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A B S T R A C T   

Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical 
variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, 
among others) have an important role in treatment selection and prognosis. Radiological biomarkers require 
expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to 
reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we 
investigated Deep Learning techniques for building models to directly predict good reperfusion after endovas
cular treatment (EVT) and good functional outcome using CT angiography images. These models do not require 
image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models 
using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, 
adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. 
We further included model visualization techniques to provide insight into the network’s decision-making 
process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning 
models outperformed the models using traditional radiological image biomarkers in three out of four cross- 
validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC 
of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. 
The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the 
results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms 
radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment 
selection.   
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1. Introduction 

Stroke is ranked among the leading causes of death and permanent 
disability in the last 15 years worldwide [1,2]. Approximately 80% of all 
stroke patients with untreated large vessel occlusion in the anterior 
circulation do not regain functional independence or die within 90 days 
after stroke onset [3]. The Multicenter Randomized Clinical Trial of 
Endovascular Treatment for Acute Ischemic Stroke in the Netherlands 
(MR CLEAN Registry) has shown that this patient population can be 
effectively treated with endovascular treatment (EVT) [4]. 

Accurate prediction of reperfusion and functional outcome has the 
potential to improve stroke care, as it could lead to selecting the most 
beneficial treatment option for the individual patient: to perform or to 
withhold EVT. Recent studies on outcome prediction strategies in 
ischemic stroke patients after EVT utilized clinical variables and radio
logical image biomarkers [5,6]. In favor of standardized prognosis, 
various radiological stroke imaging biomarkers have been defined by 
specific, visually observable phenomena that imply stroke severity and 
functional outcome. These biomarkers include the extent of tissue 
damage characterized by edema (e.g. ASPECTS [7]) and extent of blood 
flow through the collateral circulation (e.g. Collateral Score [8]), and 
they have been proven to be associated with functional outcome. The 
number of proposed radiological image biomarkers for prognosis in 
acute ischemic stroke is quite large. In the MR CLEAN Registry, for 
example, 20 biomarkers have been assessed. These biomarkers are 
commonly scored manually, may demand a considerable time effort and 
suffer from observer variability. For the collateral score, observer 
agreement as low as 50% with kappa’s ranging from 0.49 to 0.60 has 
been reported [9], and for the ASPECTS score a mean deviation close to 
one point has been found, with above 25% of the cases deviating more 
than two points [10]. Details about the other image biomarkers are 
shown in Supplemental Table 1. 

Machine Learning (ML) enables the discovery of empirical patterns 
and linear/non-linear relationships in data through automated algo
rithms. Regarding imaging data, Deep Learning (DL) algorithms are 
particularly able to learn important predictive patterns, which may lead 
to increased prediction accuracy [11]. For example, an encoder-decoder 
CNN (inspired by the SegNet [12]) was developed to predict final lesion 
volume and outcome in acute ischemic stroke patients using magnetic 
resonance imaging, with an AUC of 0.88 (10% higher than linear 
models) [13]. E-ASPECTS, a machine learning-based commercial soft
ware developed to automate ASPECTS scoring in CT scans, has recently 
been used to predict functional recovery and adverse outcome in acute 
ischemic stroke patients [14]. In the stroke lesion segmentation chal
lenge (ISLES), a multi-scale 3D-CNN was the best performing model, 
with an average Dice score of 0.59 [15]. This multi-scale 3D-CNN 
(named DeepMedic [15]) was also successfully applied to CTA to 
detect acute ischemic stroke (and segment the lesion) with an AUC of 
0.93 [16]. However, these specific DL approaches are generally limited 
by the manual determination of many of the biomarkers that are 
considered ground truth but suffer from high inter-observer variability. 
Besides, DL methods generally come at the cost of high complexity 
models with low interpretability [17], hampering the applicability in 
clinical settings. 

Due to the recent success of DL approaches in stroke medical imag
ing, we hypothesize that data-efficient DL methods trained on CT 
Angiography (CTA) imaging data might outperform well-known radio
logical image biomarkers in predicting good reperfusion after EVT and 
good functional outcome in patients with acute ischemic stroke. Next to 
assessing the accuracy, we adopt visualization techniques, since these 
prediction systems can be of more assistance when they provide direct 
insights into their decision-making process beyond generating a proba
bility distribution. 

2. Methods 

2.1. Clinical data and pre-processing 

We included 1526 ischemic stroke patients registered between 
March 2014 and June 2016 in the MR CLEAN Registry part1 [18]. The 
MR CLEAN Registry is an ongoing, prospective, observational, multi
center study at 16 intervention hospitals in the Netherlands. Imaging 
data (CTA scans) available before EVT were used to develop the DL 
models and to determine radiological image biomarkers by expert 
radiologists. 

The raw CTA scans were of size (512x512xS), where S was the 
number of axial slices. Due to limited computational resources, we opted 
to reduce sparsity and dimensionality of images by computing 
Maximum Intensity Projections (MIPs) from the CTA data in the axial 
plane. First, CTA scans were co-registered to a reference scan (a scan 
with no abnormalities) using rigid registration with the Elastix software 
[19] and the skull was removed from the images with a region growing 
algorithm since it is of high intensity and can hamper the quality of the 
MIPs [20]. The attenuation of the MIPs was clipped between þ50 and þ
400 Hounsfield Units (HU) and normalized to the interval of [0,1]. The 
surrounding air was removed to reduce image size. The final image data 
size used as input for the DL models was 368x432 pixels (voxel size of 
0.52,0.52 mm). After the pre-processing steps, 225 patients were 
excluded due to failure during registration, poor image quality, and 
noise or artifacts, leaving a total of 1301 patients to be used for model 
development. Table 1 contains the baseline characteristics of the pa
tients used in our models. 

We created models to predict two outcome measures. First, good 
functional outcome after ischemic stroke - defined by the dichotomized 
modified Rankin Scale (mRS � 2) at 90 days - mRS is a scale commonly 
used to assess the disability of stroke patients in daily activities. mRS 
ranges from 0 to 6, where zero means no disability, progressing to five 
(severe disability) and six (death). 

Second, good reperfusion - defined by the dichotomized modified 

Table 1 
Characteristics of patients in MR CLEAN Registry. Values correspond to the 
percentages of participants unless stated otherwise.  

Characteristics MR 
CLEAN 
Registry 
N ¼ 1301 

MR 
CLEAN 
Registry 
mRS 0–2 
N ¼ 463 

MR 
CLEAN 
Registry 
mRS 3–6 
N ¼ 838 

MR 
CLEAN 
Registry 
mTICI 0- 
2a 
N ¼ 552 

MR 
CLEAN 
Registry 
mTICI 
2b-3 
N ¼ 749 

Age (years) 
(median/IQR) 

71 (59 - 
79) 

66 (55 - 
74) 

74 (63 - 
82) 

72 (60 - 
80) 

70 (59 - 
78) 

Men (%) 695 
(53.4) 

262 
(56.6) 

433 
(51.7) 

290 
(52.5) 

405 
(54.1) 

NIHSS at 
baseline 
(median/IQR) 

16 (11 - 
20) 

13 (9 - 
17) 

17 (13 - 
21) 

16 (12 - 
20) 

15 (11 - 
19) 

Onset to groin 
puncture time 
(mins) (IQR) 

210 (160 
- 270) 

190 (145 
- 253) 

220 (170 
- 279) 

215 (157 
- 281) 

205 (160 
- 265) 

Systolic blood 
pressure (mm 
Hg) (Mean/ 
STD) 

150 
(1.89) 

146 
(4.86) 

152 
(3.03) 

152 
(4.63) 

148 
(3.16) 

Intravenous 
alteplase 
treatment (%) 

1014 
(77.9) 

380 
(82.1) 

634 
(75.7) 

411 
(74.5) 

603 
(80.5) 

ASPECTs at 
Baseline 
(subgroups)      

0–4 81 (6.2) 16 (3.5) 65 (7.8) 36 (6.5) 45 (6.0) 
5–7 310 

(23.8) 
95 (20.5) 215 

(25.7) 
131 
(23.7) 

179 
(23.9) 

8–10 880 
(67.6) 

340 
(73.4) 

540 
(64.4) 

370 
(67.0) 

510 
(68.1)  
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Thrombolysis In Cerebral Infarction score (mTICI � 2b). mTICI is a score 
that ranges from 0 (no antegrade reperfusion of the occluded vascular 
territory) to 3 (complete reperfusion). mTICI was assessed by 20 neu
roradiologists and one neurologist at an imaging core laboratory. The 
observers were blinded to all clinical findings, except occlusion location. 
mTICI was scored on digital subtraction angiography images [18]. 

2.2. Structured Receptive Field Neural Networks (RFNNs) 

Conventional CNNs (Convolutional Neural Networks) hardly excel in 
the presence of relatively small datasets, which presents a common 
challenge for many medical applications. To this end, in this work we 
explore a data-efficient CNN formulation that builds on the structure of 
biological receptive fields. 

Structured Receptive Field Neural Networks (RFNNs) were proposed 
in Ref. [21] and have been shown to outperform CNNs on small- and 
medium-sized datasets. RFNNs redefine convolutional kernels as linear 
combinations of Gaussian derivative filters. Contrary to traditional 
kernels, only the combination weights are trained, whereas the set of 
Gaussian derivatives is fixed. In this way, the number of parameters to 
train is potentially decreased, and prior knowledge about the spatial 
properties of local features is introduced. Gaussian filters and the 
Scale-space theory in computer vision [22] have been broadly explored 
in the medical imaging domain. Scale-space approaches have been 
successfully applied to medical imaging classification and segmentation 
with great performance improvements since they often assist the clas
sifiers by revealing low and high-level features without introducing ar
tifacts [23–25]. Furthermore, the interpretability of CNNs is enhanced 
by explicitly connecting classical image processing methods with the 
data-driven paradigm. 

Fig. 1 illustrates the computation of I*N kernels of a RFNN con
volutional layer l, where I is the number of input feature maps and N is 
the number of output feature maps. This RFNN formulation can be used 
in any convolutional layer to replace the conventional convolutional 
kernels while keeping the architecture of a CNN intact. 

2.3. Unsupervised pre-training 

A random initialization scheme can place the parameters of a CNN in 
regions that do not generalize well, while the limitations in training data 
and computational resources create a burden in improving generaliza
tion during training (e.g. increasing batch size). These problems make 
the training of deep architectures unstable and can lead to lower model 
accuracy [26]. Moreover, supervised training of CNNs is influenced by 
the ground truth labels, even though learning effective image features 
does not necessarily rely on image annotation. 

To face these challenges, we included unsupervised pre-training in 
the experiments using stacked denoising convolutional Auto-Encoders 

(AE) [26]. AEs learn a feature representation by compressing the input 
into a latent space and subsequently reconstruct the input using this 
representation. By optimizing the reconstruction from the input data, 
the AE is able to learn features that best represent the image. We con
structed AEs from each CNN model by using their convolutional layers 
as the encoder part and extending with a corresponding sequence of 
transposed convolutional blocks as the decoder. Transposed convolu
tional blocks are comprised of the same Batch-Normalization, ReLU, 
convolutional sequence but convolutions are replaced by up-sampling 
transposed convolutions. Using the training data, we trained an AE 
until the loss between the output and the input images stopped 
decreasing (depicted by the dashed lines in Fig. 2). The learned encoding 
part of the network was subsequently used to train a dense layer using 
the labels (in a transfer learning fashion) [27,28]. The weights from the 
encoding part were used in two approaches: keeping them frozen during 
the training or fine-tuning them during the training of the dense layer 
[27]. 

2.4. Baseline models 

To assess the added value of DL methods compared to existing 
radiological image biomarkers, we created ML-based models using 
radiological image biomarkers that have shown state-of-the-art results 
on the same dataset [5]. In these baseline prediction models, we used 20 
radiological imaging biomarkers, which have been manually scored by 
designated experts of the core-lab of the MR CLEAN Registry. These 
radiological image biomarkers have shown predictive value for func
tional outcome and thus are commonly considered in clinical practice 
[4,29,30]. Supplemental Table 1 lists all included radiological imaging 
biomarkers. We developed two clinical baseline prediction models for 
both outcome measures using only radiological image biomarkers. The 
first is a Logistic Regression (LR) model, following the most common 
approach in clinical research. The second is a Random Forest Classifier 
(RFC), which has earlier been successfully used for the same patient 
population [5]. 

To assess the benefits of the proposed application of RFNN con
volutional layers and unsupervised pre-training, we compared them to a 
standard DL model. We developed and optimized a ResNet architecture, 
and used it as the standard DL model. The ResNet architecture was 
composed of four blocks with two consecutive convolutions in each 
block, and skip-connections connecting the input and the output of 
blocks [31]. Inspired by Ref. [28], we followed the Batch-Normalization, 
ReLU, convolution sequence in each layer. Further details about the 
ResNet architecture can be found in Supplemental Tables 2–3 and 
Supplemental Fig. 2. Details of the ResNet-AE implementation for un
supervised pre-training are shown in Supplemental Table 4. RFNN 
models had the same ResNet (ResNet-AE in case of unsupervised 
pre-training) architecture, but the conventional convolutional kernels 

Fig. 1. Construction of RFNN convolutional kernels. φm denotes the fixed set of Gaussian derivatives, αl the combination weights in the lth convolutional layer, and 
Fl

i;n the convolutional kernel producing the nth output feature map of lth layer from ith input feature-map. (Should be printed in color). 
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were replaced with structured receptive field kernels. 

2.5. Experimental setup 

The 1301 patients were split into four balanced folds for cross- 
validation. In our data, class imbalance for functional outcome (mRS) 
was 463 good outcome (35.6%) and 838 (64.4%) unfavorable outcome. 
For reperfusion (mTICI), class imbalance was smaller, with 749 (60.9%) 
as good reperfusion and 552 (39.1%) as poor reperfusion. Since our data 
was slightly imbalanced, we opted for balancing the classes using 
random under-sampling. For each iteration, three folds were used to 
train and optimize the models, and one fold was used for testing the 
models. Area Under the Curve (AUC) was used to assess model accuracy. 
For each CNN model, we created three training schemes: (1) training 
models from scratch; (2) using unsupervised pre-training to initialize 
convolutional weights (encoder part of the AE) and keeping them un
changed during supervised training; and (3) keeping pre-trained 
encoder weights unchanged for 50 epochs, then releasing and fine- 
tuning the whole architecture. We selected the cut-off of 50 epochs 
(from 25, 50 or 75) by monitoring convergence of convolutional filters 
and training loss. Further details about the experimental setup and the 
hyper-parameters used for optimization can be found in Supplemental 
Table 5. All experiments were run on a PC with a single Titan X Pascal 
GPU, AMD Ryzen 7 1700X CPU, 16 GB of RAM memory and Windows 
10. 

2.6. Model visualization 

Deep Neural Networks are commonly referred to as black boxes 
because of their complex structure utilizing millions of parameters, in 
contrast to classical image processing techniques. In medical applica
tions, a good prediction system, in addition to high accuracy, also needs 
to deliver interpretable predictions. Even though RFNN convolutional 
layers increase interpretability, here we further investigate the expla
nation of neural predictions of our models. We hypothesize that the best 
way to explain outcome predictions is to visualize traits of input scans 
that led the model to the prediction. Various visualization techniques 
that analyze prediction models have been developed [32,33]. Here, we 
explored the visualizations with Gradient-weighted Class Activation 
Mapping (Grad-CAM) [33]. Grad-CAM is a popular technique for 
generating visual interpretations of CNN-based networks, which fuses 
the localization and class-discriminative properties of Class Activation 
Mapping [34] and the precision of Guided Backpropagation [35]. 

Grad-CAM explains predictions by unveiling the gradient-weighted 
contribution of convolutional feature maps in the input space. In prac
tice, we used the implementation of a slightly improved version of the 
technique, namely Grad-CAMþþ [36]. 

We created two visualizations for each of the best mRS and mTICI 
prediction models. The first, coined GCAM, was created with the 
gradient-weighted CAM method. It reveals the parts of a certain input 
scan that were the most influential in making a prediction as a heat-map. 
The second, coined GWGBP (gradient weighted guided back
propagation), was created using the output of Guided Backpropagation 
throughout the whole network multiplied pixel-wise by the output of 
GCAM. GWGBP shows how the network interprets an input scan in terms 
of the most relevant imaging features utilized for a prediction. We 
thresholded GCAM heat-maps at 0.5 significance level to facilitate 
interpretation by highlighting the most contributing areas only. 

3. Results 

The average and range of AUC values for predicting good functional 
outcome (mRS � 2) and good reperfusion (mTICI � 2b) are reported in 
Table 2. The LR and RFC methods used with the radiological image 
biomarkers for predicting good functional outcome resulted in an AUC 
of 0.68 for LR and 0.66 for RFC. For predicting reperfusion, the AUC was 
0.52 for both methods. The best average AUC for mRS prediction was 
obtained using the RFNN-ResNet model without AE pre-training (trained 
from scratch). The best average AUC for mTICI prediction was obtained 
with RFNN-ResNet-AE fine-tuned (with AE initialization and fine-tuning). 
Note that all models benefit from the AE pre-training for mTICI pre
diction. However, this is not the case for the prediction of mRS, where 

Fig. 2. Unsupervised and supervised training pipeline. First the AE is trained based on the reconstruction loss and then the trained encoder is used to train a dense 
layer for prediction. 

Table 2 
AUC using 4-fold cross-validation. Standard ResNet and RFNN-ResNet trained 
with scheme (1), ResNet-AE and RFNN-ResNet-AE with scheme (2) and ResNet-AE 
fine-tuned and RFNN-ResNet-AE fine-tuned with scheme (3).  

Method mRS AUC - Avg (range) mTICI AUC - Avg (range) 

LR Baseline 0.68 (0.66 – 0.69) 0.52 (0.51 – 0.54) 
RFC Baseline 0.66 (0.64 – 0.69) 0.52 (0.50 – 0.55) 

Standard ResNet 0.56 (0.54 – 0.58) 0.51 (0.41 – 0.56) 

ResNet-AE 0.58 (0.53 – 0.61) 0.57 (0.55 – 0.58) 
ResNet-AE fine-tuned 0.57 (0.51 – 0.66) 0.57 (0.54 – 0.60) 
RFNN-ResNet 0.71 (0.62 – 0.75) 0.57 (0.55 – 0.59) 
RFNN-ResNet-AE 0.65 (0.60 – 0.69) 0.55 (0.53 – 0.57) 
RFNN-ResNet-AE fine-tuned 0.67 (0.59 – 0.73) 0.65 (0.55 – 0.72)  
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RFNN-ResNet yielded the best result. Also, there was no difference in 
AUC between LR and RFC, as shown in previous studies [5]. Most 
importantly, the best performing data-efficient models outperformed 
the radiological image biomarkers baseline as well as standard CNN 
models for both mRS and mTICI outcome predictions. The AUC results 
for each fold are shown in Supplemental Tables 6 and 7 

In Fig. 3 and Fig. 4 we present the model visualization for the best 
models, RFNN-ResNet and RFNN-ResNet-AE fine-tuned, respectively. We 
can observe in the center column (GCAM), that the affected side of the 
brain (right in this case) contributes the most for the predictions (Fig. 3). 
Even though the relevant regions are relatively large, the most impor
tant regions (depicted in red), are usually more specific. In the right 
column (GWGBP), we can see that the arteries are highlighted as 
important features learned by the model in Fig. 3, while in Fig. 4 we 
observe a noisier pattern. Additional model visualization examples are 
shown in Supplemental Fig. 1. 

4. Discussion 

We have shown that data-efficient DL analysis of CTA images out
performed prediction models with commonly used radiological image 
biomarkers in predicting reperfusion and functional outcome for pa
tients with acute ischemic stroke. With model visualization tools, we 
have shown that the arteries are amongst the most common and influ
ential features extracted by the DL models when predicting outcomes. 

Recent studies on DL learning applied to stroke focused mostly on 
reproducing radiological image biomarkers and image segmentation 
tasks. In Ref. [37], SegNet [12] (an encoder-decoder architecture for 
image segmentation) was applied to MRI stroke imaging focused on 
predicting tissue outcome after acute ischemic stroke. DeepMedic [38], 
an open-source 3D CNN, was applied to CTA to detect ischemic stroke 
and segment lesions with high sensitivity and specificity in Refs. [14, 
16], showed that e-ASPECTS, a commercially available artificial intel
ligence software for ASPECTS scoring, is statistically non-inferior to 
neuroradiologists in scoring ASPECTS. A method using 3D CNNs was 
proposed in Ref. [39] for automatic assessment of DWI-ASPECTS with 
high accuracy. Finally [13], presents a CNN named Stroke U-Net 
(SUNet) that was developed to segment and predict outcome of acute 
stroke lesions, and showed better results than 3D U-Net and uResNet. 

Our results indicate an improvement by using structured 

convolutional kernels and unsupervised pre-training to predict good 
reperfusion (mTICI � 2b) when compared to baseline models. The per
formance improvement derived from the use of Gaussian filters confirms 
the effect that has already been previously seen in previous medical 
imaging classification tasks [24]. The best performing method was the 
RFNN-ResNet-AE fine-tuned model (with auto-encoder initialization and 
fine-tuning after 50 epochs). For good functional outcome prediction 
(mRS � 2), the RFNN-ResNet model (trained from scratch) achieved the 
highest AUC, slightly outperforming the baseline prediction models, 
with higher AUC scores for three out of four testing folds (Supplemental 
Tables 6 and 7). Interestingly, for good mRS prediction, the unsuper
vised pre-training and supervised fine-tuning strategy resulted in a 
lower AUC when compared to the RFNN-ResNet. This could be caused 
by the nature of the output labels. mTICI is derived directly from im
aging thus more general image features (most effectively learnt by un
supervised learning) appeared to have the potential to be more 
predictive. One of the strongest predictors of mRS is age [5,18,40], 
which naturally reflects on many attributes of the brain detectable on 
CTA, e.g. atherosclerosis, structural abnormalities of the vasculature, 
changes in white matter and brain volume [41]. Recognition of any of 
these properties directly or indirectly on images can potentially lead to 
more confident mRS prediction in contrast to more general image fea
tures learnt during unsupervised training. We believe, for mRS, that 
supervised training from scratch enabled RFNN-ResNet models to grasp 
such complex features and discriminate subsets of patients better than 
more general image features learned in an unsupervised fashion. Our 
experiments suggest that image features learned directly from MIP im
ages using RFNN-ResNet models can predict patients with good mTICI 
and mRS with higher accuracy than prediction models using well-known 
radiological image biomarkers. However, it should be mentioned that 
the predictive performance of the models is still limited. 

MIP images are either present in organized databases or can be 
computed quickly and efficiently in seconds, making our method suit
able for clinical practice. A prediction from our DL models takes only a 
few seconds, although the pre-processing steps (registration, skull- 
stripping and MIP computation) might take up to a couple of minutes 
(around 2 min for a scan with 400 slices). Consequently, an important 
advantage of our approach is that it is orders of magnitude faster and it 
does not require any manual image annotation, even during pre- 
processing, while delivering comparable prediction accuracy as 

Fig. 3. Visualization of predictions for mRS using the RFNN-ResNet model. Original MIP scans shown in the left column, the GCAM heat-map in overlay in the center 
and the GWGBP visualization on the right. Colors indicate the level of contribution of each region (GCAM). Most contributing regions (1.0) are represented in red, 
less contributing (0.5) in blue. (Should be printed in color). 
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existing radiological imaging biomarkers. 
We selected the ResNet architecture based on state-of-the-art per

formance on natural image classification and refined it for our task. Our 
main aim was to evaluate the advantages of RFNN kernels over the 
standard ones. Despite optimizing some hyper-parameters, deeper and 
wider architectures (such as DenseNets) could potentially yield better 
results in our experiments and should be explored in the future. CNNs 
intrinsically contain many parameters that need to be optimized. In 
determining these parameters, we were restricted by limited computa
tional resources – single GPU –, thus deeper models trained with larger 
batches or with 3D images might further improve predictions. Also, note 
that we did not explore transfer learning from another domain (e.g. 
ImageNet [42]), because the input images would have to be scaled down 
to a lower resolution. This could lead to the loss of relevant information 
and the depths of layers would be restricted by the chosen architecture. 
Another potential limitation is the use of MIPs. Even though a lot of 
information is lost in using MIPs to represent the 3D images, the MIPs 
retain important artery structures, while keeping the input size feasible 
for training the DL models and reducing sparsity. 

Even though k-fold cross-validation was applied, validation on an 
external dataset should be considered in future studies. Furthermore, we 
opted for a small number of folds for cross-validation due to the limited 
number of samples and class imbalance, as a high number of folds would 
lead to a test set with few samples, causing severe variance in our results. 
Also, due to the high number of experiments and hyper-parameters 
(from the optimizers and the RFNN), increasing the number of folds 
would have increased the duration of experiments radically. Besides, 4- 
fold cross-validation does not provide enough AUC values to compute 
the statistical significance of differences in accuracy between models. 
With more data available, more cross-validation folds could be per
formed to assess if the difference in AUC between models is statistical 
significant. 

Other important clinical factors that are predictive for good mRS and 
mTICI, such as age, National Institutes of Health Stroke Scale (NIHSS), 
time from stroke onset to groin puncture, among others, should also be 
included in future prediction models [5,6]. Finally, we selected the 
cut-off of �2 for mRS to make our models comparable to previous mRS 
prediction modeling research [5,6]. However, other cut-offs should be 
explored, for instance mRS�5, where the patients are severely disabled. 
Besides, provided that more data is available in the future, experiments 

comparing models trained on the full dataset and models trained on 
smaller portions could be used to quantify the extent of RFNN im
provements over standard ResNets. 

Understanding predictions is of utmost importance to improve reli
able decision support for individual prospective patients and to further 
assist in discovering relevant-yet-unseen image features. From our vi
sualizations, one can observe that the highest contribution for good mRS 
prediction comes mostly from one – the occluded – side of the brain. For 
predicting reperfusion, however, information from both sides of the 
brain is taken into account. For good mRS prediction, it is clear from the 
GWGBP, that arteries – i.e., the extent of blood flow – were important for 
prediction, since such patterns were extracted in all cases. The important 
role of arteries is well known in clinical practice [45]. For example, the 
collateral score (which is highly dependent on the visualization of the 
arteries in the brain) is commonly used to assess the alternative blood 
flow and is strongly associated with the size of infarction. The occlusion 
location is also an important predictor of functional outcome and 
reperfusion. Regarding mTICI, in cases of poor reperfusion, little is 
known about the reasons despite a successful recanalization after EVT, 
though many aspects of the artery have an effect on the efficacy of EVT 
treatment [4,43,44]. Further study is necessary to evaluate and properly 
quantify the visual explanations of the networks in more depth, since the 
most important regions are diverse, arteries are not always at the same 
location and stroke can occur in various locations of both sides of the 
brain. Given the important role of arteries and the feature pattern 
extracted by the networks, we suggest that future research on mTICI and 
mRS prediction should include the artery pattern as a feature. Also, one 
could create quantitative measures of interpretability of models, sensi
tivity and specificity of detection of certain features could greatly 
facilitate the understanding and improvement of DL models, which can 
help to identify new relevant image regions and patterns. 

5. Conclusion 

We have shown that, in our dataset, automated radiological image 
analysis with data-efficient DL methods outperforms the combination of 
multiple radiological image biomarkers for good stroke outcome pre
diction. Our approach does not require image annotation and is faster to 
compute than any radiological image biomarker considered in this 
study. We also improved the interpretability of our models using model 

Fig. 4. Visualization of the predictions for mTICI using the RFNN-ResNet-AE fine-tuned model. Order of visualizations corresponds to Fig. 3. (Should be printed 
in color). 
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visualization tools, which is valuable in clinical practice. Even though 
DL has shown improvement for outcome prediction, the predictive value 
is still relatively low and clinical characteristics should be included in 
future prediction models. 
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