
ar
X

iv
:1

80
1.

09
74

9v
1 

 [
cs

.C
V

] 
 2

9 
Ja

n 
20

18

Deep Learning based Retinal OCT Segmentation

M. Pekala‹, N. Joshi‹, D.E. Freund‹, N. M. Bressler:,
D. Cabrera DeBuc;, and P. Burlina‹

‹ Johns Hopkins University Applied Physics Laboratory, Laurel MD
: Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore MD

; Bascom Palmer Eye Institute,
University of Miami Miller School of Medicine, Miami FL

Abstract. Objective

To evaluate the efficacy of methods that use deep learning (DL) for the
automatic fine-grained segmentation of optical coherence tomography
(OCT) images of the retina.
Methods

OCT images from 10 patients with mild non-proliferative diabetic retinopa-
thy were used from a public (U. of Miami) dataset. For each patient, five
images were available: one image of the fovea center, two images of the
perifovea, and two images of the parafovea. For each image, two expert
graders each manually annotated five retinal surfaces (i.e. boundaries be-
tween pairs of retinal layers). The first grader’s annotations were used
as ground truth and the second grader’s annotations to compute inter-
operator agreement. The proposed automated approach segments images
using fully convolutional networks (FCNs) together with Gaussian pro-
cess (GP)-based regression as a post-processing step to improve the qual-
ity of the estimates. Using 10-fold cross validation, the performance of
the algorithms is determined by computing the per-pixel unsigned error
(distance) between the automated estimates and the ground truth anno-
tations generated by the first manual grader. We compare the proposed
method against five state of the art automatic segmentation techniques.
Results

The results show that the proposed methods compare favorably with
state of the art techniques, resulting in the smallest mean unsigned error
values and associated standard deviations, and performance is compa-
rable with human annotation of retinal layers from OCT when there is
only mild retinopathy.
Conclusions

The results suggest that semantic segmentation using FCNs, coupled
with regression-based post-processing, can effectively solve the OCT seg-
mentation problem on par with human capabilities with mild retinopa-
thy.
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segmentation

http://arxiv.org/abs/1801.09749v1


2 Authors Suppressed Due to Excessive Length

1 Introduction

Optical coherence tomography (OCT) is an important retinal imaging modality
as it is a non-invasive, high-resolution imaging technique capable of capturing
micron-scale structure within the human retina. The retina is organized into
layers (e.g. see figure 1 in [1]) and abnormalities in this structure have been
associated with ophthalmic, neurodegenerative and vascular disorders. One such
example is age-related macular degeneration (AMD), a retinal condition that is
among the leading causes of blindness and visual impairment. For individuals
over 50 years of age in the United States, if left untreated, it is the leading cause
of irreversible central vision loss [2–4]. Studies have shown that advanced AMD
lesions correlate with thinning of the outer retina in geographic atrophy as well
as overlying choroidal neovascularization [5].

As a part of the central nervous system (CNS), the retina is also subject
to a number of specialized immune responses similar to those in the brain and
spinal cord; changes in the retinal structure have been associated with CNS dis-
orders such as stroke, multiple sclerosis, Parkinson’s disease, and Alzheimer’s
disease. In particular, thinning of the retinal nerve fiber layer (RNFL) is often
associated with the aforementioned disorders and, in some cases, its thickness
correlates directly with the progression of neurological impairment [6]. Further-
more, ocular manifestations of CNS disorders can sometimes precede symptoms
within the brain itself, while thickening of the retina with cystoid abnormalities
or subretinal fluid represents one of the most common causes of vision impair-
ment, i.e., retinal pathology from macular edema as a result of diabetes or retinal
vein occlusions. Since the retinal structure can be imaged relatively easily via
OCT, automated retinal analysis using OCT provides a compelling complement
to traditional CNS detection methodologies. Currently, commercial OCT devices
provide a map to describe the retinal thickness, typically between the surface of
the retina and the retinal pigment epithelial layer of the retina. However, these
measurements may not fully incorporate the data available on OCT regarding
retinal pathology.

Work in automated retinal image analysis (ARIA) has steadily progressed
in the past two decades, as datasets have become more plentiful and machine
vision and machine learning techniques have become more proficient (e.g. [7–12]).
This has also favorably impacted work in automatic OCT segmentation, where
most standard algorithms employ classical (e.g. graph based [13]) segmentation
techniques (see e.g. [1, 14–20] and specifically [20] for a recent review of the
practice).

Work in deep learning has had substantial impact recently on medical imag-
ing (see examples such as [21,22]) and also ARIA, for instance to automatically
detect patients with referable age related macular degeneration from fundus im-
ages [23,24] or OCT [25]. For OCT segmentation, some recent studies have fea-
tured the use of convolutional neural networks (ConvNets): [26] uses ConvNets
to delineate macular edema, [27] uses a cascaded U-Net like architecture [28]
and shows performance close to that of a classical approach based on random
forests, and [29] uses a hybrid ConvNets and graph based method to identify
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OCT boundary layers. Recent efforts at U. of Miami [1] have also taken steps
to develop publicly available OCT datasets with clinical gold standards for com-
paring performance among methods, including a number of OCT segmentation
algorithms of record.

The salient/novel features of the present work include: a new OCT segmenta-
tion method using a combination of fully convolutional networks (FCNs) based
on DenseNet and Gaussian process regression, and a performance comparison
with methods of record showing that the proposed approach performs on par
with a human annotator and compares favorably against other methods of record
when used on a publicly available dataset [1]. In particular, our method exhibits
the smallest unsigned boundary estimation errors, a result which has potential
clinical implications given that ophthalmic, neurological, and vascular disorders
have manifestations in retinal layers visible in OCT.

2 Methods

2.1 Data

For our study we utilize the publicly available U. of Miami OCT dataset [1].
This includes 50 OCT images spanning 10 different patients with mild, non-
proliferative diabetic retinopathy. Each image consists of 768 ˆ 496 pixels with
transversal and axial resolutions of 11.11µm/pixel and 3.867µm/pixel. There
are five images available for each patient, which includes one image of the fovea
center, two of the perifovea, and two of the parafovea. Two expert graders each
annotated five retinal surfaces per image, where a “surface” is defined as the
boundary between a pair of adjacent retinal layers. The result is a total of 250
annotated surfaces per grader. The annotated surfaces are numbered 1,2,4,6 and
11 (following the convention introduced in [1]). These surfaces and the associated
layers are described in Table 1. Also following the approach in [1], we use the
first grader’s annotations as ground truth and the second grader’s annotations
as a measure of inter-operator agreement.

Surface ID Upper Layer Lower Layer
1 Pre-retinal space Nerve fiber layer
2 Nerve fiber layer Ganglion cell layer
4 Inner plexiform layer Inner nuclear layer
6 Outer plexiform layer Henle’s Fiber layer

and Outer nuclear layer
11 Bruch’s complex Choriocapillaris

Table 1. Annotated surfaces provided by dataset in [1].
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Fig. 1. Example annotations from the dataset of [1]. The yellow lines depict the AURA
surface estimate; note the estimate does not span the entire image. Magenta lines
denote the estimates generated by human observer #1 which are used as ground truth
in this study.

2.2 Segmentation approach

Our approach for estimating retinal surfaces consists of two primary steps. The
first step employs a classification algorithm to identify, for each pixel, the most
likely corresponding retinal layer. These per-pixel classification estimates are
then used as the inputs to the second step, a regression procedure which leverages
our prior knowledge that retinal surfaces can be modeled as smooth functions
that partition layers along the axial dimension.

For the retinal layer classification step we employ a fully convolutional neural
network (FCN) based on the DenseNet [30,31] architecture. FCNs are a subcate-
gory of ConvNets that take tensor-like data as input and produce class estimates
having the same spatial dimensions; when the inputs are images, FCNs provide
per-pixel class estimates. This is in contrast with more traditional “whole image”
classification schemes whereby a single class estimate is produced for the entire
input. Note that, while this work only attempts to estimate the layer associated
with each pixel, the ability to generate per-pixel class estimates might also be
used to identify additional clinically relevant features or lesions in OCT images.

Many convolutional networks process data serially, in that each layer oper-
ates solely upon the output of the previous layer. The DenseNet architecture,
in contrast, permits each layer of the network to directly process the outputs
from all previous layers. This construction allows information (i.e. features) ex-
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tracted in the early layers to propagate throughout the network without being
perturbed by the action of intermediate layers. Directly passing feature maps
from early to later layers also has benefits with regard to efficient training via
backpropagation. Other FCNs, such as U-Nets [28], also directly propagate a
subset of features maps; however these intra-layer connections are less abundant
relative to the DenseNet architecture. In fact, our initial experiments were based
on U-Nets; however, we empirically found the DenseNet architecture provided
superior performance in this setting.

Variations in thickness of retinal layers introduces a non-trivial amount of
class imbalance in the aforementioned classification procedure (there are fewer
pixels corresponding to the thin, inner retinal layers). To mitigate the impact
of this class imbalance we increase the weight in the loss penalty for the pix-
els associated with minority classes during training by a factor of 10 (roughly
corresponding to the level of class imbalance).

At this point, one might attempt to directly extract surfaces from the layer
estimates by identifying locations where class estimates change along the axial
dimension. However, surfaces are defined by a unique location for each pixel in
the transversal dimension, a constraint not explicitly enforced by the per-pixel
classification procedure. For example, Fig. 2 shows an example classification
output that, while fairly accurate, includes a few undesirable artifacts that may
introduce duplicate or missing surface estimates at some locations. One option
is to employ local heuristics to address these issues. In this heuristic, if the
classification procedure generates more than one candidate for a layer at a given
location, the point which is nearest in Euclidean distance to the prior surface
is used (for surface 1, distance to surface 2 is used as the adjudication method).
Alternately, if a layer estimate is missing for any given location, an estimate
is imputed from the nearest available value for that layer. The combination
of methods employed above for segmentation and post-processing constitutes a
baseline algorithm which we term “SEG”.

An alternative to making local repairs is to explicitly use our prior knowledge
that retinal surfaces (in two-dimensional images) can be modeled as scalar-valued
functions with an appropriate level of smoothness and apply a post-processing
module that solves a regression problem for each surface. For this study we
employ Gaussian processes (GP) with a Radial Basis Function kernel for this
purpose [32]. We used a value of 50 pixels for both the variance and length scale
hyper-parameters of this kernel; this choice was based on qualitative evaluation
of the smoothness of the resulting estimates. In the future, improved perfor-
mance might be obtained by formal hyper-parameter selection. With enough
data, hyper-parameters could also be tuned on a per region and/or per-surface
basis. Other regression techniques are of course possible; in addition to providing
a clean mechanism for specifying smoothness priors, GPs also have the advantage
of providing a mechanism for solving regression problems in higher dimensions
(an important consideration in settings where volumetric OCT data is available).
We term this combined FCN and GP approach “SEG+REG”.
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Fig. 2. Example segmentation; original image (left); neural network segmentation out-
put, before post-processing (right).

2.3 Comparison with other state of the art algorithms

In addition to OCT images and ground truth, the publicly available U. of Miami
OCT dataset [1] also includes annotations generated by five commonly used OCT
segmentation software packages and/or algorithms of record. These reference
algorithms/implementations are: Spectralis 6.0 [15], IOWA Reference Algorithm
[16], AUtomated retinal analysis tools (AURA) [17], Dufour’s (Bern) algorithm
[18], and OCTRIMA3D [19]. We refer the reader to [1] for a complete description
of these algorithms. Note that these automated annotations do not always span
the entire OCT image (e.g., see Fig. 1). Therefore, our performance evaluation
is based solely upon the subset of each image for which all algorithms produced
a valid surface estimate.

2.4 Evaluation methods and metrics

We use a K-fold cross validation (K=10) process where we use nine sets of five
images (resulting in a total of 45 images) from nine patients for training the FCN,
and testing is done on the remaining test patient’s five images. Then the patient
used for testing is rotated as is done in conventional K-fold testing approaches,
resulting in testing performed on all images. This stratification allowed us to
train the network on representative data while ensuring that the segmented
images for a given patient were not a by-product of training on that patient’s
images. A few of the images contain regions that consist of all zero pixels; these
regions were not used during training (although they are evaluated at test time).

Following the approach in [1], we measure the accuracy of surface estimates
by computing the per-pixel differences between the estimate and the ground
truth annotations generated by the first manual grader. Metrics calculations
are limited to the regions for which all automated algorithms in the dataset
had valid estimates (therefore excluding remote/lateral regions where artifacts
are more prevalent). We used mean unsigned errors and mean signed errors as
performance metrics for both the proposed algorithms and algorithms of record.
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Table 2. Mean unsigned error aggregated across all eye regions. Values in bold indicate
when an algorithm meets or exceeds human performance.

SEG SEG+REG Spectralis OCTRIMA AURA IOWA Bern Inter-Observer
surface 1 1.13 1.10 1.09 0.95 1.35 2.03 1.71 0.87
surface 2 1.14 1.06 1.45 1.18 1.19 1.74 2.77 1.14
surface 4 0.95 0.92 1.92 0.99 1.12 1.79 1.60 1.10
surface 6 1.23 1.19 1.19 1.52 1.54 1.51 1.72 1.29
surface 11 1.06 1.02 0.99 1.20 0.96 1.22 1.24 1.12
mean 1.10 1.06 1.33 1.17 1.23 1.66 1.81 1.10
max 1.23 1.19 1.92 1.52 1.54 2.03 2.77 1.29
std 0.10 0.10 0.37 0.23 0.22 0.30 0.57 0.15

For a given surface, the estimate vest and the corresponding ground truth vref

are both vectors (with dimension equal to the width of the evaluation region, in
pixels) and the signed error is defined to be

es “ vref ´ vest;

the unsigned error is just the absolute value of es taken component-wise.

3 Results

We report the performance of both the SEG and SEG+REG compared with
other algorithms. Table 2 reports the mean unsigned errors for each algorithm
and surface, and the average and max values across all testing data. Values in
bold font indicate when an algorithm meets or exceeds human performance (e.g.
inter-operator error). The table suggests that in aggregate the proposed meth-
ods match human performance, and perform favorably when compared to other
algorithms of record. These results also indicate particularly good performance
of the proposed methods on the inner retinal surfaces. Table 3 shows the signed
errors for the corresponding regions, from which it appears that our method
may be slightly overestimating the support of the retinal layers as evidenced by
a relatively large positive error on surface 1 and a relatively large negative error
on surface 11. Following [1] we also provide the mean unsigned error broken down
by ocular regions in Table 4 1.

4 Discussion

We present results demonstrating that semantic segmentation using a DenseNet
fully convolutional Network coupled with a regression-based post-processing us-
ing GPs can effectively address the problem of fine-grained automated OCT

1 Note there is some minor difference between these results and table 5 of [1] for the
algorithms of records which may be attributed to variations in the extent of the
macular region that was evaluated; many of the automated methods tend to exhibit
greater variation towards the edges of the scans.
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Table 3. Mean signed error across all eye regions.

SEG SEG+REG Spectralis OCTRIMA AURA IOWA Bern Inter-Observer
surface 1 0.90 0.89 -0.82 0.66 1.22 1.99 1.65 0.26
surface 2 -0.12 -0.14 0.76 0.16 0.34 1.47 2.53 0.29
surface 4 0.18 0.18 1.43 0.12 0.41 1.59 1.30 0.29
surface 6 -0.30 -0.30 -0.51 -0.92 -0.51 0.78 1.13 0.09
surface 11 -0.66 -0.66 -0.44 -0.94 -0.58 1.04 0.90 -0.69

Table 4. Mean unsigned error for all surfaces and regions.

SEG SEG+REG Spectralis OCTRIMA AURA IOWA Bern Inter-Observer
surface1 fovea 1.18 1.13 0.90 0.90 0.90 2.14 1.67 0.85
surface1 parafovea 1.12 1.10 1.14 1.00 1.31 1.98 1.81 0.89
surface1 perifovea 1.12 1.09 1.13 0.92 1.62 2.01 1.62 0.86
surface2 fovea 1.34 1.24 1.39 1.15 1.29 2.42 2.02 1.31
surface2 parafovea 1.03 0.97 0.92 1.03 0.92 1.59 2.45 0.97
surface2 perifovea 1.15 1.05 2.02 1.35 1.42 1.54 3.47 1.22
surface4 fovea 1.10 1.08 1.30 1.12 1.25 1.81 1.44 1.13
surface4 parafovea 0.91 0.89 1.32 0.91 1.02 1.67 1.52 1.08
surface4 perifovea 0.92 0.88 2.82 1.00 1.14 1.89 1.76 1.11
surface6 fovea 1.45 1.40 1.79 2.75 2.58 1.58 1.86 1.50
surface6 parafovea 1.26 1.22 1.10 1.36 1.42 1.50 1.74 1.36
surface6 perifovea 1.08 1.04 0.99 1.08 1.14 1.49 1.62 1.11
surface11 fovea 0.92 0.88 0.81 1.02 0.88 1.08 1.23 1.12
surface11 parafovea 1.07 1.04 0.98 1.19 0.95 1.14 1.16 1.12
surface11 perifovea 1.11 1.08 1.07 1.31 1.02 1.38 1.32 1.11
mean 1.12 1.07 1.31 1.21 1.26 1.68 1.78 1.12
max 1.45 1.40 2.82 2.75 2.58 2.42 3.47 1.50
std 0.15 0.14 0.53 0.45 0.43 0.37 0.57 0.18

segmentation, a capability that has many clinical applications. The results show
that the proposed methods compare well with state of the art, resulting in the
smallest mean unsigned error values and associated standard deviations; over-
all, performance is comparable with human annotation. We should note however
that caution should be exercised when interpreting such strict comparisons since
the algorithms of record we compare against were developed and optimized using
datasets which may not match exactly the U. of Miami evaluation dataset used
here, in aspects such as resolution, noise characteristics, and artifacts.

In addition, the benefit of using the proposed approaches are their relative
simplicity. Another advantage of the fully convolutional architectures and regres-
sion used here is that these approaches can be naturally expanded in a number
of ways, including the direct analysis of 3D volumetric data (e.g. see [33]) and
to the problem of identifying additional structures within the OCT scans, such
as drusen or other lesions.
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As mentioned previously, in our study we also originally used FCNs based
on U-Nets and ensembles of U-Nets [28]; however, we found DenseNet provided
superior performance for this application.

We anticipate these results could be further improved with additional train-
ing data and/or a more exhaustive selection of training hyper-parameters (e.g.
weighting of minority class pixels or per-layer tuning of the downstream regres-
sion). It is also important to note that the dataset used here only represents the
mild spectrum of diabetic retinopathy. A future study with an analysis which
includes more advanced conditions would also be of value. Further studies would
be indicated with more severe retinal pathology.

Overall, the results show that deep learning and FCNs can provide a com-
petitive approach for OCT automatic segmentation that is fully automated and
holds promise for clinical applications.

5 Conclusion

We propose novel OCT automated segmentation methods. Results suggest that
semantic segmentation using FCNs, coupled with regression-based post-processing,
can effectively produce results that are on par with human capabilities and meet
or exceed the prior methods of record considered here.
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