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ABSTRACT 

Due to increase in antibiotic resistance in recent years, development of efficient and accurate 

techniques for discovery and design of biologically active peptides such as antimicrobial peptides 

(AMPs) has become essential. The screening of natural and synthetic AMPs in the wet lab is a 

challenge due to time and cost involved in such experiments. Bioinformatics methods can be used 

to speed up discovery and design of antimicrobial peptides by limiting the wet-lab search to 

promising peptide sequences. However, most such tools are typically limited to the prediction of 

whether a peptide exhibits antimicrobial activity or not and they do not identify the exact type of 

the biological activities of these peptides. In this work, we have designed a machine learning based 

model called AMAP for predicting biological activity of peptides with a specialized focus on 

antimicrobial activity prediction. AMAP used multi-label classification to predict 14 different 

types of biological functions of a given peptide sequence with improved accuracy in comparison 

to existing state of the art techniques. We have performed stringent performance analyses of the 

proposed method. In addition to cross-validation and performance comparison with existing AMP 

predictors, AMAP has also been benchmarked on recently published experimentally verified 

peptides that were not a part of our training set. We have also analyzed features used in this work 

and our analysis shows that the proposed predictor can generalize well in predicting biological 

activity of novel peptide sequences. A webserver of the proposed method is available at the URL: 

http://faculty.pieas.edu.pk/fayyaz/software.html#AMAP  

Keywords: Biologically active peptides, Antimicrobial peptide prediction, multi-label 

classification, Antibiotic resistance,  Antibiotic peptide prediction. 

1. Introduction 

http://faculty.pieas.edu.pk/fayyaz/software.html#AMAP
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Antimicrobial peptides (AMPs) are short length peptide sequences which can perform 

antimicrobial activity, help in fighting infectious diseases and protect hosts from pathogenic 

bacteria [1–4]. Due to the emergence of antibiotic resistance, AMPs have become a very active 

area of research. Identification of naturally occurring AMPs and design of synthetic ones is 

challenging due to the time and cost involved in the design and execution of biochemical assays 

for testing or screening candidate peptides [5–7]. As a consequence, development of computational 

techniques for prediction of antimicrobial and other significant biological activities of peptide 

sequences is very important. An ideal computational method in this domain should be able to 

predict possible biological activities (antimicrobial, antibacterial, antiviral, antifungal, anti-

cancerous, etc.)  of a given peptide sequence and correctly identify the effect of mutations in such 

peptides.  

In the last few years, many databases of anti-microbial peptides have become available such as the 

Antimicrobial Peptide Database (APD3) [1] which contains experimentally verified natural and 

synthetic peptides with over 20 different biological activities. Collection of Anti-Microbial 

Peptides (CAMP) [3] has also been developed which contains a large number of experimentally 

verified antimicrobial peptides. Database of Antimicrobial Activity and Structure of Peptides 

(DBAASP) [8] contains detailed information about structure and antimicrobial/cytotoxic activity 

of different peptides. dbAMP [9] is a database of experimentally verified AMPs with potent 

biological activity in a variety of different species. The development of these databases has 

accelerated the pace of development of data-driven predictive models for predicting biological 

activity of peptides. A number of different predictors of peptide biological activity are available in 

the literature. However, most existing methods are limited to predicting antimicrobial activity, i.e., 

they can only predict whether a given peptide sequence is anti-microbial or not. For example, 
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AMPA [10] takes a protein sequence as input and predicts its antimicrobial activity and the peptide 

region responsible for such activity. Both CAMPR3 [3] and AmPEP  [11] also take a peptide 

sequence and predict whether it is an antimicrobial peptide or not but, like AMPA, they do not 

provide information about other biological activities or the type of antimicrobial activity (anti-

bacterial, anti-fungal, anti-viral, etc.) a peptide may have. Similarly, AntiMPmod [12] predicts 

antimicrobial activity of a peptide from its tertiary structure. However, the use of peptide structure 

instead of sequence limits the practical use of this method as structure information is typically not 

available for peptides. Vishnepolsky et al. have designed a model which predicts antimicrobial 

potency for some specific strains of Gram negative bacteria [13]. However, their method is not 

generalized for other species or targets. One of the most interesting approaches in this domain is 

Multi-label Anti-Microbial Peptides predictor (MLAMP) [2] as it can predict five different 

biological activities (antibacterial, antifungal, anticancer, antiviral and anti-HIV) of peptides. 

However, its accuracy is low on certain classes. Gabere and Noble [4] have recently performed a 

comparison of existing predictors and found CAMPR3 to have state of the art predictive 

performance for AMP prediction even though the accuracy of CAMPR3 [3] was reported to be 

inferior to MLAMP in the original MLAMP [2] paper. However, there is significant room for 

improvement in the predictive performance of existing methods. 

In this paper, we have attempted to overcome the problems associated with existing AMP 

predictors by developing a hierarchical multi-label predictor called AMAP that can simultaneously 

predict whether a peptide sequence is an AMP or not, the type of its biological activity of a peptide 

and the effect of mutations on its biological activity. We have performed a stringent performance 

evaluation and comparison with existing methods by considering sequence similarity in training 

and test folds in cross-validation. We have also benchmarked our machine learning model on a 
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number of recently published biologically active peptide sequences that were not a part of our 

training or cross-validation data set. We have also performed an in-depth analysis of the predictive 

power of features used for predicting biological activity of peptides. A webserver of our proposed 

method has also been developed which makes large-scale evaluation of biological activity easier 

and accessible for biologists working in this domain.  

2. Materials and Methods 

2.1  Datasets 

2.1.1  Cross-validation dataset 

In line with the recent performance comparison study of different antimicrobial peptide predictors 

by Gabere and Noble [4], we have also used the peptides in APD3 database. Specifically, we have 

used a dataset of 2,704 peptides with 14 different types of biological activities collected from 

APD3 [1] (see Table-1). In the design of our machine learning models these peptides are taken as 

positive examples. Gabere and Noble extracted 8,563 peptides with no known antimicrobial 

activity from UniProt. We used these as negative examples to train and evaluate our model. In 

order to prevent sequence and composition biases from affecting our machine learning model, we 

removed all peptides with more than 40% sequence identity to each other or to the positive set 

using CDHIT [14], leaving a total of 5, 156 negative examples. In order to perform an unbiased 

performance assessment, the sequences are clustered into groups using a 40% sequence similarity 

threshold with CDHIT for group-wise cross-validation. Our dataset shares significant overlap with 

the datasets used in other studies as well. Approximately 52% positive examples in our dataset 

share >40% sequence identity with the dataset used by CAMP-R3(RF) [3]. Similarly, all positive 

examples used by MLAMP are included in our positive set [2].  
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2.1.2 External Validation dataset 

We have also used an external validation dataset which contains experimentally verified 

biologically active peptides collected from different recently published research articles. The 

similarity of these sequences with our training dataset is calculated using CDHIT [14]. We have 

found no significant sequence similarity between peptides in the external validation dataset with 

our training dataset. The maximum percentage identity of a test peptide with the peptides in the 

dataset used for cross-validation is given in supplementary Table-S1. 

2.2  Feature extraction 

We use simple sequence-based feature representation to ensure large-scale applicability as 

characterization of peptide structures is difficult and costly. For feature extraction from the 

collected examples, two representations are used as explained below.  

2.2.1 Amino Acid Composition (AAC) 

AAC is the frequency count of 20 amino acids forming a vector of length 20. This representation 

is useful for capturing information about the frequency of different amino acids in a sequence. 

2.2.2  3-mer Composition  

Amino acid composition does not model the local sequence properties of a peptide. As a 

consequence, we have used 3-mer counts as additional features. First all amino acids are divided 

into 7 groups based on their physiochemical properties. The grouping of amino acids is based on 

dipole moment, side chain volume and their ability to form di-sulphide bonds [15] as shown in 

Table-3. In the second step, all possible 3-mer counts of group labels of amino acids in a given 

peptide sequence is used to create a 73 = 343 dimensional feature vector [16]. This representation 
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captures information about physiochemical properties of amino acids with 3-mer patterns in the 

sequences. 

2.3  Prediction Models 

We have used the following prediction techniques for development of the proposed predictor.  

2.3.1 Support Vector Machines (SVM) 

SVM is a supervised learning algorithm for binary classification that maximizes the margin or 

separation between two classes in the training data [17]. Given a set of 𝑁 training examples 𝒙𝒊, 𝑖 =

1 … 𝑁 with associated labels 𝑦𝑖 ∈ {+1, −1}, an SVM finds an optimal linear decision function 

𝑓(𝒙) = 〈𝒘, 𝒙〉 by maximizing the distance of the linear decision boundary from examples of the 

positive and negative classes (margin) and minimizing the number of misclassifications or margin 

violations through the following objective function.  

𝑚𝑖𝑛𝒘,𝛏 

1

2
𝒘𝑻𝒘 + 𝐶 ∑ 𝝃𝑖

𝑁

𝑖=1

 

Subject to  

𝑦𝑖〈𝒘, 𝒙𝒊〉 ≥ 1 − 𝝃𝒊, 𝝃𝒊 ≥ 0, ∀𝑖 = 1 … 𝑁 

Here 𝝃𝒊 is the extent of margin violation with penalty 𝐶 on the violations. In our model, we used 

class-specific margin violation penalties to counter the effect of class imbalance. SVMs can use 

kernel functions to model non-linear classification boundaries as well. In this work, we used both 

linear and radial basis function kernels for SVMs.  

2.3.2 XGBoost 

We have also used extreme Gradient Boosting (XGBoost) [18] in our study. It is based on boosted 

trees for learning by minimizing the objective function given below: 
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Լ(𝛷) = ∑ 𝑙(ŷ𝒊, y𝑖)

𝑖

+ ∑ Ω(𝑓𝑘)

𝑘

 

Where, 

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆||𝒖||2. 

Here 𝑙(ŷ𝒊, y𝑖) is the loss function of predicted output ŷ𝒊 of the model and actual output y𝒊 for all 

examples and Ω(𝑓𝑘) is a regularization function that is based on the number of trees 𝑇 and the 

norm of the vector of scores 𝒖 at the 𝑘 leaves of the trees. The regularization parameters 𝛾 and 𝜆 

control the relative contribution of the two regularization factors in contrast to minimization of the 

loss function. 

2.3.3 Hierarchical Multi-label Prediction 

Since a single peptide can be associated simultaneously with a number of different biological 

activities, we have modeled this prediction problem as multi-label classification. Multi-label 

predictions can be obtained from a binary classifier by using one-vs-rest classifier fusion [19]. We 

designed our proposed model in two steps: a peptide is first checked whether it is an AMP or not 

and then the type of biological activity it may have is predicted using multi-label prediction. 

2.3.4 Baseline Evaluation using BLAST and Comparison with other methods 

In order to establish a baseline, we used BLAST [20] for prediction of biological activity of 

peptides using our dataset. In this approach, the minimum e-value score of BLAST alignment of a 

peptide sequence against the set of known non-redundant peptides with known activities is used 

as a discriminant function score for predicting biological activity. This approach corresponds to a 

simple sequence-based homology search for biological activity prediction.  
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We have also compared the predictive performance of the proposed scheme with state of the art 

sequence-based predictive methods: CAMPR3-RF [3] and MLAMP [2]. For this purpose, we have 

used the publicly-available webservers of these methods. 

2.4  Cross-validation Strategy 

Previously designed models used different techniques for evaluating the performance of their 

models such as Leave-one-out (LOO) or k-fold cross-validation, etc. The problem the use of such 

cross-validation schemes for performance assessment is that test examples may have high 

sequence similarity with the training set which can result in overestimation of prediction accuracy 

and poor generalization in case of sequences with low sequence similarity to training data [21]. To 

avoid this issue, we used two different strategies for cross-validation. The first technique is Leave-

one-cluster-out (LOCO) [22] cross-validation in which examples are first clustered based on 

sequence similarity through CD-HIT [14] with a sequence identity threshold of 40% (see Table-

2). The examples of one cluster are used for testing while the model is trained on examples in 

remaining clusters. This process is repeated for all other clusters to obtain performance metric 

statistics [22]. The second technique is clustered 5 fold cross-validation which is computationally 

more efficient. In this approach, the set of sequence clusters is divided into 5 folds so that all 

examples in a single cluster occur in a single fold to limit sequence similarity between training and 

testing folds. We have also performed cross-validation of our dataset using standard LOO and k-

fold and found their scores to be consistently higher than LOCO cross-validation due to the 

presence of homologous proteins in the training set (results not shown here). As a consequence, 

we have used the more stringent performance evaluation protocol outlined above. The hyper-

parameters of different classification schemes such as the margin violation penalty and kernel 

parameters were selected through nested validation. 
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2.5  Performance Metrics 

We have used the following performance metrics to evaluate the predictive accuracy of the 

proposed scheme. 

2.5.1 Area under the ROC curve (AUC-ROC) 

AUC-ROC captures the area under the Receiver Operating Characteristic (ROC) Curve which 

plots the sensitivity or true positive rate of a predictor vs. its false positive rate at various decision 

threshold levels [23]. 

2.5.2 Area under the Precision-Recall curve (AUC-PR) 

Recall is the ratio of the number of correctly predicted positive examples to the total number of 

positive examples. Precision is the ratio of the number of correctly predicted positive examples to 

the number of total predicted positive examples [23]. In highly imbalanced datasets, the area under 

the precision recall curve gives a more informative picture of the predictive performance and is 

used here. 

2.5.3 Mathews Correlation Coefficient (MCC) 

MCC is a measure used in machine learning to assess classification performance of imbalanced 

datasets. The range of coefficient is between +1 and -1, where +1 shows perfect prediction between 

observed and predicted class labels using following formula [24]. Here, TP, TN, FP and FN are 

the number of true positives, true negatives, false positives and false negatives generated by a 

classifier. 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝑇𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 



11 
 

2.6  Analysis of Predictive Features 

Machine learning models are typically black boxes and linking their predictions to real-world 

explanations requires additional steps. In bioinformatics, it is important to analyze the role of 

different features used in a machine learning model and link them to known patterns or rules from 

a biological or biochemical perspective. Such analysis can help in understanding the inner working 

of the machine learning model and add significant confidence to its prediction. Based on this 

motivation, we have used three different methods for analyzing the predictive performance of the 

proposed model as discussed below: 

2.6.1 t-SNE visualization of feature vectors 

t-distributed Stochastic Neighbor Embedding (t-SNE) [25] is an unsupervised technique for 

manifold learning based dimensionality reduction for visualization of high dimensional data. It 

works by minimizing the Kullback-Leibler divergence between the high and low dimensional 

probabilistic representations of a data set. We have used t-SNE to visualize the 20-dimensional 

amino acid composition features by reducing the high-dimensions of our data set to a two-

dimensional scatter plot and studying the separability of different classes in our data. It is important 

to note that t-SNE does not use the labels of examples. 

2.6.2 Analysis of weights of linear SVM 

The absolute weight vector of a trained linear support vector machine trained over normalized data 

can be used to analyze the relative feature importance of different features as high positive or 

negative values of the weight vector have more impact in determining the output decision score 

for a given example 𝑓(𝒙) = 〈𝒘, 𝒙〉. Here, we have used a bar plot of the 20-dimensional weight 
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vector corresponding to amino acid composition features to analyze the relative importance of 

different features. 

2.6.3 SHAP Analysis 

SHAP (SHapley Additive exPlanations) [26] is a recently developed technique that allows us to 

explain the output of any machine learning model. It produces a plot of the SHAP scores at 

different values of all features used in a trained machine learning model. High absolute SHAP 

scores corresponds to more important features. Specifically, a high positive SHAP value at a 

certain value of a feature indicates that the feature value will have a positive impact on the output 

of the machine learning model and vice versa. We have used SHAP analysis to analyze the impact 

of different amino acids in a peptide on its AMP activity. 

2.7  Web server for Anti-Microbial Activity Prediction (AMAP) 

We have also developed a webserver for the proposed method (URL: 

http://faculty.pieas.edu.pk/fayyaz/software.html#AMAP.) The user interface of our webserver is 

shown in Fig 6. It takes input peptide sequences in FASTA format and displays predicted scores 

for different activities.  

2.8  Evaluation on external datasets 

As discussed in the datasets section, we have also evaluated our model on an external validation 

dataset. Peptides in this dataset are not part of our training dataset and cross-validation. We 

computed prediction scores for the peptides in this dataset using our webserver and compared them 

to the predictions from MLAMP and their experimentally observed biological activities. The 

details of the sequences used in this analysis is given in the results section. 

http://faculty.pieas.edu.pk/fayyaz/software.html#AMAP
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3 Results 

In this section, we present the results of different experiments for the proposed model. A detailed 

discussion of these results is presented in the next section.  

3.1 Performance comparison for Antimicrobial Peptide Prediction 

Fig-1 and Table-4 present the results of AMP peptide prediction with different classification 

schemes discussed above using clustered 5-fold cross-validation in comparison to existing 

methods (MLAMP [2] and CAMPR3-RF [3]). Our BLAST-based baseline predictor gives AUC-

ROC, AUC-PR and MCC scores equal to 77%, 72% and 0.27, respectively. We have compared 

the performance of three different machine learning models while developing AMAP ( linear-

SVM, non-linear SVM with RBF-kernel and XGBoost). Our machine learning based models give 

the best overall predictive accuracy with AUC-ROC score of 97%. A more detailed description of 

the results is given in the discussion section.  

3.2 Analysis of amino acid composition features for AMP prediction 

3.2.1   t-SNE Analysis 

We have used t-SNE for generating two-dimensional scatter plots from our 20-dimensional amino 

acid composition features for all 7,860 examples in our data set (see Fig. 2). It is important to note 

that t-SNE is an unsupervised technique, i.e., it does not require labels of the examples used in the 

analysis. The labels of AMPs and non-AMPs for all examples are added in the figure to help us 

analyze the separability of the two classes after t-SNE transformation as discussed in the next 

section. 

3.2.2 Analysis of linear SVM weight vector 
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The plot of the weight vector of the trained linear SVM is shown in Fig. 3. As discussed earlier, 

the relative importance of different amino acids in predicting AMPs can be inferred from this 

plot. 

3.2.3 SHAP Analysis  

The SHAP plot for our trained non-linear XGBoost model is shown in Fig 4. As discussed earlier, 

SHAP values indicate the relative impact of values of different features on the output of a classifier. 

A more detailed analysis of this plot is presented in the next section. 

3.3   Multi-label classification of biological activity 

As discussed earlier, our dataset contains peptides that are involved in 14 different biological 

activities (see Table-1) and a single peptide can have more than one type of activity. After being 

trained, our proposed multi-label machine learning model generates decision scores corresponding 

to each biological activity. The AUC-ROC of the leave-one-cluster-out (LOCO) cross-validation 

of our multi-label SVM model are shown in Table-5 for all 14 different types of biologically active 

peptides in comparison to the previous state of the art method MLAMP.  

3.4   Evaluation on Independent Dataset 

To evaluate the performance of our proposed model, we selected some recently discovered 

Antimicrobial peptides from latest publications that were not included in our original dataset. The 

maximum sequence similarity of these sequences with peptides in our training dataset is given in 

table S1 and it is below 50% for almost all sequences. The scores for these peptides are obtained 

using the AMAP webserver and compared to experimented findings and prediction scores from 

MLAMP webserver. 
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3.4.1 Synthetic Antimicrobial and Antibiofilm Peptides (SAAP) derived from LL-37 peptide 

Breij et al. screened LL-37-inspired peptides with bactericidal activity [6]. The most effective 

peptides with lethal concentration (LC99.9) required for killing 99.9 % bacteria are reported in 

Table-6. Peptide P276 is more effective than others as its LC is the lowest. It can be clearly seen 

that AMAP is able to correctly identify it as an effective antimicrobial peptide by generating a 

high score for it in comparison to others. On the other hand,  MLAMP predicts P276 as non-AMP 

although its probability score should be higher than that for peptides P148, P145 and P159. This 

demonstrates the effectiveness of the proposed scheme.  

3.4.2 Synthetic peptides derived from Temporin-Ali peptide 

Yoshida et al. have discovered effective AMPs from a natural peptide Temporin-Ali [7]. These 

peptides are evaluated for their antimicrobial activities in vitro by measuring the half maximal 

inhibitory concentration (IC50) against E. coli (MG1655 strain). The identified AMPs with 

improved antimicrobial activity are given in Table-7. The scores generated by our proposed model 

for given peptides show a good correspondence with experimentally observed inhibitory 

concentrations. It is interesting to note that predictive scores generated by both AMAP and 

MLAMP correlate well with experimental observations except in the case of the antimicrobial 

peptide 2C for which both methods generate low prediction scores.  

3.4.3 Membrane-targeting antibacterial peptides from Viral Capsid proteins 

Dias et al. have identified peptide sequences with strong antibacterial properties [27]. They 

identified two viral protein-derived peptide sequences vCPP 0769 and vCPP 2319 with high 

antibacterial activity. The scores of our model for these two sequences are also high whereas 

MLAMP predicts vCPP2319 as non-AMP as shown in Table-8. 
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We performed another analysis on the Major Capsid Protein of Fowl adenovirus A serotype 1, 

from which sequence vCPP0769 is derived: we used a sliding sequence window of length 20 over 

the protein to find the most AMP like sequence in the protein through AMAP as shown in Fig 5. 

It is interesting to note that the highest AMAP score occurs at the window corresponding to the 

location of the experimentally identified antibacterial sequence (vCPP0769) within the protein. 

This shows that AMAP can be used to find AMP regions within proteins as well. 

3.4.4 Synthetic peptides active against Escherichia coli 

Pini et al. selected a peptide sequence and performed mutations on it to increase its antimicrobial 

activity and found that peptide M6 has higher antimicrobial activity than other modified sequences 

(M4, M5 and the wild-type sequence) [28]. Experimentally determined minimum inhibitory 

concentrations reported for these sequences against various bacteria are given in Table-9. The 

wild-type sequence did not have any significant antimicrobial activity.  

AMAP prediction scores for these sequence are given in Table-10. It is interesting to note that the 

wild-type sequence has the lowest score and, even though M6 differs from WT by only one amino 

acid, the AMAP score for M6 is significantly higher and correlates well with experimental 

findings. MLAMP also produces the lowest score for the wild-type sequence in comparison to the 

mutated peptides and the wild-type sequence. However, MLAMP score for the best performing 

peptide (M6) is lower than M5 which is not as potent as M6 in experimental observations.  

3.4.5 ACWWP1 peptide 

The Antibacterial peptide ACWWP1(GLSRLFTALK) kills bacterial cells via membrane damage. 

Pu and Tang showed that ACWWP1 can be used in the treatment of food poisoning caused by 
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certain bacteria [29]. AMAP generates a high prediction score of 1.10 for this peptide. MLAMP 

also generates a high probability of 0.95 for this peptide to have antimicrobial activity. 

3.4.6 Synthetic antifungal peptides against F.oxysporum 

Badosal et al. screened a set of peptide sequences in vitro against the fungus F.oxysporum [30]. 

Their reported MIC and AMAP prediction scores for antifungal activity are given in Table-11. All 

these peptides have shown significant antifungal activity in experiments. AMAP is able to 

correctly predict their antifungal activity with high scores. However, MLAMP predicts all 

sequences to have antibacterial activity instead of antifungal activity.  

3.4.7 Cp1 and Melittin peptides 

Hou et al. studied the antimicrobial activity of protein-derived peptide Cp1 synthesized form 

Bovine αS1-Casein and Melittin which was purified from bee venom [31]. Their antimicrobial 

activity is summarized in Table-12 and shows that Melittin is more potent in comparison to Cp1. 

The scores for Cp1 and Mellitin by our model show good correspondence with experimental 

findings with a high prediction score for Melittin in comparison to Cp1. The prediction results of 

AMAP and MLAMP are comparable as shown in Table-13. 

3.4.8 Peptides derived from the Acinetobacter baumannii phage endolysin LysAB2 

Peng et al. synthesized four AMPs from the phage endolysin for antimicrobial activity [32]. 

Peptide P0 has low antimicrobial activity and the AMAP prediction score is also small for that 

peptide as sh own in Table-14. The MICs of LysAB2 P1 and P3 are in range of 4–8 μM which are 

lower than the MIC of P1. The AMAP scores of P1 and P3 are higher than P0 which shows higher 

antimicrobial activity in P1 and P3. There is a good correspondence between AMAP scores and 

experimentally observed MICs of peptides. On the other hand, MLAMP predicts all these peptides 
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as non-AMP except P0 which actually has the lowest experimentally observed antibacterial 

activity.  

4 Discussion 

4.1  Performance comparison  

Table-4 shows that simple sequence alignment to known AMPs using BLAST gives AUC-ROC 

and AUC-PR of 77% and 72%, respectively whereas the best performing machine learning method 

proposed in this work (Radial Basis Function SVMs) offers significant improvement in prediction 

performance (AUC-ROC and AUC-PR of 97% and 96%, respectively). This clearly shows that 

the proposed machine learning technique is superior to simple homology search. Furthermore, our 

comparison to previous state of the art techniques (CAMP-R3 (RF) [3] and MLAMP [2] ) on our 

dataset through their respective webservers also verifies this conclusion. However, the 

performance of these methods is much lower than the proposed machine learning model. As shown 

in Figure 1, at 2% False Positive Rate, the sensitivity of CAMPR3-RF is 47% in comparison to 

80% by the proposed SVM model. It is also important to note that the performance of non-linear 

SVMs is also matched by XGBoost classifiers and the performance of linear SVMs is also not 

much lower than the best performing model. However, in the development of the final AMAP 

predictor, we have used the nonlinear SVM. It is also interesting to note that global amino acid 

composition is a better predictor of AMPs in comparison to sequence tripeptide composition for 

all classification schemes. Just like PR and ROC measures, the result of MCC is also higher of 

proposed model. CAMPR3 is good in performance as compared to MLAMP but still its 

performance is lower than that of the proposed model (see Table-4). 

4.2  Feature Analysis 
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The t-SNE plot (Figure 2) clearly shows that amino acid composition features can distinguish 

AMPs and non-AMPs into separate clusters with minimal overlap. This lends support to the high 

accuracy obtained by our machine learning models especially linear support vector machines. It is 

important to notice a few clusters of AMPs in regions otherwise dominated by non-AMPs in Fig. 

2(a). This shows why non-linear or RBF SVM and XGBoost classifiers perform better than linear 

SVM. It is interesting to note that antibacterial peptides have more overlap with non-AMPs in 

comparison to other types. 

The plot of weight vector of linear SVM ( Fig 3 ) shows that Cysteine (C), Lysine (K), Valine (V), 

and Phenalalanine (F) are important for AMP prediction whereas the occurrence of D, E, L, Y, P, 

R and N is predictive of non-AMP activity. These observations are in line with the findings in the 

literature which indicate that Lysine (K) is the most commonly occurring amino acid in known 

AMPs [6]. Cysteine (C) is also an important amino acid in natural antimicrobial peptides of 

vertebrates, invertebrates and plants [33]. This shows that the output of the proposed machine 

learning model correlates with known facts about AMPs.  

The analysis of important features using SHAP (Fig 4) is in line with our findings from the weight 

vector plot for the SVM as well. This analysis clearly shows that the proposed model is in line 

with known biological information about AMPs. Our analysis reveals that our model generates 

negative labels for peptides enriched in amino acids D, E and L whereas the occurrence of C, K, 

F and Q positively affects the output of the classifier. 

4.3  Multi-label Prediction of biology activity 

The results for the prediction of biological activities of peptides are given in Table-5. The decision 

scores from MLAMP webserver for a given peptide sequence are available for only 5 classes. The 

performance of the proposed scheme is significantly better than MLAMP for all biological activity 
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categories. This shows the efficacy of the proposed scheme in predicting a different broad types 

of biologically active peptides. 

4.4   External Evaluation on Independent Validation Set 

The evaluation of proposed model on experimentally verified biologically active peptides in the 

independent validation set taken from eight different recent publications shows good prediction 

results even though these peptides were significantly different in sequence from the ones in the 

training dataset. The prediction scores generated by the proposed scheme are in line with 

experimental observations for a wide variety of peptides and types of biological activities. 

Furthermore, the proposed method shows improved performance in comparison to MLAMP over 

this dataset as well. 

5 Conclusions 

We have developed a predictor called AMAP that can be used to identify antimicrobial peptides 

as well predict their biological activity. The proposed scheme offers significantly better prediction 

accuracy in comparison to previously published methods. Our extensive performance evaluation 

reveals that the proposed method can be very useful in predicting antimicrobial peptides, effect of 

mutations on the biological activity of such peptides, and the determination of active regions within 

proteins with antimicrobial activity. The use of sequence information alone in our predictive 

modeling and a publicly available webserver for the proposed method are expected to accelerate 

the pace of research aimed at countering the threats posed by the rise of antimicrobial resistance.  
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List of tables and Figures 

Table 1: Biological activities and number of peptides in each category in our positive dataset 

Activity No of peptides 

antibacterial 2,446 

antifungal 1,048 

anticancer 210 

antiviral 180 

anti-HIV 109 

chemotactic 57 

antiparasital 43 

antibiofilm 31 

insecticidal 28 

antimalarial 25 

inhibitory 25 

antioxidant 22 

spermicidal 13 

anti-protist 4 

Table 2: Statistics of the number of AMPs, non-AMPs and corresponding number of clusters 

 AMPs non-AMPs Total 

Dataset 2,704 5,156 7,860 
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No of Clusters (>=40% identity) 464 3,264 3,728 

Table 3: Division of amino acids in groups based on their physiochemical properties 

Group# 1 2 3 4 5 6 7 

Amino acids A,V,G I,F,L,P M,S,T,Y H,N,Q,W K,R D,E C 

Dipole moment  

(Debye) 

<1.0 <1.0 (1.0 , 2.0) (2.0 , 3.0) >3.0 

>3.0 (with 

opposite 

orientation) 

<1.0 

Volume (Å𝟑) <50 >50 >50 >50 >50 >50 <50 

Disulfide Bond 

Formation 

No No No No No No Yes 

Table 4: ROC and PR results of LOCO cross validation technique using different machine 

learning models and feature representations 

Model Features AUC-ROC (%) AUC-PR (%) MCC 

AMAP Linear SVM 

1-mer 96 94 0.80 

3-mer 94 91 0.75 

AMAP Non-linear 

SVM 

1-mer 97 96 0.84 

3-mer 95 94 0.79 

AMAP XGBoost 

1-mer 97 96 0.84 

3-mer 96 94 0.79 

MLAMP [2] 1-mer 88 81 0.60 

CAMP-R3(RF)[3] 1-mer 94 90 0.73 

BLAST (Baseline) 77 72 0.27 
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Table 5: AUC-ROC results for different biological activities in our dataset by AMAP and 

MLAMP 

Biological activity No of peptides AMAP MLAMP 

Antibacterial 2,446 93.4 81.8 

Antifungal 1,048 86.6 65.5 

Anticancer 210 84.0 56.2 

Antiviral 180 81.9 64.3 

Anti-HIV 109 81.6 60.0 

Chemotactic 57 80.2 - 

Antiparasital 43 89.9 - 

Antibiofilm 31 85.2 - 

Insecticidal 28 87.1 - 

Antimalarial 25 75.6 - 

Inhibitory 25 80.8 - 

Antioxidant 22 81.5 - 

Spermicidal 13 73.2 - 

Anti-protist 4 85.0 - 

Table 6: AMAP and MLAMP scores for predicting biological activities on experimentally 

verified peptides derived from LL-37 peptide 

Peptide Sequence LC99.9 (µM) AMAP Scores MLAMP scores 

P276 

(SAAP-276) 

LKRVWKAVFKLLKR

YWRQLKKPVR 

6.4 1.70 Non-AMP 
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P148 

(SAAP-148) 

LKRVWKRVFKLLKR

YWRQLKKPVR 

12.8 1.74 0.88 

P145 

(SAAP-145) 

LKRLYKRLAKLIKRL

YRYLKKPVR 

12.8 1.38 0.97 

P159 

(SAAP-159) 

LKRLYKRVFRLLKR

YYRQLRRPVR 

12.8 1.32 0.88 

Table 7: AMAP and MLAMP scores for predicting biological activities on experimentally 

verified peptides derived from Temporin-Ali peptide 

Peptide Sequence IC50 (µM) AMAP score MLAMP scores 

2 FLPIVKKLLRGLF 0.50 2.43 0.94 

1 FFPIVKKLLSGLF 0.75 2.31 0.94 

1C FLPIVKKLLRKLF 1.30 2.55 0.92 

2C FFPIFGKLLRGLF 1.37 2.04 0.87 

3C FFPIVGKLLRKLF 1.39 2.41 0.94 

3 VLPIVKKLLKGLF 2.01 2.96 0.95 

A FFPIVGKLLSGLF 21.1 1.83 0.90 

WT FFPIVGKLLSGLL 81.0 2.07 0.90 

Table 8: AMAP and MLAMP scores for predicting biological activities on experimentally 

verified peptides derived from Viral Capsid proteins 

Peptide 

Protein-derived 

Sequence 

MIC(μM) 

AMAP 

score 

MLAMP 

score 

S. 

aureus 

 

MRSA 

 

E. coli 

P. 

aeruginosa 
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vCPP 

0275 

KKRYKKKYKA

YKPYKKKKKF 

25-50 50 12.5 100 2.07 

Non-

AMP 

vCPP 

0769 

RRLTLRQLLGL

GSRRRRRSR 

3.13 3.13 25 3.13 1.36 0.88 

vCPP 

2319 

WRRRYRRWRR

RRRWRRRPRR 

1.56 1.56 3.13 3.13 1.20 

Non-

AMP 

vCPP 

0417 

SPRRRTPSPRR

RRSQSPRRR 

>100 >100 25 100 0.56 0.81 

vCPP 

1779 

GRRGPRRANQ

NGTRRRRRRT 

>100 >100 25 25 0.54 0.88 

vCPP 

0667 

RPRRRATTRRR

ITTGTRRRR 

50 100 12.5 25 0.24 0.9 

Table 9: Reported MICs of M4, M5 and M6 against various bacteria 

Species and strain 

MIC (μg/ml) 

M4 M5 M6 

Escherichia coli ATCC 25922 128 16 8 

Escherichia coli W99FI0077 16 128 8 

Pseudomonas aeruginosa ATCC 27853 32 16 4 

Pseudomonas aeruginosa 885149 64 32 8 

Pseudomonas aeruginosa 891 64 16 8 

Klebsiella pneumoniae W99FI0057 64 >128 4 

Staphylococcus aureus ATCC 25923 64 128 >128 
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Staphylococcus aureus MIU-68A >128 128 128 

Table 10: AMAP and MLAMP scores for predicting biological activities on experimentally 

verified peptides active against E.coli 

Peptide Sequence AMAP score MLAMP score 

M6 QKKIRVRLSA 0.66 0.94 

M5 KIRVRLSA 0.56 0.97 

M4 QAKIRVRLSA -0.20 0.92 

WT QEKIRVRLSA -0.70 0.91 

Table 11: AMAP and MLAMP scores for predicting biological activities on experimentally 

verified antifungal peptides 

Peptide Sequence MIC (μM) AMAP  scores 

BP33 LKLFKKILKVL 0.3-0.6 1.26 

BP16 KKLFKKILKKL 0.6-1.2 1.72 

BP76 KKLFKKILKFL 0.6-1.2 1.53 

BP15 KKLFKKILKVL 0.6-1.2 1.49 

BP20 WKLFKKILKYL 0.6-1.2 1.20 

BP17 WKLFKKILKKL 1.2-2.5 1.47 

BP13 FKLFKKILKVL 1.2-2.5 1.26 

BP19 WKLFKKILKFL 1.2-2.5 1.24 

BP14 YKLFKKILKVL 1.2-2.5 1.22 

BP18 WKLFKKILKWL 1.2-2.5 1.16 

Pep3 WKLFKKILKVL 2.5-5.0 1.18 
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Table 12: Reported MICs of Cp1 and Melittin peptides against various bacteria 

 MIC (μM) 

Peptides Cp1 Melittin 

E. coli ATCC 25922 64 1 

E. coli UB1005 128 2 

Salmonella pullorum C7913 256 8 

Salmonella enterica subsp enterica CMCC 50071 256 2 

Staphylococcus aureus ATCC 29213 640 2 

L. monocytogenes CMCC 54004 64 1 

Table 13: AMAP and MLAMP scores for predicting biological activities on experimentally 

verified Cp1 and Melittin peptides 

Peptide Sequence AMAP scores MLAMP scores 

Cp1 LRLKKYKVPQL 0.96 Non-AMP 

Melittin GIGAVLKVLTTGLPALISWIKRKRQQ 1.36 0.98 

Table 14: Reported MICs of peptides and scores generated by AMAP and MLAMP for 

predicting biological activities on experimentally verified peptides derived from the 

Acinetobacter baumannii phage endolysin LysAB2 

 

Peptide 

 

Sequence 

MIC (μM) 

 

AMAP 

score 

 

MLAMP 

score 

A. baumannii 

ATCC17978 

A. baumannii 

ATCC19606 

colistin-

susceptible 

MDRAB 

(M3237) 
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LysAB2 

P0 

NPEKALEPLIAI

QIAIKGMLNGW

FTGVGFRRKR 

64 64 64 0.09 0.97 

LysAB2 

P1 

EKALEKLIAIQK

AIKGMLNGWFT

GVGFRRKR 

8 8 8 1.57 

Non-

AMP 

LysAB2 

P2 

EKALEKLIAIQK

AIKGMLAGWFT

GVGARRKR 

16 16 16 1.58 

Non-

AMP 

LysAB2 

P3 

NPEKALEKLIAI

QKAIKGMLNG

WFTGVGFRRKR 

4 8 16 1.22 

Non-

AMP 

 

Fig 1: (a) ROC curves on our dataset by our proposed model and other models in comparison, (b) 

PR curves on our dataset by our proposed model and other models in comparison 
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Fig 2: Scatter plots of t-SNE 2-dimensional data of AMPs and non-AMPs. The numbers in 

parenthesis in the legend are the number of examples of each class. (a) plot of Non-AMPs and 
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AMPs (b) plot of Non-AMPs and Antibacterial peptides (c) plot of non-AMPs and Antifungal 

peptides (d) plot of non-AMPs and Anti-cancerous peptides (e) plot of non-AMPs and Antiviral 

peptides (f) plot of non-AMPs and biologically active peptides from rest of the classes. 

 

Fig 3: Plot of weight vector of Linear SVM corresponding to different amino acids in the 

composition feature space 
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Fig 4: SHAP analysis of amino acid composition for prediction of antimicrobial activity of 

peptides 
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Fig 5:  AMP scores of sliding sequence window of length 20 on Capsid protein 

 

Fig 6: User interface of the web server for predicting biologically active peptides. 

 

 


