-stream genes). Red arrows 

indicate regulation interaction between miRNAs and PI3-kinase pathway. Minus sign 

suggests inhibition, and plus sign promotion. Eight target genes of 16 miRNAs are involved 

in the PI3K pathway and regulation of PTEN gene across seven cancer types. Different 

miRNAs in different cancers could regulate the same molecular processes through targeting 

their components. These miRNAs still could function similarly across at least eight cancer 

types.
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Figure 6. Cancer-related significantly differential expression of miRNA workflow
Paired miRNAs (tumorous and adjacent non-tumorous samples) were retrieved from TCGA 

database and analyzed by DESeq2 and edgeR for differential expression. We then screened 

out those significantly differentially expressed miRNAs (SDEmiRNAs). After validation by 

text mining databases and our text mining tool, DEXTER, we proposed the possibility to use 

these SDEmiRNAs in classification of cancer types or cancer subtypes, and screened out 

unique SDEmiRNAs for one single cancer. We also kept those key SDEmiRNAs 

significantly expressed in at least eight cancers with high patient frequencies. Moreover, we 

collected both tissuespecific targets and non-tissue-specific targets from experimentally 

validated databases, and did functional/enrichment analysis with those key SDEmiRNAs.
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Table 2

Unique miRNAs with significant differential expression in 60% or more patients of individual cancer

TCGA type cancer Unique miRNAs Expression trend

BLCA hsa-mir-3913-1, hsa-mir-6728, hsa-mir-520b, hsa-mir-4523 Up

BRCA* hsa-mir-4784 Up

hsa-mir-605, hsa-mir-320c-1, hsa-mir-1262, hsa-mir-329-2 Down

ESCA hsa-mir-6715b Up

HNSC hsa-mir-1305 Up

hsa-mir-378i, hsa-mir-499a Down

KICH hsa-mir-3152, hsa-mir-7641-2, hsa-mir-582, hsa-mir-548j Up

hsa-mir-4649, hsa-mir-6761, hsa-mir-3154 Down

KIRC hsa-mir-122, hsa-mir-4773-2, hsa-mir-599, hsa-mir-7110 Up

KIRP hsa-mir-3189, hsa-mir-6843, hsa-mir-3680-1, hsa-mir-4676 Up

hsa-mir-380 Down

LIHC hsa-mir-5187 Up

hsa-mir-6503, hsa-mir-5701-1 Down

LUAD hsa-mir-372, hsa-mir-4728, hsa-mir-5091 Up

LUSC hsa-mir-4665, hsa-mir-4766, hsa-mir-1248 Up

hsa-mir-1294, hsa-mir-3920, hsa-mir-4423, hsa-mir-5680, hsa-mir-3926-2, hsa-mir-3195 Down

PRAD hsa-mir-5694, hsa-mir-5706 Up

STAD hsa-mir-551a, hsa-mir-5703, hsa-mir-3194 Up

THCA hsa-mir-6730 Up

hsa-mir-548q, hsa-mir-876, hsa-mir-1179 Down

UCEC hsa-mir-3131, hsa-mir-1914, hsa-mir-1276, hsa-mir-4763, hsa-mir-3616, hsa-mir- 3187, hsa-
mir-5581, hsa-mir-3193

Up

hsa-mir-548aw Down
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Table 3

21 miRNAs with significant differential expression and high patient frequencies (at least 60%) in tumor 

samples from each of eight or more cancers compared to non-tumorous samples

miRNAa Cancer type Mean log2FC Mean freq (strFC)b Expression change

hsa-mir-1269a LUSC, LUAD, LIHC, UCEC, STAD, BRCA, HNSC, 
PRAD

5.18 64.58% Up

hsa-mir-210 LUSC, LUAD, BLCA, KIRC, UCEC, BRCA, HNSC, 
KIRP

3.68 48.13% Up

hsa-mir-301b UCEC, LUSC, BLCA, LUAD, BRCA, ESCA, HNSC, 
KIRC, STAD, KIRP

2.71 56.53% Up

hsa-mir-183 UCEC, BLCA, LIHC, KICH, BRCA, LUSC, LUAD, 
STAD, KIRP, PRAD, HNSC, THCA

2.68 48.13% Up

hsa-mir-3648 LUSC, UCEC, ESCA, LUAD, BLCA, HNSC, PRAD, 
STAD, BRCA

2.57 52.53% Up

hsa-mir-3687 BLCA, LUSC, LUAD, STAD, UCEC, HNSC, BRCA, 
PRAD

2.56 52.91% Up

hsa-mir-96 UCEC, BLCA, KICH, BRCA, LIHC, LUSC, LUAD, 
STAD, PRAD, KIRP, THCA, HNSC

2.56 49.69% Up

hsa-mir-760 LUSC, LIHC, LUAD, KIRC, KIRP, BRCA, UCEC, KICH, 
HNSC

2.02 37.31% Up

hsa-mir-4746 UCEC, LIHC, ESCA, LUSC, KIRP, BRCA, HNSC, 
BLCA,KIRC, STAD, LUAD

1.96 35.94% Up

hsa-mir-206 BRCA, THCA, LUAD, KIRP, KIRC, LUSC, UCEC, KICH −4.18 75.38% Down

hsa-mir-204 KIRP, PRAD, LUAD, KIRC, STAD, THCA, HNSC, 
BLCA, BRCA, ESCA, KICH

−2.78 56.47% Down

hsa-mir-1-2 KIRC, BRCA, KIRP, KICH, HNSC, ESCA, LUAD, LUSC, 
STAD, BLCA, UCEC

−2.74 59.78% Down

hsa-mir-133a-2 PRAD, KIRC, LUAD, LUSC, KIRP, KICH, STAD, BLCA, 
UCEC

−2.72 59.94% Down

hsa-mir-133b THCA, PRAD, HNSC, KIRC, LUAD, KIRP, LUSC, 
KICH, STAD, BLCA, UCEC

−2.65 57.66% Down

hsa-mir-133a-1 THCA, KIRC, BRCA, HNSC, KIRP, ESCA, LUAD, 
KICH, LUSC, STAD, BLCA, UCEC

−2.6 59.94% Down

hsa-mir-1247 KIRC, LUSC, HNSC, LIHC, LUAD, THCA, KIRP, 
BRCA, KICH, BLCA, UCEC

−2.38 56.31% Down

hsa-mir-139 KIRC, THCA, LUAD, LIHC, HNSC, STAD, KIRP, LUSC, 
BRCA, BLCA, UCEC

−2.21 55.01% Down

hsa-mir-145 HNSC, THCA, LUAD, LIHC, LUSC, KICH, BRCA, 
STAD, KIRP, BLCA, UCEC

−1.73 39.98% Down

hsa-mir-195 LIHC, THCA, STAD, KICH, BRCA, HNSC, LUSC, 
LUAD, KIRP, BLCA, UCEC

−1.7 39.91% Down

hsa-mir-99a THCA, KICH, LIHC, LUAD, LUSC, BRCA, HNSC, 
UCEC

−1.63 33.44% Down

hsa-let-7c THCA, LIHC, KICH, LUSC, LUAD, HNSC, BRCA, 
UCEC

−1.55 34.02% Down
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Table 4

Newly identified SDEmiRNAs and the potential networks and pathways involved in cancer

SDEmiRNA Number of non-
tissue-specific 

target

Networks and Pathways

hsa-mir-1269a 57 Molecular transport, RNA trafficking, cell death and survival
Lipid metabolism, nucleic acid metabolism
Cellular assembly and organization, DNA replication, recombination, and repair, cell morphology
Cardiovascular system development and function, organismal development

hsa-mir-4652 133 Cellular development, cellular growth and proliferation
Organ Morphology, organismal development, organismal injury and abnormalities
Cardiovascular system development and function, skeletal and muscular system development and 
function
Immune response

hsa-mir-4746 54 Skeletal and muscular disorders, organismal development
Cellular assembly and organization, nervous system development and function, tissue morphology
Cellular development, cellular growth and proliferation
Intracellular membrane-bounded organelle

hsa-mir-3648 14 Connective tissue disorders, development disorder, endocrine system disorders

hsa-mir-3687 14 Cellular development, cellular growth and proliferation, cell cycle
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