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Abstract—In recent years, there has been a growing interest in applying convolutional neural networks 

(CNNs) to low-level vision tasks such as denoising and super-resolution. Due to the coherent nature of the 

image formation process, optical coherence tomography (OCT) images are inevitably affected by noise. This 

paper proposes a new method named the multi-input fully-convolutional networks (MIFCN) for denoising 

of OCT images. In contrast to recently proposed natural image denoising CNNs, the proposed architecture 

allows the exploitation of high degrees of correlation and complementary information among neighboring 

OCT images through pixel by pixel fusion of multiple FCNs. The parameters of the proposed multi-input 

architecture are learned by considering the consistency between the overall output and the contribution of 

each input image. The proposed MIFCN method is compared with the state-of-the-art denoising methods 

adopted on OCT images of normal and age-related macular degeneration eyes in a quantitative and 

qualitative manner.    

 

Index Terms—Fully convolutional network (FCN), Multi-input FCN, Image denoising, Optical 

Coherence Tomography (OCT). 
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1. INTRODUCTION 

Optical coherence tomography (OCT) is a noninvasive imaging modality which is widely applied in the diagnosis 

and treatment planning of various ocular diseases [1]. Due to interferometry nature of the image formation process, 

noise corruption is inevitable during OCT imaging. The presence of noise heavily degrades the image quality and 

complicates the image analysis. Quality of OCT imaging could be improved either by applying higher incident 

power or longer exposure time [2]. Both of these options cannot be used because 1) The incident power is limited 

by the safety guidelines, and 2) The imaging speed is an important factor to avoid motion artifacts caused by the 

fixation eye movements [3] or enable 3-D volumetric imaging. Thus, image denoising is an essential step in many 

OCT image analysis tasks. 

There exist many proposed methods regarding the OCT image denoising, where, the early spatial filtering 

approaches [4] are based on computing local statistics of the degraded image in the spatial domain. Image content 

can be transformed into another domain like the filtering response domain [5] or multi-resolution domain [6,7], 

where image statistics are modeled more efficiently. Although the results obtained through the transform domain 

approaches are promising, their limited modeling ability generally result in smoothing or unexpected artifacts [8]. 

The image modeling ability has been improved by the introduction of patch-based approaches, because patches 

have lower dimensions compared to the whole image, and are easier to model. Moreover, patches capture local 

image statistics, thus edges and local structures are treated better. Some of the most successful modeling 

approaches consist of the Markov random field (MRF) [9], sparse representation [10], and Gaussian mixture 

models (GMM) [11]. Some of the recent studies where the patch-based sparse representation is applied to OCT 

image reconstruction consist of [12–16]. Recently, a variant of GMM [17] is applied to OCT image denoising with 

promising results [18]. Most of the mentioned approaches are enhanced greatly by applying the nonlocal similarity 

[19] in natural images. Although in this realm reasonable success is recorded due to the mentioned approaches, they 

mostly rely on computationally expensive optimization algorithms in the reconstruction stage. Moreover, patch 

aggregation through averaging negatively affects the effectiveness of the image model [10]. 

Deep learning approaches are proven to be highly effective in many high-level vision tasks [20,21] and are 

successfully applied in medical image recognition tasks, including classification detection and segmentation. The 

great success of the neural networks and the progress made in their training methods pave the way for applying the 

neural networks as a promising alternative approach to deal with the image denoising problems. The authors in [22] 

are the first who revealed that denoising through a convolutional neural network (CNN) could outperform several 

well-known methods. In [23], it is revealed that a multi-layer perceptron (MLP) can have comparable performance 

to the benchmark BM3D [24]. The MLP has a fully connected architecture which makes the computation of both 

the training and inference intensive. Therefore, considerable attention has been recently given to CNNs [25,26]. 

In this paper, following [12–15] where they learned mappings from noisy images to high signal-to-noise (SNR) 

images using sparse representations, a specifically designed CNN is proposed for this purpose. To the best of the 

authors' knowledge, the proposed method is the first CNN-based OCT image denoising method. With the advances 

made in OCT imaging, the acquisition of 3-D volumetric scans of the retina is widely applied in its clinical sense. 
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Practical application of the information from nearby images is a promising manner in reducing noise [14,16]. 

Although the neural network-based denoising approaches are efficient, the focus of most is on 2-D gray-scale 

image denoising [27]. The issue of how to effectively apply the high correlations among nearby OCT images to 

reduce noise by a CNN is not assessed yet.  

The objective here is to develop a network architecture for OCT image denoising where the high correlations are 

effectively used among nearby OCT images through a multi-branch network. Each branch is a fully-convolutional 

network (FCN) with the objective to reduce the noise of its input. This method is named the multi-input FCN 

(MIFCN). The results obtained through these FCNs are fused by an intermediate weighted averaging module 

inspired by the nonlocal mean weighting mechanism [19], which produces weight matrices for each branch. Then, 

Hadamard products of the weight matrices and the outputs of each branch are computed to generate the averaging 

module’s output. The output is processed by another set of convolution layers to generate the final reconstructed 

image. Because the weighting mechanism suppresses the useless contributions among nearby images, it can be 

assured that the proposed method can capture their correlations while it is insensitive to small variations in the 

inputs. The parameters of the proposed MIFCN method can be learned by optimizing a loss function that is 

specifically designed to enable end-to-end training of the overall architecture. 

The rest of this paper is organized as follows. In the following section, we briefly review related works. Next, we 

describe the proposed MIFCN method in Sec. 3. Training the parameters are presented in Sec.4. The experimental 

results are presented in Sec.5, and the paper is conducted in Sec. 6. 

2. RELATED WORKS 

2.1 CONVOLUTIONAL NEURAL NETWORK 

CNN is a multilayer architecture with an input layer, an output layer, and multiple hidden layers. The hidden 

layers mostly consist of convolutional and pooling layers. The last hidden layers can be fully connected layers for 

global decision-making. The convolution and pooling layers enable the whole structure to extract a hierarchical 

representation of the data, where the shallower layers concentrate on low-level features, while the deeper layers 

represent higher-level features [28]. Each layer is composed of multiple feature maps. Each unit in a feature map 

(neuron) is computed by a local operation (i.e., convolution or pooling), on the previous layer. By contrast, in a 

fully connected layer, each neuron is connected to every neuron in the antecedent layer. The local connectivity 

greatly reduces the number of parameters to be learned and captures natural images' local statistics. Moreover, 

these local operations can be run on arbitrary-sized inputs. Therefore, Long et al. [29] proposed a variant of CNNs 

by casting fully connected layers into convolutions and named it FCN, which makes the FCN a natural choice for 

image transformation tasks. 

2.2 NETWORK ARCHITECTURES 

In general, the main purpose of successive convolution and pooling layers in CNNs is hierarchical feature 

extraction. However, the pooling or sub-sampling, in any form, leads to a loss of spatial information [30,31]. 
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Therefore, a network architecture without subsampling layers is chosen as a building block for implementing our 

proposed MIFCN method.  

The context aggregation network (CAN) is recently proposed for semantic segmentation [30], and it consists 

mainly of convolution layers with dilated convolutions. The dilated convolution provides the means to aggregate 

the contextual information without the need for any form of subsampling. More recently, a fast and compact variant 

of CAN is applied for approximating some image processing operators [31].  

2.3 CONVOLUTION LAYER AND DILATED CONVOLUTION 

Convolution layer is the main ingredient of a CNN architecture [29]. Each convolution layer is composed of 

several feature maps of the same size, where each feature map highlights the regions in the input that are most 

similar to its corresponding filter. These filters are learned in the sense that they eventually activate suitable 

features for a given task. During the forward pass, the feature maps are computed from the previous layer through 

Eq. (1): 

𝐹𝑖
𝑙 = 𝑏𝑖

𝑙 + ∑ 𝐹𝑗
𝑙−1 ∗𝑑 𝐾𝑖,𝑗

𝑙
𝑗 , (1) 

where, 𝐹𝑖
𝑙 is the ith feature map of layer 𝑙, 𝐹𝑗

𝑙−1 is jth feature map of the antecedent layer (𝑙 − 1), 𝐾𝑖,𝑗
𝑙 is a convolution 

kernel, the operator ∗𝑑 is the dilated convolution with dilation 𝑑, and 𝑏𝑖
𝑙 is a bias. By increasing the dilation d, the 

filter can tap locations separated by the factor d without losing resolution [30]. In its mathematical sense, the 

d-dilated convolution at location x between a feature map and a kernel is expressed through Eq. (2): 

(𝐹 ∗𝑑 𝐾)(𝑥) = ∑ 𝐹(𝑎)𝐾(𝑏)𝑎+𝑑𝑏=𝑥 , (2) 

2.4 ACTIVATION LAYER 

To enhance the representation ability of neural networks, the results of a convolution layer usually pass through a 

point-wise nonlinearity. A favorite activation function is the rectified linear function (ReLU), and because its 

outputs are zero for all negative values, some neurons may die (dying ReLU problem). The leaky variants of ReLU 

are applied to overcome this problem. Here, the leaky ReLU (LReLU) [32] defined as 𝜎(𝑥) = max (𝛼𝑥, 𝑥) is 

applied where the constant parameter 𝛼 (named the leak parameter) determines the slope for the negative values. 

 

Fig. 1. The overall structure of the proposed MIFCN method for OCT image denoising. The numbers in front of the letters k, 
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d, and c represent kernel size, dilation rate, and some feature maps, respectively. 

3. THE PROPOSED MIFCN METHOD FOR OCT IMAGE DENOISING 

Given an OCT image observation 𝑌1 (main image) with T-1 number of its nearby OCT images, it is sought to 

design a network that can effectively utilize the correlations among these T inputs {𝑌1, … , 𝑌𝑇} and reduce noise of 

the main image in an effective manner. This problem can be considered as a regression problem [12,13]. Here a 

multi-input architecture is proposed that can be learned in an end-to-end manner. The overall architecture of the 

proposed MIFCN method is shown in Fig. 1. Each branch consists mainly of convolution layers with the objective 

to reduce the amount of noise in its input, thus, making each branch an FCN. Here, a weighted averaging module is 

applied to combine the results based on their similarity to the main image (𝑌1). This architecture is followed by 

another convolution and activation layers to enhance its modeling ability and yield better results. 

 

 

Fig. 2. The structure of each FCN applied in the overall architecture here (Fig. 1) of the proposed MIFCN method. The 

numbers in front of the letters k, d, and c represent kernel size, dilation rate, and number of feature maps, respectively. 

 

The network for each branch is designed according to Fig. 2. A similar network structure is applied to all 

branches. This structure consists of three convolution layers, all with the same number of feature maps C = 24. The 

dilation rate (d) for each one of the hidden layers are set to 1, 2, and 1, respectively. The output of each convolution 

layer is passed through an activation layer. Let the input to the tth branch be  𝐹0 = 𝑌𝑡 ∈ 𝑅𝑀×𝑁,  where  𝑡 ∈

{1,2, … , 𝑇}, then, each feature map in the convolution layers is computed through Eq. (3): 

𝐹𝑖
𝑙 = 𝜎(𝑏𝑖

𝑙 + ∑ 𝐹𝑖
𝑙−1 ∗𝑑 𝐾𝑖,𝑗

𝑙 )𝐶
𝑗=1 , (3) 

where, 𝑙 ∈ {1,2,3}  is the layer number, and 𝐾𝑖,𝑗
𝑙  is a 3 × 3  kernel. Then, another convolution layer without 

activation layer is applied for reconstructing an output image at the end of each branch: 

𝐹4 = 𝑏𝑖
4 + ∑ 𝐹𝑖

3 ∗1 𝐾𝑖,𝑗
4𝐶

𝑗=1 = 𝑋̂𝑡, (4) 

where, 𝐾𝑖,𝑗
4  is a 1 × 1 convolution kernel. 

During the forward pass, the outputs of branches result in a set of noise reduced images {𝑋̂1, … , 𝑋̂𝑇}. Because the 

inputs are nearby images, the outputs of branches have some spatial correlations. However, there might be slight 

variations among these images. Thus, simple pixel by pixel averaging can result in blurring artifacts [33]. Motion 

compensation algorithms can be used with the expense of high computational cost and tolerating error (even for 

noise-free images) [34]. Here, inspired by the nonlocal mean (NLM) weighting mechanism [19], which is almost 

robust to slight variations in patches [33,35], we propose a module that compares each pixel of the main branch 
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output (𝑋̂1) to the corresponding pixels from the other outputs {𝑋̂2, … , 𝑋̂𝑇}. The proposed module assigns weights 

to pixels of denoised nearby images. Each pixel in the output of the proposed module is simply formed by a 

weighted combination of a pixel from the main branch output and the corresponding pixels from the other outputs; 

consequently, the output of the averaging module is computed through Eq. (5): 

𝑋̅ = ∑ 𝑋̂𝑡
𝑇
𝑡=1 𝜊𝑃𝑡, (5) 

where, 𝑋̅ is the output of the weighted averaging module, 𝑋̂𝑡 is the output at the end of each branch, 𝑃𝑡 is the weight 

matrix with the same size as 𝑋̂𝑡, and the operator 𝜊 is the Hadamard product. Each entry in the weight matrix (𝑃𝑡) 

reflects the similarity among the corresponding pixels in the main branch output (𝑋̂1) and the tth branch output (𝑋̂𝑡), 

therefore, the maximum scores are always assigned to the main branch pixels where the entries of 𝑃1 are bigger 

than the others. To compute the weight matrix, first, it is necessary to compute the differences among the 

corresponding pixels from denoised nearby images through Eq. (6): 

𝐷𝑡 = (𝑋̂1 − 𝑋̂𝑡)
2

,  𝑡 ∈ {1,2, … , 𝑇}, (6) 

where, 𝐷𝑡 is the intensity difference matrix, the elements of which are the differences among the pixels from the 

main branch (𝑋̂1) and pixels from the tth branch (𝑋̂𝑡). This matrix can be applied in computing the exponentially 

decaying weights for pixels of an image through Eq. (7): 

𝑊𝑡 = exp(−𝐷𝑡\ℎ), (7) 

where, 𝑊𝑡  is the matrix of weights associated to each pixel in the tth branch prediction, and h is a constant 

parameter. To assure that these weights sum to one, the weight matrix is normalized using Eq. (8): 

𝑃𝑡 = 𝑊𝑡\(∑ 𝑊𝑡
𝑇
𝑡=1 ), (8) 

The result of the weighted averaging module is processed through another set of convolution layers, Fig. 1, where 

the output of the averaging module (𝑋̅) is fed into a convolution followed by LReLU activation layers to obtain the 

last hidden feature map (𝐹𝑖
5). This feature map (𝐹𝑖

5) is converted to the final image through a 1x1 convolution layer 

as follows: 

𝐹6 = 𝑏𝑖
6 + ∑ 𝐹𝑗

5 ∗1 𝐾𝑖,𝑗
6𝐶

𝑗=1 = 𝑋̂𝑅 , (9) 

where, 𝑋̂𝑅denotes the final result of the proposed 3-D reconstruction method.  

Before concluding this section, it is worth mentioning that unlike the original NLM weighting mechanism [19,33] 

which is based on comparing small patches around each pixel, here, the weights are computed based on comparing 

pixels between nearby denoised images. We have experimentally found that this pixel by pixel averaging module is 

strong enough to provide plausible results and avoid extra computations.  The reasons can be explained as follows: 

1) noise is expected to be reduced in each branch, thus pixel by pixel comparison is more robust compared to such 

a comparison among clear noisy images, and 2) this module can be compared with local filtering approaches [4]. In 

local filtering approaches, a pixel is denoised based on the weighted average of pixels surrounding it. Here, instead 

of considering a neighborhood around each pixel, the corresponding pixels from the nearby images are used. 

Therefore, it is reasonable to apply the same principles. 
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4. LEARNING THE PARAMETERS 

Because FCN is not sensitive to the input size, an FCN can be trained for denoising by using only patches. In fact, 

training an FCN for denoising using patches have empirically shown to be helpful [25,26]. This is because it 

enables the network to capture more local information. As shown in Fig. 1, the proposed MIFCN architecture has T 

branches. To train the parameters of all branches in a simultaneous manner, T patch pairs are needed. In contrast to 

the test dataset, the training dataset does not include nearby OCT images. Because the training procedure is based 

on using patches, we can find similar patches for each patch. By following a simple procedure, we can create a 

dataset of patches and the similar ones as a training dataset. Here, first, N patches of size p1 × p2 pixels are 

extracted from all high SNR images and next, for each patch in an image, the T most similar patches (including the 

patch itself) are collected by nonlocal searching [19] in that image. By extracting the corresponding noisy patches 

for each patch, the following training set is created: 

𝐷 = {{(𝑦1
(𝑗)

, 𝑥1
(𝑗)

) , … , (𝑦𝑇
(𝑗)

, 𝑥𝑇
(𝑗)

)}}
𝑗=1

𝑁

, (10) 

where, 𝑦𝑡
(𝑗)

 is the tth similar patch for the jth noisy patch and 𝑥𝑡
(𝑗)

is its corresponding high SNR patch.  

Given the training dataset D, a loss function is needed to train the set of parameters 𝜃 of the network architecture, 

which 𝜃 includes kernels and biases of all feature maps. The widely applied mean squared error (MSE) is the 

common choice for image reconstruction purposes. Nevertheless, here, the proposed MIFCN architecture cannot be 

trained using pure MSE. In the MSE, only the error between predicted outputs and desired outputs are of concern. 

Because the proposed MIFCN architecture has multiple branches, training its parameters using only MSE might 

result in a useless branch with zeros as outputs. Instead, a loss function is designed where the consistency between 

the overall output and the contribution of each branch are taken into account. This loss function enables training the 

architecture in an end-to-end manner: 

𝐽(𝜃) =
1

𝑁
∑ ∑ (𝑋̂𝑡

(𝑖)
− 𝑋𝑡

(𝑖)
)

2
𝑇
𝑡=1

𝑁
𝑖=1  +

1

𝑁
∑ (𝑋̂1

(i) − 𝑋̂𝑅
(𝑖)

)
2

N
i=1 , (11) 

where, N is the number of training patches, T is the number of branches, 𝑋̂𝑡
(𝑖)

 is the output of  the last feature map in 

the tth branch for the ith noisy training patch, 𝑋̂𝑅
(𝑖)

 is the final output of the architecture for the ith noisy training patch, 

and 𝑋𝑡
(𝑖)

 is the corresponding high SNR patch.  

In Equation (11), the first term encourages the similarity between the result of each branch and the corresponding 

high SNR patch. This is because the last feature map should be a noise reduced version of its input. The second term 

encourages the similarity between the final output and the prediction of the first branch (or main branch). In this 

way, we can ensure that slight variations in the inputs cannot negatively affect the final output.  

For training, the loss function 𝐽(𝜃) is minimized using a gradient descent based optimizer [36]. The network is 

trained with the augmented data generated by horizontal and vertical flipping, and +90-degree rotation. All of the 

training data are presented for 60 epochs; in the first 30 epochs, the learning rate is set to 0.0001, and next, it is set 

to 0.00001 for the remaining epochs. The total training time for this architecture is less than two hours. 
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5. EXPERIMENTAL RESULTS 

In this section, we present experimental results of the proposed MIFCN method. We compare the proposed 

MIFCN methods with some of the well-known state-of-the-art denoising methods. The source code of our method 

will be made publicly available on the website (https://github.com/ashkan-abbasi66/MIFCN). Also, all of the 

visual results of the proposed method and compared methods are now available on the website. 

5.1 THE DATASETS 

To train and evaluate the proposed MIFCN method, we have used the spectral domain OCT (SDOCT) datasets 

that were made publicly available by [12–14]. All of these images are captured by a Bioptigen SDOCT imaging 

(Durham, NC, USA) from 28 subjects with normal and age-related macular degeneration (AMD) eyes. In the 

training part, there exist ten pairs of noisy and high SNR images. The high SNR images were acquired by 

registration of azimuthally repeated OCT images from the fovea [12–14]. The rest of the images are used as a test 

dataset. For each test image, four noisy nearby OCT images are also provided together with a high SNR image, 

consequently, an image denoising algorithm can exploit one or more OCT images to reconstruct a high-quality 

OCT image. 

5.2 THE QUANTITATIVE METRICS 

The performance of the proposed MIFCN method is assessed by different image reconstruction metrics. The 

peak-signal-to-noise-ratio (PSNR), mean-to-standard-deviation ratio (MSR) [37], contrast-to-noise-ration (CNR) 

[38], and equivalent number of looks (ENL) [6] are used here. Due to the availability of high SNR images, PSNR is 

computed as a widely accepted metric in this scenario. This metric is defined based on the intensity differences 

between the output and a reference image. The other metrics do not need the reference images and are computed 

locally. Therefore, a few regions of interest (ROIs) are selected from the images. The contrast between foreground 

regions (e.g., red box #2-#6 in Fig. 3) and background noise is measured through the CNR metric. The background 

noise is computed in the background region (e.g., red box #1 in Fig. 3). The CNR metric is big when ROIs contain 

prominent features. The MSR is a sign of good feature recovery without considering the background regions. 

Smoothness in background regions is assessed by ENL. Large ENL values indicate a stronger noise is smoothing in 

background areas [6], moreover, the Wilcoxon signed-rank test is applied to show the statistical differences 

between the proposed MIFCN method and the compared methods. 

5.3 THE COMPARED METHODS 

The proposed MIFCN method is compared with some of the well-known denoising methods. The comparison 

methods consist of: K-SVD denoising algorithm [10], block matching and 3-D filtering (BM3D) [24], spatially 

adaptive iterative singular-value thresholding (SAIST) [39], patch group based Gaussian mixture model 

(PG-GMM) [40], block matching and 4-D filtering (BM4D) [41], and segmentation based sparse reconstruction 

(SSR) [14].  

https://github.com/ashkan-abbasi66/MIFCN
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The K-SVD denoising algorithm [10] is a well-known sparse representation based image denoising method, 

where, the sparse representation over a learned dictionary is applied to remove noise. The benchmark BM3D [24] 

combines the advantages of sparsity-based image modeling and nonlocal similarity within each group of similar 

patches. The BM4D [41] is an extension of BM3D for the volumetric data. In BM4D, groups of similar cubes are 

collaboratively filtered to reduce noise, therefore, the BM4D can naturally capture the correlation among multiple 

images. A low-rank approach is applied in SAIST [39] to characterize the local and nonlocal variations in a group 

of similar patches. In contrast to the existing nonlocal image restoration methods which are based on nonlocal 

similarity of corrupted patches, the PG-GMM [40] learns a nonlocal prior from an external training dataset consists 

of groups of similar patches. The SSR [14] is a recently proposed OCT image reconstruction algorithm which 

performs sparse representation over learned dictionaries for each layer. The dictionary for each layer is 

learned/selected using a segmentation algorithm. Thus, the SSR combines a good modeling approach (i.e., sparse 

representation over learned dictionaries) and a good model selection strategy. 

5.4 THE ALGORITHM PARAMETERS 

Most of the parameters of the proposed MIFCN method, including kernels and biases of feature maps, are learned 

automatically from the training data. The constant parameter 𝛼 of LReLU function was set to 0.2 and the identity 

initialization method [30] is adopted to initialize the kernels and biases of feature maps. The number of branches (T) 

is, in general, dictated by the imaging configuration (more specifically, it is based on the azimuthal resolution of the 

OCT volume). This is because the contributions of images with large difference in contents are to be avoided here. 

However, there is a constant parameter h in the exponential weight function (7) that can be used to control the 

amount of contributions from nearby OCT images. The test dataset here has five images per subject. Therefore, the 

number of input branches T is set to 5. The constant parameter h is experimentally set to 400. Setting a smaller 

value for h weakens the contributions of nearby images.  

For training, ten pairs of noisy and high SNR images are used. The patches of size 15×15 pixels are extracted. 

Bigger size patches may cause blurring artifacts because of losing small details and patches of small size are more 

likely to capture noise [26]. Because there exists a large background portion in OCT images, first, a portion 

containing the retina from each training image is manually cropped and next, patches are extracted with as less 

overlap as possible to increase the variety of training samples. A total of 400 patch pairs are extracted from each 

training image pair. Flipping and rotation are applied to augment the training data by a factor of 3. Therefore, the 

number of training samples (N) in Equation (10) is 400 × 10 × 3. After training the model, all of the mentioned 

parameters are kept unchanged during the experiments. The parameters of the compared methods are optimally 

assigned or set according to their original papers. 
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 Fig. 3. Comparison of two denoised images by the compared methods: first column: (A) Original Noisy Image, (B) 

KSVD Denoising (PSNR = 26.05), (C) BM3D (PSNR = 26.25), (D) SAIST (PSNR = 26.01), (E) PG-GMM (PSNR = 

26.1), (F) BM4D (PSNR = 26.48), (G) SSR (PSNR = 26.89), (H) proposed MIFCN method (PSNR = 27.49), (I) 

registered and averaged images and second column: (J) Original Noisy Image, (K) KSVD Denoising (PSNR = 26.13), 

(L) BM3D (PSNR = 26.02), (M) SAIST (PSNR = 26.16), (N) PG-GMM (PSNR = 25.89), (O) BM4D (PSNR = 26.54), 

(P) SSR (PSNR = 27.06),  (Q) proposed MIFCN method (PSNR = 27.56), (R) registered and averaged images.  

 

5.5 RESULTS FOR OCT IMAGE DENOISING 

The two denoising results of the proposed MIFCN method are shown in Fig. (3), where, the corresponding high 

SNR images are shown at the bottom of each column. As can be seen, K-SVD, BM3D, SAIST, and PG-GMM 
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attenuate the noise while result in apparent visual artifacts. Exploiting self-similarity in BM3D, SAIST, and 

PG-GMM allows better reconstruction of retinal layers. The SAIST method is based on a low-rank approach which 

is a powerful technique, especially for background regions.  However, this method results in more artifacts 

especially in retinal layers compared to other methods (e.g., compare red box#4 in Fig. 3, (D) and (M) with their 

corresponding boxes in other images). The visual results confirm that BM4D, SSR, and the proposed method can 

better preserve layer structure due to exploiting correlation among nearby OCT images. Similar to the results of 

BM3D (e.g., Fig. 3, (C) and (L)), applying fixed bases in BM4D limits modeling ability and results in the formation 

of visible artifacts. However, there are fewer artifacts in the results of BM4D compared to the BM3D’s results. This 

might be attributed to finding better matches by grouping 3-D patches in BM4D instead of grouping 2-D patches in 

BM3D. Although the SSR applies learned dictionaries for reconstruction of each layer, its reconstruction results are 

too smooth. The layer boundaries are reconstructed very well, but the smoothness can be easily observed from the 

background regions (vitreous and sclera) and cloudy appearance choroidal region below retinal layers. 

The visual results can be validated by the average quantitative results, tabulated in Table I and II. In Table I, the 

three quantitative metrics (i.e., MSR, CNR, and ENL) which are widely applied in evaluating OCT reconstruction 

algorithms [6,14] are reported. The average PSNR results are tabulated in Table II. These quantitative results reveal 

that the proposed MIFCN method performs reasonably well in terms of all metrics, except for the mean of the ENL 

values. This is because ENL measures smoothness in background regions, therefore, these high ENL values for 

SAIST are attributed to the strong noise suppression in background areas due to exploiting a low-rank strategy. For 

the SSR method, smoothing textures is the main cause of yielding high ENL values. However, because SSR can 

well preserve the layers’ structures, other metrics have relatively high values. All of these qualitative and 

quantitative results suggest that the proposed MIFCN method outperforms the other methods for OCT image 

denoising. 

Table I 

Mean and standard deviation (SD) of the MSR, CNR, and ENL results for denoising 18 foveal images by the compared 

methods. Where p<0.05, the metrics for each test method are considered statistically significant and were marked by “*”. 

Best results in the mean values are shown in bold. 

Method 

MSR  CNR  ENL 

Mean SD p value 
 Mea

n  
SD p value 

 
Mean  SD p value 

K-SVD 7.53 1.26 8.91E-04*  3.39 0.52 4.80E-07*  776.33 150.54 5.61E-14* 

BM3D 6.86 0.96 1.34E-08*  3.21 0.45 2.33E-10*  1228.17 511.56 3.60E-10* 

SAIST 7.52 1.45 1.72E-03*  3.19 0.47 4.84E-10*  5752.29 1142.22 4.48E-10* 

PG-GMM 7.17 1.20 8.64E-06*  3.22 0.48 1.09E-09*  995.42 314.31 5.21E-13* 

BM4D 7.07 0.81 1.67E-09*  3.31 0.44 4.73E-10*  1037.98 262.66 4.02E-14* 

SSR 8.04 0.92 1.40E-03*  3.57 0.49 5.74E-06*  5225.34 3236.76 5.57E-03* 

MIFCN 8.38 0.94   3.75 0.52   2750.75 400.98  
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Table II 

Mean and standard deviation (SD) of the PSNR (dB) results for denoising 18 foveal images by the compared methods. 

Where p<0.05, the metrics for each test method are considered statistically significant and were marked by “*”. Best results 

in the mean values are shown in bold. 

Method 
PSNR 

Mean SD p value 

K-SVD 26.21 2.68 1.54E-06* 

BM3D 26.18 2.68 1.60E-07* 

SAIST 26.15 2.73 1.30E-06* 

PG-GMM 26.08 2.67 6.96E-07* 

BM4D 26.66 2.74 2.41E-07* 

SSR  27.23 2.86 9.48E-01 

MIFCN 27.37 2.73  
 

 

The average run-time (in seconds) for denoising obtained using the compared methods are tabulated in Table III. 

All experiments are run on a desktop PC with an Intel® i7-7700K CPU at 4.2 GHz, 16 GB of RAM, and a GPU of 

NVIDIA GeForce GTX 1080 Ti. According to this table, the proposed MIFCN method has the least run-time both 

on CPU and GPU. 

Table III 

Average Runtime (seconds) for denoising 18 foveal images by the compared methods. Best result is shown in bold. 

Method Runtime (seconds) 

K-SVD 28.61 

BM3D  6.89 

SAIST  69.30 

PG-GMM  52.72 

BM4D  46.88 

SSR  16.31 

MIFCN CPU:  1.008 

GPU:  0.064 
 

 

5.6 EFFECTS OF DIFFERENT VALUES OF THE PARAMETER h 

The objective here is to reduce the noise of an OCT image by exploiting the correlation among nearby OCT 

images.  The number of contributions from other branches (or nearby images) controlled through a constant h in Eq. 

(7). A few visual results are presented in Fig. 4, where, if a very small value is selected for h (Fig. 4 (C)), the final 

result (𝑋̂𝑅) is almost identical to the prediction of the main branch (𝑋̂1), because very small weights are assigned to 

each pixel of other branches. As the value of this constant increases, the amount of contributions from other 

denoised nearby images increase in a continuous manner. Comparing Fig. 4 (D) and (F) clearly indicates that in 
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Fig. 4 (D) small features become blurry and the reconstruction result suffers from artifacts. Because the constant 

value of h has a significant effect on the final result, the effects of different values for this parameter are assessed in 

an experimental manner. 

 

 

 

 Fig. 4. The effect of different values of the parameter h for denoising a retinal OCT image. The second column shows 

a magnified region. Images (A) and (B) are the original Noisy Images, (C) and (D) are the MIFCN’s outputs applying h 

= 1; (E) and (F) are the MIFCN’s output applying h = 400; and (G) and (H) are the MIFCN’s outputs applying h = 2000. 

This figure is better observed by zooming on a computer screen. 

 

Quantitative metrics can be contributive in selecting an appropriate value for h. The mean values of some metrics 

which are obtained using different values of the parameter h are tabulated in Table IV. However, each metric has its 

own merits and drawbacks; therefore, visual inspection is still the most prominent tool. 

Table IV 

Mean of the MSR, CNR, ENL, and PSNR results for denoising 18 foveal images obtained using different values of the 

parameter h for the proposed MIFCN  method 

h value MSR CNR ENL PSNR 

1 7.40 3.53 735.46 26.77 

100 7.87 3.63 2557.01 27.14 

200 8.12 3.69 2712.91 27.26 

300 8.27 3.72 2744.02 27.33 

400 8.38 3.75 2750.75 27.37 

500 8.45 3.77 2753.79 27.39 

600 8.51 3.79 2751.27 27.41 

700 8.56 3.80 2748.64 27.42 

800 8.59 3.82 2749.03 27.42 

900 8.63 3.83 2748.38 27.43 

1000 8.65 3.84 2747.28 27.43 
 

For an ideal metric, it is natural to expect that an increase in the h constant value, would increase the metric value 

to a certain point, and then it begins to decrease. This is because increasing the h value leads to more contributions 
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from other nearby images. This would reconstruct an image which is not faithful to the main input image. As 

observed in Table IV, the MSR and CNR metrics are not helpful in this experiment, because their values are on a 

continuous rise. The ENL and PSNR give more relevant results which are more consistent with the visual results in 

Fig. 4. For example, when the parameter h is greater than 500 in Table IV, the ENL value begins to decrease, and 

the PSNR value remains almost constant. Figure 4 (F) and (H) demonstrate that when the h constant value is much 

larger than 500, the small features become less visible, and the result becomes blurry. Therefore, for a given dataset 

of OCT images, both the quantitative metrics and the visual quality of the reconstruction results must be considered 

to find an appropriate value for h. Here, h = 400 is applied for all experiments in Sec. 5.5. 

5.7 EFFECTS OF THE NUMBER OF LAYERS  

In this section, it is revealed how the number of convolution layers could affect the performance of the proposed 

MIFCN method. In the architecture of MIFCN (Figs. 1 and 2), the main ingredients consist of  3 × 3 convolutions 

followed by LReLU activation layers, 1 × 1 convolution layers, and a pixel by pixel averaging module. Here, the 

focus is on varying the number of 3 × 3 convolution layers while keeping all other things unchanged.  

The mean squared error (MSE) of five different configurations are tabulated in Table V. These configurations are 

indicated by MIFCN-A-B, where A is the number of 3 × 3 convolution layers for each branch (Fig. 2), and B is the 

number of 3 × 3 convolution layers right after the pixel by pixel averaging module (Fig. 1). A similar training set 

and training procedure are applied to learning the parameters of each configuration. Here, for evaluating each 

trained model, the learned model is used for reconstructing both the test and training sets. This is because changing 

the number of layers might easily lead to overfitting or underfitting. Therefore, evaluating errors for the training 

and test sets can provide more insights into the performance of a given model. 

Table V 

MSE for the training and test sets. The best test set MSE is shown in bold. 

Configuration Training set Test set 

MIFCN-3-0 84.64 120.55 

MIFCN-3-1 84.83 119.23 

MIFCN-3-2 85.64 120.28 

MIFCN-4-1 79.7 120.12 

MIFCN-2-1 94.18 123.13 
 

In Table V, the configuration indicated by MIFCN-3-1 shows the main model, which is applied to all experiments 

in the previous sections. Removing the convolution layer after the pixel by pixel averaging module leads to a model 

(MIFCN-3-0) with slightly inferior test performance. The configurations MIFCN-3-2 and MIFCN-4-1 exhibit that 

adding more convolution layers cannot improve the performance of the main model and this is due to the lack of 

training data. The MIFCN-4-1 configuration clearly shows that the model needs more data since the MSE for the 

training set decreases significantly, but the test error does not improve. The last configuration in Table V shows that 

removing one convolution layer from each branch leads to a model (MIFCN-2-1) with limited modeling ability. For 

this model, the MSEs for the training and test sets are significantly higher than the other configurations. These 
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quantitative comparisons reveal that the main model (MIFCN-3-1) offer a good trade-off between performance and 

complexity. 

6. CONCLUSION 

In this paper, a neural network (named MIFCN) is proposed for denoising SDOCT images. The proposed MIFCN 

method exploits a weighted averaging module inspired by the nonlocal mean method [19] to effectively capture 

useful information from nearby OCT images. We show how the parameters of the proposed MIFCN method can be 

learned in an end-to-end manner. Extensive experiments are run to compare the proposed MIFCN method with 

some of the well-known methods. The experimental results indicate the effectiveness of the proposed MIFCN 

method over the compared methods. It can effectively reduce noise while preserving the textures and layer 

structures. The proposed MIFCN method produces fewer artifacts compared to other methods. Therefore, it is not 

only useful for OCT image quality improvement, but also it might be a good preprocessing step for retinal layer 

segmentation methods. In the future, we would like to incorporate segmentation information into the proposed 

MIFCN method [14]. Also, we would like to extend the proposed MIFCN method for OCT image interpolation 

[14,15]. In addition, although we only considered the task of retinal OCT image denoising, the proposed MIFCN 

method might also be applied to denoising of other medical images. 
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