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Abstract

Objective: Sepsis remains a costly and prevalent syndrome in hospitals; however, machine 

learning systems can increase timely sepsis detection using electronic health records. This study 

validates a gradient boosted ensemble machine learning tool for sepsis detection and prediction, 

and compares its performance to existing methods.

Materials and Methods: Retrospective data was drawn from databases at the University of 

California, San Francisco (UCSF) Medical Center and the Beth Israel Deaconess Medical Center 

(BIDMC). Adult patient encounters without sepsis on admission, and with at least one recording 

of each of six vital signs (SpO2, heart rate, respiratory rate, temperature, systolic and diastolic 

blood pressure) were included. We compared the performance of the machine learning algorithm 

(MLA) to that of commonly used scoring systems. Area under the receiver operating characteristic 

(AUROC) curve was our primary measure of accuracy. MLA performance was measured at sepsis 

onset and 24, and 48 hours prior sepsis onset.

Results: The MLA achieved AUROC of 0.88, 0.84, and 0.83 for sepsis onset and 24 and 48 

hours prior to onset, respectively. These values were superior to those of SIRS (0.66), MEWS 

(0.61), SOFA (0.72), and qSOFA (0.60) at time of onset. When trained on UCSF data and tested 

on BIDMC data, sepsis onset AUROC was 0.89.
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Discussion and Conclusion: The MLA predicts sepsis up to 48 hours in advance and 

identifies sepsis onset more accurately than commonly used tools, maintaining high performance 

for sepsis detection when trained and tested on separate datasets.
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Introduction

Sepsis remains one of the most prevalent and costly syndromes in hospitals nationwide. 

Formerly classified in a three tier system progressing from sepsis to severe sepsis to septic 

shock, sepsis was recently redefined as a two tier progression from sepsis (encompassing 

severe sepsis) to septic shock [1]. Sepsis is often life-threatening, with reported mortality 

rates of 25 to 40 percent in recent literature [2, 3]. Sepsis also places a cost burden of 

approximately $24 billion on the U.S. healthcare system annually [4]. Promptly diagnosing 

sepsis and intervening before progression to septic shock has been associated with increased 

patient survival and reduced hospital length of stay [5, 6]. Sepsis is characterized as organ 

dysfunction resulting from a systemic inflammatory response to infection; however, the 

source of infection and the host response can vary greatly by patient, leading to difficulties 

in rapid detection. Consequently, a recent focus in medical research has concerned 

automated patient surveillance for timely detection of sepsis in hospitalized patients.

The widespread implementation of electronic health records (EHRs) in hospitals have made 

automated clinical decision and prediction systems more feasible, potentially improving the 

surveillance and treatment of complex syndromes [7]. Such systems provide alerts and 

suggestions by transforming a patient’s medical data into clinically accessible information in 

order to enhance patient care [8]. Currently, most methods for sepsis detection use rules-

based gold standards to generate alerts and guidelines, and few have been developed with 

predictive capabilities [9–11].

Rules-based sepsis scoring systems commonly used in the clinical setting include the 

Systemic Inflammatory Response Syndrome (SIRS) criteria [12], the Sequential Organ 

Failure Assessment (SOFA) score [13], and the Modified Early Warning Score (MEWS) 

[14]. Several studies have implemented versions of these scoring systems into EHRs [9–11]. 

While these tools may demonstrate high sensitivity, they provide suboptimal specificity, and 

are not designed to predict sepsis development. Furthermore, diverse patient populations and 

the heterogeneity of infection source may not be accurately represented in rules-based 

scores. In contrast, machine learning-based prediction tools have the potential to provide 

advance notice of sepsis risk, higher specificity, and more generalizability, potentially 

enabling clinicians to intervene earlier while also reducing the burden of false alarms.

We have developed a machine learning-based sepsis prediction algorithm using patient EHR 

data as input, and previously have validated its ability to predict sepsis, severe sepsis, and 

septic shock up to four hours prior to onset [15–17]. Our prior studies have been conducted 

on a single center critical care population.
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In this study, we define sepsis according to the more recent definition of Singer et al. [1]. We 

aim to assess the retrospective performance of the machine learning algorithm further in 

advance, up to two days prior to sepsis onset, on a mixed-ward data set using only vital sign 

inputs. Further, we aim to evaluate the algorithm’s robustness through cross-population 

validation, and compare the performance to that of commonly used rules-based scoring 

systems.

Materials and methods

Ethics approval and consent to participate

Before receipt of datasets, all patient records were de-identified according to the Health 

Insurance Portability and Accountability Act (HIPAA) standards. Collection of data did not 

impact patient safety. Approval for this study was granted by the Institutional Review Board 

(IRB) at UCSF.

Measurements

Sepsis risk scores were generated by analyzing patient measurements of each of the six 

following vital signs: systolic blood pressure, diastolic blood pressure, heart rate, respiratory 

rate, peripheral oxygen saturation (SpO2), and temperature. Patient encounters were required 

to have at least one of each vital sign recorded for inclusion in the study. We used only these 

vital signs to generate features to determine sepsis risk scores. These measurements were 

selected because they are relevant to the onset of sepsis, and are routinely collected without 

a pre-existing clinical suspicion of sepsis.

Data sources

The data used in this study were collected from the University of California, San Francisco 

Medical Center (UCSF; San Francisco, CA), and the Beth Israel Deaconess Medical Center 

(BIDMC; Boston, MA). The UCSF data set contained 17,467,987 inpatient and outpatient 

encounters from the Parnassus Heights, Mission Bay, and Mount Zion campuses from June 

2011 to March 2016. Of the 96,646 inpatients over the age of 18, 95,869 had at least one 

documented recording of each vital sign. From these encounters, we further limited our 

selection to those patients with hospital stays between 7 and 2,000 hours, which ultimately 

left 91,445 patients in our final cohort (Figure 1). We used subsets of this final cohort in our 

24- and 48-hour lookahead analyses, depending on patient length of stay. The data from 

UCSF were collected in the intensive care unit (ICU), emergency department (ED), and 

floor units; thus, different levels of data collection frequency and care provision were 

captured in this cohort. We were unable to determine the location of a patient at a given 

point in time, because the data did not include unit transfer timestamps. BIDMC data were 

obtained from the Medical Information Mart for Intensive Care III (MIMIC-III) v1.3 

database, compiled by the MIT Laboratory for Computational Physiology and their 

associated collaborators [18]. 61,532 BIDMC ICU encounters from 2001 to 2012 are 

documented in this database. Of the 52,902 inpatient encounters for which the patient was 

at-or-over the age of 18, 21,507 had at least one recording of each vital sign and were 

included in the final cohort. Excluded adult inpatient encounters had one or more vital signs 
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for which there were no recorded measurements, and were not necessarily missing 

measurements of all vital signs.

Outcomes and procedures

The primary outcome measured was the algorithm’s ability to identify septic patients at the 

time of onset and 24 and 48 hours prior to onset. The algorithm’s performance was 

determined using the area under the receiver operating characteristic (AUROC) curve metric.

PostgreSQL (PostgreSQL Global Development Group; Berkeley, CA) database queries were 

written to extract and store measurements in comma separated value (CSV) files [19]. The 

six vital signs (heart rate, respiratory rate, temperature, SpO2, systolic blood pressure, and 

diastolic blood pressure) were the only inputs used to generate features for sepsis risk 

predictions. If a patient did not have at least one new measurement for every hour preceding 

their defined onset time, the missing value was determined with carry-forward imputation 

using the patient’s previous recorded value. In the case of multiple measurements within an 

hour, the mean was calculated and used in place of an individual measurement. This 

procedure helped to minimize non-physiological data regarding measurement frequency that 

was passed to the classifier.

Additionally, data were collected to generate the rules-based scoring system comparators 

and the Sepsis-3 gold standard. We compared the predictive algorithm to the commonly 

implemented SIRS, SOFA, MEWS, and qSOFA scores. We determined the presence of 

SIRS criteria as in Jaimes et al. [12]. We computed each patient’s MEWS score [14] as in 

Fullerton et al. [20]. The qSOFA score was calculated as in Singer et al. [1]. Although the 

SOFA score is part of the gold-standard sepsis definition, we also evaluated its capacity as a 

standalone detector of sepsis onset. Calculation of these scores required the creation of CSV 

files for PaO2, FiO2,Glasgow Coma Scale, vasopressor doses, bilirubin level, platelet count, 

and white blood cell count.

The Sepsis-3 gold standard was based on the 2016 consensus definition which defined sepsis 

as “life-threatening organ dysfunction caused by a dysregulated host response to infection,” 

with organ dysfunction defined as a change in Sequential Organ Failure Assessment (SOFA) 

score of ≥ 2 points [1]. We followed the definition proposed by Seymour et al. for 

identifying changes in SOFA score [21]. We identified suspicion of infection as either a 

culture drawn together with antibiotics administered within 24 hours, or antibiotics 

administered together with a culture drawn within 72 hours. This method adheres to the 

retrospective validation of Seymour et al. [21]. We designated the first time that both the 

SOFA score and infection thresholds were met as the time of sepsis onset.

Of the 91,445 encounters from UCSF satisfying the inclusion criteria of Figure 1, there were 

2,649 encounters meeting the Sepsis-3 criteria, for a prevalence of 2.9%. Of the 21,507 

BIDMC encounters, 1,024 met the Sepsis-3 criteria, for a prevalence of 4.8%. Together, the 

112,952 encounters had an overall Sepsis-3 prevalence of 3.3%. We note that many 

encounters meeting the Sepsis-3 criteria had an associated time of sepsis onset occurring 

within the first seven hours of stay and were therefore excluded by the final step of the 

inclusion criteria.
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Patients who never developed sepsis were assigned an “onset time” at random according to a 

continuous, uniform probability distribution, as negative class examples. Data collected at 

and before the patient’s onset time were used to generate the algorithm’s risk scores. In 

order to enable prediction windows, all patient encounters presenting a diagnosis of sepsis 

on admission, or those for which sepsis was diagnosed within seven hours of admission, 

were excluded from analysis.

Before training the classifier, patient encounters were divided into subgroups depending on 

length of stay. For example, if a patient spent 25 hours in the hospital before developing 

sepsis, the patient encounter was included in 24-hour prediction experiments, but could not 

be included in the 48-hour experiments. Respectively, of the 20,590 BIDMC and 89,000 

UCSF encounters with at least 24 hours of stay data, 107 and 267 encounters had a Sepsis-3 

diagnosis, after spending at least 24 hours in the hospital. Of the 20,533 BIDMC and 88,887 

UCSF encounters with at least 48 hours of stay data, 50 and 97 encounters had a Sepsis-3 

diagnosis after spending 48 hours of more in the hospital, respectively. The few encounters 

with an onset time exceeding 2,000 hours in the hospital were excluded to limit the size of 

the computation matrices.

The machine learning prediction algorithm

Gradient boosted trees were used to create the classifier, using scores from an ensemble of 

trees to calculate total scores. Predictions were generated from the six patient vital signs at 

prediction time, one hour before prediction time, and two hours before prediction time, as 

well as the hourly differences in each value. These values for each vital sign were 

concatenated into a causal feature vector x with 30 elements (five values from each of six 

measurement channels).

We created the trees in the Python XGBoost package [22]. Each branch of a tree was split by 

creating two groups of a feature. We limited branching to four, three, and six branches, for 0-

hour, 24-hour, and 48-hour prediction, respectively. We did so on the basis of five-fold cross-

validation grid search on the training set; we elaborate this below. It was also on the basis of 

this grid search that we chose the learning rate parameter of XGBoost to 0.05, 0.12, and 

0.12, for 0-hour, 24-hour, and 48-hour prediction, respectively. It was not important for us to 

restrict the maximum number of trees in each ensemble, as this was superseded by the use of 

early stopping to prevent model overfit. The resulting ensemble was used to iteratively 

calculate total risk scores; these risk scores were used to determine the presence or likely 

development of sepsis for each patient.

The UCSF encounters were split into two groups, 80% of encounters were allocated 

uniformly-at-random to a training set, and 20% of encounters were randomly allocated to an 

independent, hold-out test set. To perform the hyperparameter grid search, we conducted 

five- fold cross-validation using only the encounters allocated to the training set. We 

searched a parameter space around previously reported hyperparameters for a similar 

prediction task [23,24]. For the maximum number of branchings, we searched integers from 

3 to 8 and, for the learning rate, we searched from 0.05 to 0.12 in increments of 0.01. For 

each lookahead, we selected the combination of number of branchings and learning rate 
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which produced the best average area under the receiver operating characteristic (AUROC) 

curve across the five folds.

We further divided the 80% training set into ten, equally-sized groups for ten-fold cross 

validation, again allocating the encounters uniformly-at-random. Nine of these groups were 

used to train the algorithm, and the remaining group was used to test it. We cycled the 

algorithm through each of the ten possible combinations of training and testing sets, and also 

tested each combination on the independent test set. Performance metrics for the MLA were 

obtained as the average of the performance metrics of the ten cross-validation models, 

including both the figure-based information and tabular results in the Results section. In 

particular, we report feature importance scores generated by XGBoost, which represent the 

number of times each feature was used to split the data across the trees; these scores were 

averaged across the five folds. Additionally, the cross-validation results were used to 

calculate standard deviation in AUROC.

As described in the previous section, for 24- and 48-hour prediction, we further limited the 

patient encounter cohorts to those encounters with enough stay data. Consequently, there 

were fewer septic patient encounters in these cohorts, leading to a degree of class imbalance. 

As opposed to artificially inflating the number of septic patients through minority 

oversampling, in a way which may not reflect the prospective setting in which such a MLA 

would be used, we relied on XGBoost’s built-in handling of imbalanced classes [22].

Cross-population validation methods

The cross-population validation experiments were used to evaluate the algorithm’s sepsis 

detection performance when trained on one institution’s data set and tested on another with 

demographic and clinical differences. After training the algorithm on UCSF data, its 

performance for sepsis detection was tested on BIDMC patient measurements, with no 

retraining on the target dataset. Testing was performed on the entire dataset. The algorithm 

was trained as described above, and testing was performed at time of onset only to facilitate 

comparison with rules-based methods.

Results

The final patient population included 91,445 encounters from UCSF, and 21,507 encounters 

from BIDMC. Demographic information for both patient populations is presented in Table 1. 

Significant differences between the data sets include the visited hospital units, sepsis 

prevalences, and age distributions. The BIDMC database contained only ICU stays, while 

the UCSF dataset contained inpatient encounters across all wards. These dissimilar datasets 

were chosen to provide an evaluation of the prediction algorithm’s generalizability across 

diverse patient populations.

At the time of sepsis onset, the machine learning algorithm trained and tested on the UCSF 

data set demonstrated a higher AUROC (0.88) than the SIRS (0.66), MEWS (0.61), SOFA 

(0.72), or qSOFA (0.60) scoring systems for the same data set (Figure 2). A comparison of 

additional performance measures can be found in Table 2. For these operating points, the 

specificities of the MLA, SIRS, and SOFA correspond to respective false alarm rates of 0.22, 
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0.49, and 0.41; in other words, SIRS and SOFA produced 2.22 and 1.86 times as many false 

alerts as did the MLA.

At 24 and 48 hours before onset, the algorithm’s AUROC was 0.84 and 0.83, respectively 

(Figure 2, Table 2). 89,000 UCSF patients (267 septic) were included to calculate the 

AUROC at 24 hours, and 88,887 UCSF patients (97 septic) were included to calculate the 

AUROC at 48 hours before onset. The diagnostic odds ratio (DOR) at both 24 and 48 hours 

pre-onset was superior to those of the rules-based methods determined at the time of onset 

(Table 2). When trained on the UCSF database and tested BIDMC data (21,507 patients, 

1,024 septic) with no retraining, the AUROC value was 0.890.

For each prediction window, we obtained feature importance scores (Supplementary Table 

1). The five features with the highest importance scores are collected in Table 3. Across 

prediction windows, age was the most important feature, with a combination of temperature, 

heart rate, and systolic blood pressure measurements obtaining the majority of the other 

highest scores.

Discussion

In this study, the machine learning-based sepsis prediction algorithm demonstrated increased 

sensitivity and specificity for sepsis over the commonly used SIRS, MEWS, SOFA, and 

qSOFA scoring systems at the time of sepsis onset (Figure 2, Table 2), and demonstrated 

robustness to training and testing across separate datasets. Based on the results for the UCSF 

dataset (Table 2), SIRS and SOFA resulted in 2.22 times and 1.86 times as many false alerts 

as the MLA, respectively, when identifying a similar proportion of sepsis cases at onset. 

False alerts are problematic in hospital settings, contributing to alarm fatigue which may 

lead to compromised patient monitoring and care [25–27]. Therefore, high specificity is 

desirable in a sepsis alert.

The algorithm also demonstrated high sensitivity and specificity when predicting sepsis 

onset up to 48 hours in advance. Interestingly, the performance at 48 hours in advance of 

sepsis onset was roughly equivalent to that 24 hours in advance of onset. This may indicate 

that changes in vital sign measurements relevant to sepsis development may occur well in 

advance of the detection of organ failure. Other studies have applied machine learning 

techniques to predict sepsis onset up to 48 hours prior to organ failure [28], although these 

algorithms require significantly more data input including patient histories and laboratory 

test results. This study demonstrates that high sensitivity and specificity for sepsis can be 

attained up to 48 hours prior to organ failure using only commonly measured vital signs, 

without requiring laboratory tests which may only be ordered after the initial clinical 

suspicion of sepsis.

This machine learning approach has potential implications for clinical practice and sepsis 

management. A recent study has shown that nearly half of patients with severe sepsis (which 

is similar to the more recent definition of sepsis evaluated in this study), lack sepsis-specific 

International Classification of Disease (ICD) codes. This study additionally showed that 

patients with sepsis-specific ICD codes were more likely to receive appropriate sepsis 
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treatment [29]. The significant advance lookahead time provided by this MLA allows for 

improved risk-stratification of patients, with increased monitoring or more frequent care 

team assessment for patients with high risk scores. Early recognition of septic patients may 

facilitate clinical trial enrollment to develop and evaluate new sepsis treatments. Early alerts 

also provide a window to begin supportive or sepsis bundle treatments before a patient’s 

condition progresses, potentially improving outcomes.

Implementation of a previous version of this algorithm that predicted sepsis syndromes up to 

4 hours in advance led to improved patient outcomes in several prospective settings. In a 

randomized controlled trial conducted in two adult ICUs at UCSF, use of an MLA was 

associated with decreases in hospital length of stay, (mean 13.0 days vs. 10.3 days, p = 

0.0421) and the in-hospital mortality rate (21.3% vs. 8.96%, p = 0.0176). Use of the 

previous algorithm was also associated with earlier administration of antibiotics and 

ordering of blood cultures [30]. The previous algorithm has also improved sepsis-related 

outcomes at Cape Regional Medical Center [31] and Cabell Huntington Hospital [32], and 

has been successfully integrated with various EHRs including Epic, Cerner, McKesson, 

Meditech, Allscripts, Soarian, and Vista. While the present study examines only the UCSF 

and BIDMC datasets, these prior results are consistent with a broad applicability of MLAs to 

a variety of datasets and clinical data collection methods.

We note that the algorithm demonstrated high performance on the mixed-ward UCSF 

dataset. Given the high incidence of sepsis in general wards, and the noted benefits of 

screening for sepsis on such wards [33], we believe these results are encouraging for future 

experiments in data-sparse environments outside of the ICU. Indeed, the feature importance 

scores of Table 3 indicate that the common measurements of heart rate, temperature, and 

systolic blood pressure, along with age, contributed most to the quality of predictions. We 

may therefore expect the performance of such a tool to be more robust than tools which rely 

on less commonly measured information, in environments outside the ICU. The predictive 

algorithm also performed well in cross-population validation experiments. This may indicate 

reduced or eliminated need for site-specific data training at a future prospective clinical site 

implementation of the algorithm.

Limitations

Because this study was a retrospective analysis, we cannot make conclusions about the 

predictive algorithm’s performance in a live hospital setting. The algorithm may perform 

differently on real-time data, particularly when run at different time points than those 

presented in this study. While these data sets had distinct demographic characteristics and 

represented different hospital units, both settings were urban research hospitals. Thus, data 

from different environments, such as community hospitals, may not achieve the same cross-

population performance. The study population excluded patients who presented with sepsis 

on admission; the algorithm may perform differently on patients who are admitted with 

sepsis. Because we did not require the presence of a sepsis related ICD code for a positive 

classification, it is possible that we positively identified patients with similar acute vital sign 

trends but without sepsis. Algorithm performance may be lower for such patients than for 

the general population.
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The sepsis gold standard used in this study is necessarily an imperfect characterization of 

sepsis. We nevertheless believe it to be useful in developing a sepsis prediction tool, as 

demonstrated by the improvements in sepsis-related clinical outcomes seen using sepsis 

prediction algorithms trained with the same gold standard [31,32].

There are also limitations with respect to the experimental design. The AUROC, sensitivity, 

and specificity calculated for longer prediction windows were calculated using a smaller 

patient pool than the shorter prediction window metrics. These results could have been 

skewed by the smaller patient populations. To account for this uncertainty, we presented 

confidence intervals alongside the predictive AUROCs.

Conclusions

The machine learning algorithm assessed in this study is capable of predicting sepsis up to 

48 hours in advance of onset with an AUROC of 0.83. This performance exceeds that of 

commonly used detection methods at time of onset, and may in turn lead to improved patient 

outcomes through early detection and clinical intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Machine learning algorithm accurately predicts sepsis up to 48 hours in 

advance

• Algorithm performance is superior to commonly-used disease severity scoring 

systems

• Algorithm performs well even when trained and tested on different patient 

populations

• May lead to improved patient outcomes through early detection and 

intervention
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Figure 1. 
Patient encounter inclusion diagram for UCSF and BIDMC data. All patient encounters 

meeting the sequential inclusion criteria outlined above were included in training and testing 

sets. Subsets included for each lookahead time varied depending on patient length of stay.
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Figure 2. 
MLA performance compared to those of competing systems and in hours before onset. A) 

Comparison of ROC and AUROC for MLA and competing rules-based scoring systems at 

time of sepsis onset in the UCSF patient population. B) ROC curve and AUROC for MLA at 

0, 24, and 48 hours before sepsis onset for UCSF patient data.

Abbreviations: MEWS, modified early warning score; MLA, machine learning algorithm; 

qSOFA: quick SOFA; SIRS, systemic inflammatory response syndrome; and SOFA, 

sequential (sepsis-related) organ failure assessment.
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Table 1.

Demographic characteristics for UCSF and BIDMC cohorts.

Demographic Overview Characteristic UCSF (%) BIDMC (%)

Gender
Female 54.62 43.87

Male 45.38 56.13

Age
a

18–29 11.50 4.34

30–39 15.20 4.99

40–49 13.02 9.73

50–59 18.62 17.89

60–69 21.22 22.79

70+ 20.44 40.26

Length of Stay (days)
b

0–2 30.35 49.34

3–5 38.42 32.38

6–8 14.21 8.24

9+ 17.02 10.05

Death During Hospital Stay
Yes 2.19 27.08

No 97.81 72.92

ICD-9 Code

Sepsis 5.83 3.48

Severe Sepsis 3.69 10.19

Septic Shock 1.85 7.00

Note: The UCSF cohort includes 91,445 patients. The BIDMC cohort includes 21,507 patients.

a
UCSF: median 55, IQR (38, 67); BIDMC: median 65, IQR (53, 77);

b
UCSF: median 4, IQR (2, 6.32); BIDMC: median 3, IQR (2, 4)
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Table 2.

MLA performance measures before sepsis onset and competing scores at time of onset.

MLA
(t = 0)

MLA
(t = −24)

MLA
(t = −48)

SIRS
(t = 0)

MEWS
(t = 0)

SOFA
(t = 0)

qSOFA
a

(t = 0)

AUROC
(SD)

0.88
(0.008)

0.84
(0.04)

0.83
(0.04) 0.66 0.61 0.72 0.60

Sensitivity 0.80 0.80 0.84 0.70 0.52 0.78 0.37

Specificity 0.78 0.72 0.66 0.51 0.72 0.59 0.81

DOR 14.79 13.69 13.15 2.44 2.81 5.20 2.60

LR+ 3.76 2.57 2.86 1.43 1.86 1.92 2.00

LR− 0.26 0.28 0.21 0.56 0.66 0.37 0.77

Note: Performance measures for MLA at 0, 24, and 48 hours before onset, and competing scores at time of onset, measured on UCSF patient data. 
Operating points were chosen for sensitivities close to 0.80. Standard deviation in AUROC across cross-validation folds was calculated only for the 
MLA.

Abbreviations: AUROC, area under the receiver operating characteristic; DOR, diagnostic odds ratio; LR+, positive likelihood ratio; LR-, negative 
likelihood ratio; MEWS, modified early warning score; MLA, machine learning algorithm; qSOFA, quick SOFA; SD, standard deviation; SIRS, 
systemic inflammatory response syndrome; and SOFA, sequential (sepsis-related) organ failure assessment.

a
All of qSOFA’s operating points produced sensitivities far from 0.80.
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Table 3.

Features with highest feature importance scores for each lookahead.

# 0-Hour Detection 24-Hour Prediction 48-Hour Prediction

1 Age Age Age

2 HR (t = 0) HR (t = −2) HR (t = 0)

3 Temp (t = 0) HR (t = −1) SysABP (t = −2)

4 SysABP (t = 0) HR (t = 0) ΔDiasABP (t = −2 to −1)

5 Temp (t = −2) Temp (t = 0) HR (t = −2) & Temp (t = 0)

Note: The parentheticals indicate that a feature was measured 0, 1, or 2 hours before the beginning of the prediction window. For example, in the 
context of 24-hour prediction, t = −2 indicates that the measurement was taken 24 + 2 = 26 hours before the onset time. The ΔDiasABP feature in 
the 48-hour prediction column corresponds to a difference in measurements between two times, t = −2 and t = −1. The HR (t = −2) and Temp (t = 
0) features had the same average importance score for 48-hour prediction.

Abbreviations: ΔDiasABP, change in diastolic blood pressure; HR, heart rate; SysABP, systolic blood pressure; Temp, temperature.
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